CN102483367B - 计算多模光纤系统带宽和制造改进的多模光纤的方法 - Google Patents

计算多模光纤系统带宽和制造改进的多模光纤的方法 Download PDF

Info

Publication number
CN102483367B
CN102483367B CN201080038622.3A CN201080038622A CN102483367B CN 102483367 B CN102483367 B CN 102483367B CN 201080038622 A CN201080038622 A CN 201080038622A CN 102483367 B CN102483367 B CN 102483367B
Authority
CN
China
Prior art keywords
optic cable
fiber optic
multimode fiber
optical fiber
color dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080038622.3A
Other languages
English (en)
Other versions
CN102483367A (zh
Inventor
B·莱恩
J·M·卡斯特罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panduit Corp
Original Assignee
Panduit Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panduit Corp filed Critical Panduit Corp
Publication of CN102483367A publication Critical patent/CN102483367A/zh
Application granted granted Critical
Publication of CN102483367B publication Critical patent/CN102483367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/332Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Abstract

提供一种用于计算多模光纤系统带宽的改进算法,这种算法致力于模色散效应和颜色色散效应两者。将激光发射机发射谱的半径依存性考虑在内以帮助设计更有效的光传输系统。

Description

计算多模光纤系统带宽和制造改进的多模光纤的方法
相关申请的交叉引用
本申请要求2009年8月28日提交的题为“METHODSFORCALCULATINGMULTIMODEFIBERSYSTEMBANDWIDTHANDMANUFACTURINGIMPROVEDMULTIMODEFIBER(计算多模光纤系统带宽和制造改进的多模光纤的方法)”的美国临时专利申请No.61/237,827的权益,其内容因此整体包含于此。
本申请全篇地纳入2009年11月30日提交的题为“MULTIMODEFIBERHAVINGIMPROVEDINDEXPROFILE(具有改进的折射率分布的多模光纤)”的美国专利申请S/N12/627,752、2010年6月9日提交的题为“DESIGNMETHODANDMETRICFORSELECTINGANDDESIGNINGMULTIMODEFIBERFORIMPROVEDPERFORMANCE(用于选择和设计具有提高性能的多模光纤的设计方法和度量)”的美国专利申请S/N12/797,328、2010年8月19日提交的题为“MODIFIEDREFRACTIVEINDEXPROFILEFORLOW-DISPERSIONMULTIMODEFIBER(用于低色散多模光纤的修正折射率分布)”的美国专利申请S/N12/859,629以及2010年8月17日提交的题为“SELF-COMPENSATINGMULTIMODEFIBER(自补偿多模光纤)”的美国专利申请S/N12/858,210。
背景
差模延迟(DMD)和有效模带宽(EMB)是用来量化激光器优化多模光纤光缆(MMF)的带宽的两个工业标准度量。激光优化的光纤被等同地称为OM3(光纤类型A1a.2)和OM4(光纤类型A1a.3)。用于DMD和EMB两者的测量和计算程序记载在国内标准TIA-455-220-A和国际标准IEC60793-1-49中。TIA-455-220-A和IEC60793-1-49是基本等同的并在本公开中可互换地使用。
用于确定DMD和EMB的当前标准算法足以评价特定光纤在特定测量波长下的模色散的定量。然而,它们没有正确地解决模色散和颜色色散效应两者,因此EMB无法准确地应用在用于估算界限和性能(例如误码率(BER)、支持的光链路长度)的光通信系统模型中。一种已知和经常提及的系统模型是可在下列网址自由地下载的IEEE10Gbps链路模型:http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/10 GEPBud3_1_16a.xls,它由于模色散和颜色色散作为唯一附加而不正确地估计这些效应。Panduit实验室已发现来自EMB和系统性能(BER)之间传统可观察到的比例关系的许多偏差。参见图1,要注意系统性能(BER)和光纤带宽之间的关系不是线性的,而仅仅是成比例的。
