CN102483035A - 垂直轴风力涡轮机及其发电机 - Google Patents

垂直轴风力涡轮机及其发电机 Download PDF

Info

Publication number
CN102483035A
CN102483035A CN2010800229769A CN201080022976A CN102483035A CN 102483035 A CN102483035 A CN 102483035A CN 2010800229769 A CN2010800229769 A CN 2010800229769A CN 201080022976 A CN201080022976 A CN 201080022976A CN 102483035 A CN102483035 A CN 102483035A
Authority
CN
China
Prior art keywords
coupled
bearing
rotor assembly
transmission shaft
stator module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800229769A
Other languages
English (en)
Inventor
德里克·格拉斯曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102483035A publication Critical patent/CN102483035A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明提供了一种垂直式风力涡轮机,其包括绕轴线限定的支座、轴承组件、具有近端和相对的远端的传动轴,以及多级轴向磁通发电机。轴承组件包括固定环和旋转环,其中固定环耦接至支座。传动轴耦接至轴承组件的旋转环,且多个翼板耦接至传动轴。多级轴向磁通发电机包括耦接至传动轴的转子组件和耦接至支座的定子组件。转子组件包括多个永久磁铁,且定子组件包括限定至少两个电压输出级的多个线圈。转子组件上的永久磁铁紧密耦接至定子组件上的线圈。