美国临时专利申请S/N61/187,137描述了一种通过将在各径向偏移(量级和延迟)下的光纤响应的相对平移考虑在内而计算DMD的改进算法。然而,这种改进无法方便地利用以:1)提供拟用于通信系统模型的更准确带宽度量;或2)提供允许补偿模色散和颜色色散而无需知道横跨光纤纤芯的激光发射机的光纤耦合的谱分布的手段。所需要的是一种用于计算特定激光发射机和光纤组合的带宽的改进算法。
作为参考,用于确定EMB的标准算法如下地概括在下面六个步骤中被并在例1中被论证。提供确定EMB所需的必要条件的详尽清单落在本公开的范围之外。为获得附加信息而参照TIA-455-220-A。
在标准算法的第一步骤,DMD测量装置用来测量光纤对光谱窄和时间短的具有中央波长λc的光脉冲的时间响应U(r,t),所述光脉冲以一系列径向偏移r(典型地对于50μm的MMF光纤r=0,1,2,3,…,25μm)注入到光纤纤芯内。由于U(r,t)是波长的函数,最终结果EMB将也是波长的函数。对DMD和EMB测量程序来说隐含的是测量只是为了量化在给定波长λc下的模色散效应这一事实。发射脉冲的时间响应为R(t)。
在标准算法的第二步骤中,光纤的加权响应D(r,t,n)是用n个DMD加权函数W(r,n)计算出的。DMD加权函数从n个激光源的近场数据推导出并用来突出在激光源激励光纤的光纤区域内的模色散效应。对于如何确定对于给定激光器近场的特定激光器的加权函数的附加信息,参见TIA-455-220-A。如果要计算特定光纤和单个激光源(n=1)的精确带宽,则D(r,t,1)完全是单个激光源的近场的函数。替代地,可采用很大数量的DMD加权函数以提供一定范围的计算带宽,这些DMD加权函数代表针对特定应用(例如10GBASE-SR以太网)使用的激光器。在TIA-455-220-A中,采用十个(n=10)这样的DMD加权函数W(r,10)。一般来说,光纤的加权响应D(r,t,n)是如此给出的:
D(r,t,n)=U(r,t)W(r,n)(1)
在标准算法的第三步骤中,结果输出脉冲Po(t,n)是通过跨所有的r对加权响应D(r,t,n)求和来计算出的。
P o ( t , n ) = Σ r D ( r , t , n ) = Σ r U ( r , t ) W ( r , n ) - - - ( 2 )
在该标准算法的第四步骤中,计算光纤模色散传递函数Hmd(f,n)并确定计算出的有效模带宽EMBc(n)。光纤模色散传递函数是通过对发射脉冲R(t)从结果输出脉冲Po(t,n)中去卷积而确定的。
Hmd(f,n)=FT{Po(t,n)}/FT{R(t)}(3)
其中FT是傅立叶变换函数而EMBc(n)被定义为在光纤模色散传递函数Hmd(f,n)与预定阈值(经常等于-3dB)相交的那一点处的最小频率。光纤模带宽可通过光纤长度归一化以提供经归一化光纤模带宽的测量值(以MHz·km为单位)。
在TIA-455-220-A中,当n=10时,十个计算出的归一化光纤带宽EMBc(1,2,3,…,10)中的最小值被定义为最小EMBc(minEMBc)并被视为特定光纤和激光发射机的最小模带宽(由十个DMD加权函数表示)。此外,minEMBc可与模色散的光纤标准规范需求作比较。有效模带宽(EMB)被定义为:EMB=1.13xminEMBc.对于OM3光纤,TIA-492AAAC-A要求minEMBc>1770MHz·km,而对于OM4光纤,TIA-492AAAD将要求minEMBc>4159MHz·km。
在标准算法的第五步骤中,为了计算光纤和激光源的总带宽,对于非零谱宽度,颜色色散效应与模色散效应组合。一开始,必需通过将激光发射机发射谱L(λ)与光纤的飞行时间的波长依存性TOF(λc)相乘来计算光纤颜色色散传递函数Hcd(f)。
Hcd(f)=FT{L(λ)TOF(λc)}(4)
TIA-455-168-A中描述的测量程序可用来测量光纤的飞行时间的波长依存性TOF(λc)。预期相对飞行时间TOF(λc)在所考虑的相对小范围波长(即840-860nm)上是线性的,并因此可不显著丧失准确性地利用线性插值法。最后,TIA-455-168-A规定过填充发射条件,且由于已在实验中发现相对飞行时间相对于波长的斜率不是径向偏移r的强函数,因此可使用过填充发射条件。过填充发射条件被定义为完全激励光纤所有支持模式的发射条件。
TIA-455-127-A中记载的测量程序可用来测量激光发射机发射谱L(λ)。本质上要注意,如下文中容易理解的那样,使用规定的测量程序以测量激光发射机发射谱不提供关于光纤纤芯内的激光器各谱分量的空间位置的任何信息。这就是现有技术算法不适于提供量化带宽的准确方法的原因。
在标准算法的第六步骤中,通过将模色散和颜色色散效应与Hmd(f,n)和Hcd(f)的卷积组合而计算总光纤传递函数H光纤(f,n)和总计算带宽CB(n)。
H光纤(f)=Hmd(f,n)·Hcd(f)(5)
其中CB(n)可以与前面针对EMBc(n)描述的类似方式确定。
遗憾的是,标准算法是源自光纤纤芯内的光纤耦合谱的空间分辨率丧失的过度简化形式。标准算法假设横跨光纤纤芯的均一谱分布。没有该信息的话,颜色色散的脉冲展宽和时延(相移)效应跨光纤的所有时间响应均等地作用,且由颜色色散导致的跨纤芯的任何差时延(相移)不被考虑在内。结果,当利用标准算法时,模色散和颜色色散效应的大小可能仅为加性的,而永远不会是减性的。
应当需要给予一种改进的带宽计算算法,这种算法能通过将跨纤芯半径的光纤耦合波长的非均等性质考虑在内而正确地组合模色散和颜色色散效应。
概述
在一个方面,提供存储在计算机可读存储介质上的计算机程序,该计算机程序程序执行用于计算激光源和多模光纤光缆的方法。该方法将多模光纤光缆中的模色散效应和颜色色散效应两者考虑在内。该方法包括,但不局限于,使用以距离纤芯一系列径向偏移r注入多模光纤光缆的纤芯的具有中心波长λc的频率窄和时间短的光脉冲来测量多模光纤光缆的时间响应U(r,t)。该方法还包括,但不局限于,计算多个光纤颜色色散传递函数Hcd(f,r)并将使用所述多个光纤颜色色散传递函数Hcd(f,r)计算出的总计算带宽CB(n)输出到显示器上。
在一个方面,提供一种设计经改进的多模光纤光缆的方法,该多模光纤光缆补偿耦合入基准多模光纤光缆的激光投射模的径向依存的波长分布。该方法包括,但不局限于,使用通过激光器发射入基准多模光纤光缆的频率窄且时间短的光辐射脉冲来测量基准多模光纤光缆的时间响应U(r,t)。光脉冲具有种中心波长λc,并且光脉冲以距离纤芯的一系列径向偏移r发射入基准多模光纤光缆的纤芯。该方法还包括,但不局限于,通过将激光器的激光发射机发射谱L(λ,r)乘以飞行时间的波长依存性TOF(λ)来计算多个光纤颜色色散传递函数Hcd(f,r)。该方法也包括,但不局限于,通过使用多个光纤颜色色散传递函数来确定起因于发射入基准多模光纤光缆的光辐射脉冲的基准多模光纤光缆中的模色散的量。该方法还包括,但不局限于,设计一种具有改进的折射率分布的改进的多模光纤光缆,这种折射率分布对耦合入基准多模光纤光缆的激光器发射模的径向依存的波长分布的至少一部分作出补偿。
在一个方面,提供一种设计经改进的多模光纤光缆的方法,该多模光纤光缆补偿基准激光器的激光发射模的径向依存的波长分布。该方法还包括,但不局限于,通过将基准激光器的激光发射机发射谱L(λ,r)乘以飞行时间的波长依存性TOF(λ)来计算基准激光器的多个光纤颜色色散传递函数Hcd(f,r)。该方法还包括,但不局限于,使用多个光纤颜色色散传递函数来计算消除改进的多模光纤光缆中的颜色色散效应并使改进的多模光纤光缆的带宽达到最大所需的改进多模光纤光缆中的模色散效应的量。
本发明的范围仅由所附权利要求书限定并不受此发明内容中的陈述的影响。
附图简述
本发明可参照下面附图和说明得到更好的理解。附图中的组件不一定是按比例的,相反重点放在清楚地示出本发明的原理上。
图1示出根据本发明一个实施例的同一光缆中的三条光纤(L=550m)的测得误码率的曲线图,所述测得误码率表现反比于光纤EMB。该采样数据突出了应当与BER成正比的当前EMB算法的缺陷。
图2A示出根据本发明一实施例的典型VCSEL-光纤耦合机制的示意图,这种机制导致跨光纤纤芯的波长的非均等分布(即L(λ)≠L(λ))。一般来说,由于VCSEL本身的空间变化的发射谱(和数值孔径),不等性L(λ)≠L(λ)发生。
图2B示出根据本发明一个实施例的耦合的λ横跨光纤的简化分布的端视图。
图2C示出根据本发明一个实施例在与λ和λ对应的光纤纤芯的不同位置测得的光纤耦合谱L(λ)的曲线图。尽管谱分量大部分相似,然而在分量的大小上存在平移,这有效地使中心波长平移。
图3示出根据本发明一个实施例表示光纤耦合谱分量的非均等分布的测得中心波长相对于光纤径向偏移的曲线图。重要的是注意,中心波长相对于径向位置的斜率是负的。在提供测量时,激光发射机(VCSEL)光纤耦合至多模光纤光缆(MMF)。该MMF随后被定位在电子可寻址的定位台上。随后跨MMF的半径扫描充当聚光光纤的SMF。
图4示出根据本发明一个实施例的特定待测光纤的测得时间响应U(r,t)的曲线图。简化起见,曲线图中仅示出了3个偏移(3、10和19μm)。
图5示出根据本发明一个实施例在应用加权函数后针对特定光纤的经加权时间响应的曲线图。
图6示出根据本发明一个实施例的结果输出脉冲Po(t,1)的曲线图,它简单地是图5所示经加权时间响应之和。
图7示出根据本发明一个实施例的光纤模色散传递函数Hmd(f,1)的曲线图,Hmd(f,1)是通过取结果输出脉冲Po(t,1)的傅立叶变换和发射脉冲R(t)的傅立叶变换的商来计算出的。
图8示出根据本发明一个实施例的激光发射机的发射谱的曲线图。
图9示出根据本发明一个实施例的测得光纤飞行时间相对于波长的曲线图。
图10示出根据本发明一个实施例的图8所示激光发射机的发射谱与图9所示测得光纤飞行时间相对于波长之积的曲线图。
图11示出根据本发明一个实施例的颜色色散传递函数的曲线图。
图12示出根据本发明一个实施例的总计算带宽CB(1)的曲线图。
图13示出根据本发明一个实施例的例2中使用的谱对于径向偏移的依存性的曲线图。
图14示出三个颜色色散传递函数的曲线图:Hcd(f,3μm),Hcd(f,10μm)和Hcd(f,19μm)。
图15示出根据本发明一个实施例的在经受颜色色散Ucd(r,t)之前针对光纤的原始时间响应的三个波形的结果波形的曲线图。
图16A示出根据本发明一个实施例的在经受颜色色散U(r,t)之前针对光纤的原始时域响应的三个波形的叠加波形的曲线图。
图16B示出根据本发明一个实施例的在经受颜色色散Ucd(r,t)之后针对光纤原始时域响应的三个波形的叠加结果波形的曲线图。
图17示出根据本发明一个实施例的经加权结果输出脉冲Pcd(t,1)的曲线图。
图18示出根据本发明一实施例的本公开相比现有技术的总光纤传递函数H光纤(f,1)以及本公开相比现有技术的计算带宽CB(1)的曲线图。
图19示出根据本发明一实施例的示例性计算系统的方框示意图。