Description

垂直轴风力涡轮机及其发电机
相关申请的交叉引用
本申请参考2009年5月22日提交的标题为“VERTICAL AXISWIND TURBINE”的美国临时申请序列号61/213,281和2010年2月24日提交的标题为“VERTICAL AXIS WIND TURBINE ANDGENERATOR THEREFORE”的美国专利申请序列号12/711,808,并要求其优先权和权益,上述申请以引用的方式整体并入本文。
技术领域
本公开一般涉及垂直轴风力涡轮机,且更具体地涉及具有多级轴向磁通发电机的垂直轴风力涡轮机。
背景技术
世界对清洁能源的需求越来越大,并且最清洁和最丰富的来源之一是风能。传统上,一直采用水平轴风力涡轮机来利用风能,但这些涡轮机存在一些缺点。例如,当前的水平轴风力涡轮机由于齿轮和变速器大而导致其效率较低。通过使叶片朝向迎风气流不断重新取向而消耗寄生功率。水平轴风力涡轮机不能利用湍流风,且易于在疾风中被损坏。
垂直轴风力涡轮机的特征在于叶片旋转轴与风向成直角。垂直轴风力涡轮机已投入使用了几十年,并且包括通过风力推动而移动的阻力型设计和因叶片产生的升力而移动的升力型设计。垂直轴风力涡轮机的主要优点在于其无需与吹风的方向对齐,从而节省了附加的电机和控制器的成本。然而,若干常见问题却阻碍了使垂直轴风力涡轮机获得广泛的商业认可的努力。
垂直轴风力涡轮机的一个显著问题在于其由于部分旋转期间的阻力而使其效率较低,这是叶片形状和传动装置所致。所提出的一种解决方案是利用可枢转地安装在支承结构上的扁平风扇来捕获风力并使该支承结构旋转的风力涡轮机设计。因为这些风扇绕垂直轴运行,所以它们在代表广泛的风力捕获区域的顺风方向和较窄轮廓在进风之前沿其穿过以便产生较小阻力的逆风方向之间枢转。该设计的一个显著缺点在于:扁平风扇在设计上并非高度气动化,因此操作困难而且缓慢,同时这些风扇会被离心力从其位置处拉出。在每次稍小部分的旋转期间,这些风扇仅间歇性地提供驱动力。
另一种解决方案是在旋转框架上采用平板式叶片的风力涡轮机设计。两相叶片在垂直轴上保持平衡,以使得其在高阻力顺风位置和低阻力逆风位置之间枢转约170度。这种风力涡轮机展现出每转超过180度的阻力旋转,但在其背风区中逆风叶片对顺风叶片的叶片干扰降低了总效率。因此,在小于180度时发生有效的传力。
其它解决方案为试图利用升力型设计。例如,一种解决方案公开了一种升力型垂直轴风力涡轮机,该升力型垂直轴风力涡轮机包括可枢转地安装在旋转底座上的垂直设置的叶片。因为叶片捕获风力且移动支架,所以它们会绕垂直轴运行。风向标控制的螺距调节装置不断使机翼相对于风向取向。该装置通过叶片来检测风向,并由此定位螺距控制法兰。此方法的一个缺点在于:机翼定位仅在直接迎风位置和直接背风位置有效,在这两种情况下均采用侧风升力。
关于升力型垂直轴风力涡轮机的另一种解决方案是采用“自由飞行”机翼,其中这些机翼根据其经受的局部动力条件来自定位,从而产生平衡条件,以便使发动机更有效。更具体地,本文献公开了一种垂直轴风力发动机,其具有安装在绕垂直轴旋转的底座上的转子。一个或多个机翼安装在转子上,以使得其在预设的第一和第二枢转移动极限(例如,由止动机构设置)之间自由枢转。该布置方式能够使上述机翼在其绕垂直轴运行时依靠风力来对齐,从而通过在低速下结合升力和阻力特性且在接近或超过局部风速的转子速度下转变为仅升力的特性而将风能更好地转化为可用的旋转能。限制风力和电枢的动作可确定机翼的位置。这些机翼自由旋转大约90度的弧度,这受止动机构的限定。移动跨距为从沿着安装臂的径向线(相对于垂直轴径向对齐)到垂直位置(相对于垂直轴切向对齐)之间。该设计可使每个机翼设置其自身的瞬时角度并调节以适应发生在风力发动机外部和内部的相对风、风向转变等的条件,而无需使用外部调节装置或外部机构、风向标、离心调速器或其它控制装置。根据转子速度、湍流度、实际的相对风的变化以及单独影响所述每个机翼的其它因素来调节各个机翼以适应局部条件。然而,该设计的一个缺点在于:因为这些机翼旋转了仅约90度的弧度(在可能的360度范围外)且受止动器限制,所以限制了效率。
各种垂直轴风力涡轮机的另一个缺点类似于水平模式中存在的那些低效率的缺点,即支承垂直旋转部件的轴承承受的重量较大。除了由相对部件之间的摩擦引起的能量损失外,这还会导致需要定期更换轴承。
发明内容
根据背景技术,在本发明的一方面,提供了一种多级轴向磁通发电机,其包括绕轴线限定的支座。圆盘形定子组件耦接至支座。定子组件具有第一平面侧、与第一平面侧相对的第二平面侧以及沿所述轴线取向的中心孔。定子组件包括位于第一平面侧上限定至少两个操作电压输出级的多个线圈。多级轴向磁通发电机还包括绕所述轴线限定的且耦接至传动轴的圆盘形转子组件。转子组件包括固定至其平面表面的多个永久磁铁。这些永久磁铁紧密耦接至定子组件上的线圈。多级轴向磁通发电机还包括具有固定环和旋转环的轴承组件。固定环耦接至支座,旋转环耦接至转子组件。
在本发明的另一方面,多级轴向磁通发电机还包括旋转增强组件。旋转增强组件包括耦接至转子组件的直径的转子增强磁铁。转子增强磁铁相对于从传动轴的轴线延伸的径向线以第一切向偏斜角对齐。第一切向偏斜角在1度至30度的范围内。旋转增强组件还包括固定至支座的固定增强磁铁。固定增强磁铁的同性极相对于从传动轴的轴线延伸的径向线以第二切向偏斜角对齐。第二切向偏斜角在1度至30度的范围内。
在本发明的另一方面,多级轴向磁通发电机的电压输出级由线绕组直径和多个绕组限定。
在本发明的另一方面,定子组件还包括位于第二平面侧上限定至少两个电压输出级的第二多个绕组。多级轴向磁通发电机还包括绕所述轴线限定的且耦接至传动轴的第二圆盘形转子部分,其中第二圆盘形转子部分包括固定至其平面表面的第二多个永久磁铁。第二多个永久磁铁紧密耦接至定子组件上的第二多个绕组。
在本发明的另一方面,提供了一种垂直式风力涡轮机,其包括绕轴线限定的支座、轴承组件、具有近端和相对的远端的传动轴,以及多级轴向磁通发电机。轴承组件包括固定环和旋转环,其中固定环耦接至支座。传动轴耦接至轴承组件的旋转环,并且多个翼板耦接至传动轴。多级轴向磁通发电机包括耦接至传动轴的转子组件和耦接至支座的定子组件。转子组件包括多个永久磁铁,并且定子组件包括限定至少两个电压输出级的多个线圈。转子组件上的永久磁铁紧密耦接至定子组件上的线圈。
在本发明的另一方面,风力涡轮机还包括耦接至传动轴的翼板组件。该翼板组件包括翼板轮毂以及耦接至翼板轮毂的多个翼板安装臂。多个翼板耦接至翼板安装臂。
在本发明的另一方面,轴承组件为磁性轴承组件,且多个翼板限定垂直载荷。垂直载荷的至少一部分被磁性轴承组件抵消。
在本发明的另一方面,支座包括壳体部分和与所述轴线同心的支承柱。
在本发明的另一方面,轴承组件的固定环耦接至支承柱,且轴承组件的旋转环耦接至传动轴的近端。
在本发明的另一方面,多级轴向磁通发电机的转子组件耦接至传动轴的远端,且定子组件耦接至支座的壳体部分。
在本发明的另一方面,多个翼板耦接至传动轴的近端。
在本发明的另一方面,垂直式风力涡轮机还包括旋转增强组件。该旋转增强组件包括耦接至转子组件的直径的转子增强磁铁。转子增强磁铁相对于从传动轴的轴线延伸的径向线以第一切向偏斜角对齐。第一切向偏斜角在1度