具体描述
本发明利用下列发现:通过提供一种改进算法,该改进算法具有计算纳入跨光纤纤芯的光纤耦合谱分布的光纤和激光发射机带宽组合的方法,可将模色散效应以及也称为材料色散效应的径向依存颜色色散效应考虑在内。在本发明的一个实施例中,一种用于确定特定光纤带宽和统计代表性激光发射机的个数的算法可用来确定带宽范围,并可能确定光纤的最小带宽和激光发射机的个数。该后一实施例类似于TIA-455-220-A中当前描述的方法,用于确定将一特定光纤和一组激光发射机组合起来可具有的最小带宽。但是,这种现有方法不将本发明包括的径向依存性考虑在内。
在后面的说明中,除非另有指明,否则将参照由一个或多个计算机执行的动作和操作码元表示来描述本申请的主题。因而要理解,有时被称作计算机执行的这些动作和操作包括由计算机的处理单元操纵表征结构化形式的数据的电信号。这种操纵转换数据或将其保持在计算机存储系统的各个位置,它以本领域内技术人员公知的方式重构或另外改变计算机的操作。保持数据的数据结构是存储器的具有由数据格式定义的特定属性的物理位置。然而,尽管本申请的主题在前面的上下文中已有描述,然而它不打算作为限定,因为本领域内技术人员将理解下文中描述的一些动作和操作也可以硬件、软件和/或固件和/或其一些组合来实现。
参见图19,其中描述了用于实现诸实施例的示例性计算系统。图19包括计算机,它可以是固定设备或便携设备,其中其至少一些或全部组件在可由人四处携带的单个设备中形成在一起。计算机100包括处理器110、存储器120以及一个或多个驱动器或存储设备130。存储设备130包括任何能够存储数据、信息或指令的设备,例如:存储器芯片存储,包括RAM、ROM、EEPROM、EPROM或任何其它类型的闪存设备;包含硬盘或软盘和磁带的磁存储设备;例如CD-ROM盘、BD-ROM盘和BluRayTM盘的光学存储设备;以及全息存储设备。
存储设备130及其关联的计算机存储介质为计算机100提供计算机可读指令、数据结构、程序模块和其它信息的存储。存储设备130可包括操作系统140、应用程序150、程序模块160和程序数据180。计算机100还包括输入设备190,通过输入设备190可自动或通过输入命令和数据的用户将数据输入计算机100。输入设备190可包括电子数字化器、麦克风、相机、摄像机、键盘和定点设备,一般被称为鼠标、跟踪球或触摸垫。其它输入设备可以包括操纵杆、游戏手柄、圆盘式卫星天线、扫描仪等。在一个或多个实施例中,输入设备190是可直接显示或图示在处理器110上运行的应用的便携式设备。
这些和其他输入设备190可通过耦合至系统总线192的用户输入接口连接于处理器110,但也可以由诸如并行端口、游戏端口或通用串行总线(USB)等其它接口和总线结构来进行连接。例如计算机100的计算机也可包括其它外围输出设备,例如扬声器和/或显示设备,所述外围输出设备可通过输出外设接口194等进行连接。
计算机100还包括在天线的帮助下为计算机100无线发送和接收数据的无线电198。无线电198可使用WiMAXTM、802.11a/b/g/n、BluetoothTM、2G、2.5G、3G以及4G无线标准来无线发送和接收数据。
计算机100可使用至诸如远程计算机之类的一个或多个远程计算机的逻辑连接在联网环境中操作。远程计算机可以是个人计算机、服务器、路由器、网络PC、对等设备或其它公共网络节点,并可包括许多、要不就是全部上文中相对于计算机100描述的元件。联网环境在办公室、企业域计算机网络、内联网和互联网中是常见的。例如,在本申请的主题中,计算机100可包括从中迁移数据的源机,而远端计算机可包括目的机。然而要注意,源机和目的机不需要由网络或任何其它装置连接,相反地,数据可经由能由源平台写入或由一个或多个目的平台读出的任何介质迁移。当在LAN或WAN联网环境中使用时,计算机100通过网络接口196或适配器连接至LAN。当在WAN联网环境中使用时,计算机100通常包括调制解调器或用于建立通过WAN至诸如互联网等环境的通信的其他手段。要理解,也可使用在计算机之间建立通信链路的其它手段。
根据一个实施例,计算机100连接在联网环境中以使处理器100可处理输入和输出数据。输入和输出数据可以去往和/或来自便携式设备或来自另一数据源,例如另一计算机。
参见图2和图3,光纤耦合的波长谱可跨光纤横向地变化。其起因示意地示出于图2,并且其测量结果在图3中给出。分辨光纤纤芯内的波长的非均等属性允许实现用于计算光纤带宽的更准确和改进的算法。经改进的算法相对于前述算法概括成如下六个步骤。经改进的算法可留驻在存储设备130上并在计算机100上计算。
在改进的算法的第一步骤中,使用以距离纤芯一系列径向偏移r地注入多模光纤光缆的纤芯的具有中心波长λc的频率窄和时间短的光脉冲来测量多模光纤光缆的时间响应U(r,t)。
在改进的算法的第二步骤中,计算光纤颜色色散传递函数Hcd(f,r)。光纤颜色色散传递函数是通过将激光发射机发射谱L(λ,r)乘以飞行时间的波长依存性TOF(λ)来计算出的。
Hcd(f,r)=FT{L(λ,r)TOF(λ)}(6)
改进的算法的第二步骤是标准算法和改进的算法之间的一个区别。在改进的算法中,计算一系列颜色色散传递函数,而在标准算法中,只计算单个颜色色散传递函数。一系列颜色传递函数利于维持跨纤芯半径的大小和时延(相移)信息两者并将其正确地加至模色散效应或从模色散效应减去。
在改进的算法的第三步骤中,通过首先将光纤的时间响应的傅立叶变换与颜色色散传递函数作卷积并随后取卷积的逆傅立叶变换以将光纤响应转换回到时域而计算光纤在颜色色散效应之后的时间响应Ucd(r,t)。
Ucd(r,t)=FT-1{FT{U(r,t)}·Hcd(f,r)}(7)
其中FT-1是逆傅立叶变换函数。
在改进的算法的第四步骤中,光纤的颜色色散加权响应Dcd(r,t,n)是用n个DMD加权函数W(r,n)计算出的。
Dcd(r,t,n)=Ucd(r,t)W(r,n)(8)
在改进的算法的第五步骤中,颜色色散的结果输出脉冲Pcd(t,n)是通过跨所有的r对加权响应Ucd(r,t)求和来计算出的。
P cd ( t , n ) = Σ r D cd ( r , t , n ) = U cd ( r , t ) W ( r , n ) - - - ( 9 )
在改进的算法的第六步骤中,计算总光纤传递函数H光纤(f,n)和总计算带宽CB(n)并优选地在显示器上输出给用户。总光纤传递函数是通过对发射脉冲R(t)从输出脉冲Pcd(t,n)中去卷积而确定的。
H光纤(f,n)=FT{Pcd(t,n)}/FT{R(t)}(10)
应当注意,改进的算法是一种一般算法,它正确地适应测得或建模的参数的任意输入函数(即U(r,t),L(λ,r),W(r,n))。因此,改进的算法可用来正确地量化表现出向“左”(时间提前增加r)或向“右”(时间滞后)的DMD平移的光纤带宽,这些DMD平移可与以任何方式将光耦合入光纤的发射机一起使用。
该改进的算法可用于更准确地计算多模光纤系统的带宽,该算法可较为有利地以多种方式施加。例如,实践应用包括但不局限于下列内容。
在第一应用中,改进的算法可用于优化多模光纤的玻璃设计。由于已发现并在下面的例1和例2示出,当模色散效应和颜色色散效应为减性时,总系统带宽增加,知道颜色色散参数(光纤耦合的谱和飞行时间)允许人们确定能有效地彼此抵消的模色散参数(光纤的时间响应)。此外,由于光纤的时间响应依赖于光纤折射率分布,因此可设计优化的折射率分布。
在第二应用中,改进的算法可用于更准确地关联于测得系统性能度量(例如BER)的改进带宽测量和计算。此外,可利用改进的带宽测量和计算来提高光通信系统模型的准确性。
在第三应用中,改进的算法可用于进一步理解激光发射机谱对系统性能的影响。
在第四应用中,改进的算法可用于进一步理解光纤耦合谱对系统性能的影响。
在第五应用中,改进的算法可用于运行在计算机100上的软件以优化多模光纤的玻璃设计并提供更准确的光通信系统模型。
示例1
下面给出用于计算带宽的标准算法的简化例,并示出其与改进的算法的差异。起先,针对如上所述的步骤对标准算法进行描述。
参见图4,在标准算法的第一步骤中,测量特定待测光纤的时间响应U(r,t)。简化起见,分析中仅示出了3个偏移(3、10和19μm)。时域响应是来自光纤样本C26蓝的测得数据。要注意,这些时域响应向“左”平移并因此随着r增大,到达时间减少。
参见图5,在标准算法的第二步骤中,仅使用一个DMD加权函数(n=1)并且W(3μm,1)=2,W(10μm,1)=1,W(19μm,1)=2。经加权的时间响应在图5中用图形示出。
参见图6,在标准算法的第三步骤中,结果输出脉冲Po(t,1)仅为加权响应之和并示出于图6中。通过取结果输出脉冲Po(t,1)的傅立叶变换和发射脉冲R(t)的傅立叶变换的商来计算光纤模色散传递函数Hmd(f,1)。图形解答中的这个结果示出于图7,该结果已在振幅上并相对光纤长度(L=550m)被归一化。只要考虑模带宽并将3dB(50%)点作为带宽阈值,则针对该采样的EMBc(1)可以是6435MHz·km(由虚线表示)。
如果用现有技术的算法来计算总计算带宽CB(1),则激光发射机的颜色色散效应将与光纤模色散传递函数Hmd(f,1)组合。颜色色散传递函数仅仅是激光发射机的发射谱(图8)与光纤测得飞行时间相对于波长(图9)的乘积。激光器发射谱是来自JDSU10Gb/s误码率测试发射机的测得数据。飞行时间数据是来自光纤样本C26蓝的测得数据。
激光发射机的发射谱与光纤测得飞行时间相对于波长之积示出于图10。最后,确定颜色色散传递函数并在图11示出。
参见图12,在标准算法的第四步骤中,总计算带宽CB(1)是光纤模色散传递函数Hmd(f,1)和颜色色散传递函数Hcd(f)的卷积。CB(1)在图12中用实线表示,对于该样本可以是6221MHz·km。
本质上要注意,当使用标准算法时,计算出的带宽不能超出模色散传递函数或颜色色散传递函数的量级。结果,标准算法不能适应已知情形是颜色色散效应和模色散效应是减性的并因此计算出的带宽超出颜色色散传递函数和模色散传递函数的量级。本发明的改进算法适应这种情况。
示例2
下面给出同样针对前面描述的程序和前面的示例1论述改进算法的简化示例。
参见图4,在改进算法的第一步骤中,在r=3、10和19μm下测量特定待测光纤的时间响应并示出于图4。
参见图13,在改进算法的第二步骤中,确定在径向偏移下的颜色色散传递函数Hcd(f,r)。由于在每个径向偏移下确定传递函数,所以诸径向偏移之间的时延(相移)信息被保存。该本质理念,在光纤纤芯内察觉到波长的不均等属性后引入,实现改进的算法。在本例中用于计算谱对径向偏移的依存性示出于图13。
这允许计算三个颜色色散传递函数:确定Hcd(f,3μm),Hcd(f,10μm)和Hcd(f,19μm)并将其示出于图14(与图9类似但用线性标度表示)。
参见图15,在使用颜色色散传递函数的改进算法的第三步骤中,根据等式7计算光纤在经历颜色色散后的最初时间响应Ucd(r,t)的三个波形。结果波形示出于图15。
比较图15和图4,注意到脉冲以正比于图9所示的其相对飞行时间的时间平移(接近+200ps)。这三个波形之间的相对时移是光纤纤芯内的波长非均等性质和颜色色散效应的结果。去除波形的人为偏移有利于在图形上观察这种结论。注意3μm波形和19μm波形之间的波峰之差。
参见图17,在改进算法的第四和第五步骤中,经加权的结果输出脉冲Pcd(t,1)图形地示出于图17,并与图6所示的经加权结果输出脉冲相似。
参见图18,在改进算法的第六步骤中,确定如本发明所确定的总光纤传递函数H光纤(f,1)。对于该例来说,计算出的带宽CB(1)为9184MHz·km,其正确地论述了模色散和颜色色散的补偿效果(现有技术CB(1)=6221MHz·km)。
本领域内技术人员将发现,技术发展水平已进步到在系统的硬件实现和软件实现方面之间留有极小差别的程度;硬件或软件的选择一般(但不总是,因为在某些背景中硬件和软件之间的选择可能变得重要)是代表成本相对于效率折衷的设计选择。本领域内技术人员将理解,存在可实现本文所述的进程和/或系统和/或其它技术的多种载体(例如硬件、软件和/或固件),并且优选的载体将随着部署进程和/或系统和/或其它技术的背景而改变。例如,如果实施者确定速度和准确性是首要的,实施者可主要选择硬件和/或固件载体,或者如果灵活性是首要的,实施者可主要选择软件实现,再或者,实施者可选择硬件、软件和/或固件的某些组合。因此,存在若干可能的载体,籍此可实现本文描述的进程和/或设备和/或其它技术,它们中没有任何一个天生就优于其它选择,因为拟利用的任何载体是依赖于载体将被部署的背景和实施者的特定考量(例如速度、灵活性或可预知性)的选择,这些因素中的任何一个都是可变的。本领域内技术人员将发现,光学实现方面将通常采用光学定向硬件、软件和/或固件。
前面的详细说明已经由框图、流程图和/或示例的使用展示了设备和/或进程的各实施例。在这些框图、流程图和/或示例包含一个或多个函数和/或操作的情形下,本领域内技术人员将理解,这些框图、流程图或示例中的每个函数和/或操作可通过众多硬件、软件、固件或实际上其任意组合单独和/或共同地实现。在一个实施例中,本文描述的主题的若干部分可藉由专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)或其它集成格式来实现。然而,本领域内技术人员将发现,本文披露的实施例的一些方面可全体或部分地等效地实现在集成电路中,作为运行在一个或多个计算机上的一个或多个计算机程序(例如作为运行在一个或多个计算机系统上的一个或多个程序),作为运行在一个或多个处理器上的一个或多个程序(例如作为运行在一个或多个微处理器上的一个或多个程序),作为固件,或作为其实际上任意组合;并且设计电路和/或为软件和/或固件撰写代码将落在本领域内技术人员鉴于本公开的认知范围内。另外,本领域内技术人员将理解,本文描述的主题的机制能以多种形式作为程序产品分配,并且本文描述的主题的示例性实施例的应用无需理会实际用来执行分配的信号承载介质的具体类型。信号承载介质的示例包括但不局限于下列各项:例如软盘、硬盘驱动器、紧凑盘(CD)、数字视频盘(DVD)、数字磁带、计算机存储器等可记录型介质;以及例如数字和/或模拟通信介质(例如光纤光缆、波导、有线通信链路、无线通信链路等)的传输型介质。
本文描述的主题有时示出不同的组件,该不同的组件包含在不同的其它组件中或与其它组件相连。要理解,这些图示架构仅为示例,并且事实上可采用获得同样功能的许多其它架构。从概念上说,能获得相同功能的任何组件配置是效果上“关联的”从而实现要求的功能。因此,本文中组合以实现特定功能的任何两个组件可视为彼此“关联的”以实现要求的功能,不管架构或介质间组件如何。同样,任何两个如此关联的组件也可视为彼此“操作地连接”或“操作地耦合”以获得要求的功能,并且能够如此关联的任意两个组件也可被视为彼此“操作地耦合”以实现要求的功能。操作地耦合的特定示例包括但不局限于,可物理匹配和/或物理交互的组件和/或可无线交互和/或无线交互的组件和/或逻辑交互和/或可逻辑交互的组件。
本领域内技术人员将发现,以本文所述方式实现设备和/或进程和/或系统并随后使用工程和/或商业实践来将此实现的这些设备和/或进程和/或系统整合入更广泛的设备和/或进程和/或系统是本领域内常见的。也就是说,本文描述的设备和/或进程和/或系统的至少一部分可经由合理数量的实验整合入更广泛的设备和/或进程和/或系统。本领域内技术人员将发现,这些广泛设备和/或进程和/或系统的示例可包括——根据背景和应用——(a)空运(例如飞机、火箭、气垫船、直升飞机等)、(b)地面运载(例如汽车、卡车、火车、坦克、武装人员运输车等)、(c)建筑物(例如家、仓库、办公室等)、(d)设施(例如电冰箱、洗衣机、干衣机等)、(e)通信系统(例如联网系统、电话系统、IP上语音系统等)、(f)商业实体(例如ComcastCable,Quest,西南贝尔的互联网服务提供商(ISP)实体)或(g)有线/无线服务实体(例如Sprint,Cingular,Nextel等)的所有或部分的设备和/或进程和/或系统。
尽管已展示和描述了本文描述的主题的特定方面,然而本领域内技术人员应当理解,基于本文的教义,可不脱离本文所述主题及其更宽范围地作出多种改变和修正,因此,所附权利要求旨在将落在本文描述的主题的真实精神和范围内的所有这些改变和修正涵盖在其范围内。此外要理解,本发明由所附权利要求书定义。因此,本发明不受限制,除非受所附权利要求书及其等效物的启发。

Claims (10)

1.一种计算激光源和多模光纤光缆的带宽的方法,所述方法将所述多模光纤光缆中的模色散效应和颜色色散效应两者考虑在内,所述方法包括:
使用以距离纤芯一系列径向偏移r地注入所述多模光纤光缆的纤芯的具有中心波长λc的频率窄和时间短的光脉冲来测量多模光纤光缆的时间响应U(r,t);
计算多个光纤颜色色散传递函数Hcd(f,r);
通过首先将所述多模光纤光缆的时间响应的傅立叶变换与所述多个光纤颜色色散传递函数作卷积并随后取所述卷积的逆傅立叶变换以将所述多模光纤光缆的时间响应转换回时域而计算多模光纤光缆在颜色色散效应之后的时间响应Ucd(r,t);以及
将总计算带宽CB(n)输出到显示器上,所述总计算带宽是使用多个光纤颜色色散传递函数Hcd(f,r)计算出的。
2.一种计算激光源和多模光纤光缆的带宽的设备,其中所述设备将所述多模光纤光缆中的模色散效应和颜色色散效应两者考虑在内,所述设备包括:
用于使用以距离纤芯一系列径向偏移r地注入所述多模光纤光缆的纤芯的具有中心波长λc的频率窄和时间短的光脉冲来测量多模光纤光缆的时间响应U(r,t)的装置;
用于计算多个光纤颜色色散传递函数Hcd(f,r)的装置;
用于通过首先将所述多模光纤光缆的时间响应的傅立叶变换与所述多个光纤颜色色散传递函数作卷积并随后取所述卷积的逆傅立叶变换以将所述多模光纤光缆的时间响应转换回时域而计算多模光纤光缆在颜色色散效应之后的时间响应Ucd(r,t)的装置;以及
用于将总计算带宽CB(n)输出到显示器上的装置,所述总计算带宽是使用多个光纤颜色色散传递函数Hcd(f,r)计算出的。
3.如权利要求1所述的方法,其特征在于,所述方法还包括:
用n个DMD加权函数W(r,n)来计算所述多模光纤光缆的颜色色散的经加权响应Dcd(r,t,n)。
4.如权利要求3所述的方法,其特征在于,所述方法还包括:
通过对跨所有半径的加权响应Ucd(r,t)求和来计算颜色色散结果输出脉冲Pcd(t,n)。
5.如权利要求4所述的方法,其特征在于,所述方法还包括:
计算总光纤传递函数H光纤(f,n)和总计算带宽CB(n);以及
将总光纤传递函数H光纤(f,n)和总计算带宽CB(n)输出到显示器上。
6.一种设计经改进的多模光纤光缆的方法,所述多模光纤光缆补偿耦合入基准多模光纤光缆的激光投射模的半径依存波长分布,所述方法包括:
使用通过激光器发射入基准多模光纤光缆的频率窄和时间短的光辐射脉冲来测量所述基准多模光纤光缆的时间响应U(r,t),其中所述光脉冲具有中心波长λc,并且所述光脉冲以距离纤芯一系列径向偏移r地发射入所述基准多模光纤光缆的纤芯;
通过将所述激光器的激光发射机发射谱L(λ,r)乘以飞行时间的波长依存性TOF(λ)来计算多个光纤颜色色散传递函数Hcd(f,r);
通过将所述基准多模光纤光缆的时间响应的傅立叶变换与多个光纤颜色色散传递函数作卷积并随后取所述卷积的逆傅立叶变换来确定起因于发射入所述基准多模光纤光缆的光辐射脉冲的基准多模光纤光缆中的模色散的量;以及
设计具有改进的折射率分布的改进的多模光纤光缆,所述改进的折射率分布对耦合入所述基准多模光纤光缆的激光发射模的半径依存的波长分布的至少一部分作出补偿。
7.一种使用权利要求6所述方法设计的改进的多模光纤光缆。
8.一种设计经改进的多模光纤光缆的方法,所述改进的多模光纤光缆补偿基准激光器的激光发射模的径向依存的波长分布,所述方法包括:
通过将所述基准激光器的激光发射机发射谱L(λ,r)乘以飞行时间的波长依存性TOF(λ)来计算基准激光器的多个光纤颜色色散传递函数Hcd(f,r);以及
将所述经改进的多模光纤光缆的时间响应的傅立叶变换与多个光纤颜色色散传递函数作卷积并随后取所述卷积的逆傅立叶变换来计算消除改进的多模光纤光缆中的颜色色散效应并使改进的多模光纤光缆的带宽达到最大所需的改进多模光纤光缆中的模色散效应的量。
9.一种使用权利要求8所述的方法设计的改进的多模光纤光缆。
10.如权利要求8所述的方法,其特征在于,还包括:设计具有改进的折射率分布的改进的多模光纤光缆,所述改进的折射率分布对耦合入所述基准多模光纤光缆的激光发射模的半径依存的波长分布的至少一部分作出补偿。
CN201080038622.3A 2009-08-28 2010-08-27 计算多模光纤系统带宽和制造改进的多模光纤的方法 Active CN102483367B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23782709P 2009-08-28 2009-08-28
US61/237,827 2009-08-28
US12/869,501 2010-08-26
US12/869,501 US8489369B2 (en) 2009-08-28 2010-08-26 Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber
PCT/US2010/046946 WO2011025936A1 (en) 2009-08-28 2010-08-27 Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber

Publications (2)

Publication Number Publication Date
CN102483367A CN102483367A (zh) 2012-05-30
CN102483367B true CN102483367B (zh) 2016-04-27

Family

ID=43626133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080038622.3A Active CN102483367B (zh) 2009-08-28 2010-08-27 计算多模光纤系统带宽和制造改进的多模光纤的方法

Country Status (7)

Country Link
US (1) US8489369B2 (zh)
EP (1) EP2470874B1 (zh)
JP (1) JP5504347B2 (zh)
KR (1) KR101632569B1 (zh)
CN (1) CN102483367B (zh)
MX (1) MX2012002324A (zh)
WO (1) WO2011025936A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1024015C2 (nl) * 2003-07-28 2005-02-01 Draka Fibre Technology Bv Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
FR2940839B1 (fr) 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
FR2946436B1 (fr) 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953606B1 (fr) 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2949870B1 (fr) 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
ES2494640T3 (es) 2011-01-31 2014-09-15 Draka Comteq B.V. Fibra multimodo
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
US8797519B2 (en) * 2012-09-28 2014-08-05 Corning Incorporated Method of measuring multi-mode fiber bandwidth through accessing one fiber end
US9377377B2 (en) 2013-04-30 2016-06-28 Corning Incorporated Methods and apparatus for measuring multimode optical fiber bandwidth
EP3058329B1 (en) 2013-10-15 2020-07-15 Draka Comteq BV A method of characterizing a multimode optical fiber link and corresponding methods of fabricating multimode optical fiber links and of selecting multimode optical fibers from a batch of multimode optical fibers
EP3189320B1 (en) 2014-09-03 2020-04-08 Draka Comteq BV Method for qualifying the effective modal bandwidth of a multimode fiber over a wide wavelength range from a single wavelength dmd measurement and method for selecting a high effective modal bandwidth multimode fiber from a batch of multimode fibers
DK3228025T3 (da) 2014-12-01 2019-11-18 Draka Comteq Bv Fremgangsmåde til karakterisering af et optisk multimodefiberlinks ydeevne og tilsvarende fremgangsmåde til fremstilling af optiske multimodefiberlinks
CN108369154B (zh) * 2015-12-17 2020-08-14 德拉克通信科技公司 鉴定光纤带宽和选择光纤的系统、方法和介质
CN105577299B (zh) * 2015-12-24 2018-07-27 中国电子科技集团公司第四十一研究所 一种多模光纤带宽测量装置及方法
US20190260470A1 (en) * 2016-10-13 2019-08-22 Panduit Corp. Methods for Estimating Modal Bandwidth Spectral Dependence
WO2018200540A1 (en) 2017-04-28 2018-11-01 Commscope Technologies Llc Method of differential mode delay measurement accounting for chromatic dispersion
CN107687938B (zh) * 2017-08-15 2019-08-20 昆山金鸣光电科技有限公司 背向脉冲光光纤开关传感节点序列检测方法
US11012154B2 (en) * 2019-07-01 2021-05-18 Corning Incorporated Systems and methods for measuring a modal delay and a modal bandwidth
US20220376786A1 (en) * 2021-05-06 2022-11-24 Corning Incorporated Frequency domain method and system for measuring modal bandwidth, chromatic dispersion, and skew of optical fibers
CN113358330B (zh) * 2021-05-28 2022-11-01 中北大学 一种天幕靶探测面离焦位置估算方法
CN113381825B (zh) * 2021-06-21 2022-06-10 中国电子科技集团公司第四十一研究所 一种新型多模光纤带宽测量装置及测量方法
CN114166768B (zh) * 2022-02-14 2022-05-20 四川大学华西医院 不同设备检测同一指标同质化换算方法、装置、电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400450B1 (en) * 2000-03-17 2002-06-04 Fitel Usa Corp. Method of qualifying a multimode optical fiber for bandwidth performance
US6788397B1 (en) * 2000-02-28 2004-09-07 Fitel U.S.A. Corp. Technique for measuring modal power distribution between an optical source and a multimode fiber
CN1910435A (zh) * 2004-01-27 2007-02-07 株式会社藤仓 多模光纤的测定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801306B2 (en) * 2001-04-04 2004-10-05 Corning Incorporated Streak camera system for measuring fiber bandwidth and differential mode delay
NL1019004C2 (nl) 2001-09-20 2003-03-26 Draka Fibre Technology Bv Multimodevezel voorzien van een brekingsindexprofiel.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788397B1 (en) * 2000-02-28 2004-09-07 Fitel U.S.A. Corp. Technique for measuring modal power distribution between an optical source and a multimode fiber
US6400450B1 (en) * 2000-03-17 2002-06-04 Fitel Usa Corp. Method of qualifying a multimode optical fiber for bandwidth performance
CN1910435A (zh) * 2004-01-27 2007-02-07 株式会社藤仓 多模光纤的测定方法

Also Published As

Publication number Publication date
WO2011025936A9 (en) 2011-05-05
EP2470874A1 (en) 2012-07-04
JP5504347B2 (ja) 2014-05-28
KR20120068004A (ko) 2012-06-26
EP2470874B1 (en) 2018-07-11
MX2012002324A (es) 2012-04-11
KR101632569B1 (ko) 2016-07-01
JP2013503347A (ja) 2013-01-31
CN102483367A (zh) 2012-05-30
WO2011025936A1 (en) 2011-03-03
US20110054861A1 (en) 2011-03-03
US8489369B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
CN102483367B (zh) 计算多模光纤系统带宽和制造改进的多模光纤的方法
JP2022514508A (ja) 機械学習モデルの解説可能性ベースの調節
JP2021527288A (ja) データセットのための機械学習モデルの好適性の検出
US20160094477A1 (en) Resource provisioning planning for enterprise migration and automated application discovery
TWI692962B (zh) 分析光學傳輸網路之系統及方法
JP2013503347A5 (zh)
CN109188410B (zh) 一种非视距场景下的距离校准方法、装置及设备
US11271957B2 (en) Contextual anomaly detection across assets
CN106605135A (zh) 用于根据单波长dmd测量来评价多模光纤的针对宽波长范围的有效模式带宽的方法以及用于从一组多模光纤中选择高有效模式带宽多模光纤的方法
EP4116881A1 (en) Information processing device and machine learning method
US10337956B2 (en) Method of qualifying wide-band multimode fiber from single wavelength characterization using EMB extrapolation, corresponding system and computer program
US11356174B1 (en) Estimating performance margin of a multi-section path using optical signal-to-noise ratio (OSNR)
US11922279B2 (en) Standard error of prediction of performance in artificial intelligence model
CN110675069B (zh) 地产行业客户签约风险预警方法、服务器及存储介质
Richards et al. Overcoming challenges in large-core SI-POF-based system-level modeling and simulation
CN105281825A (zh) 测试系统和方法
US20220376786A1 (en) Frequency domain method and system for measuring modal bandwidth, chromatic dispersion, and skew of optical fibers
Sun et al. Monitoring of OSNR using an improved binary particle swarm optimization and deep neural network in coherent optical systems
US20220343176A1 (en) Enhanced Uncertainty Management For Optical Communication Systems
CN102439875B (zh) 光纤通信系统的总光信噪比代价的确定方法及装置
CN112543070B (zh) 信道特性的在线提取
CN114692832A (zh) 一种网络流量测量数据中缺失值的恢复方法及系统
US20150242491A1 (en) Representing a machine-to-machine device model based on ontological relationships
CN112084412A (zh) 信息推送方法、装置、设备及存储介质
CN102147326A (zh) 偏振检测器的校准方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Lane Brett

Inventor after: CASTRO JEROME MACALSA

Inventor before: Lane Brett

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: LANE BRETT TO: LANE BRETT CASTRO JEROME MACAISA

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant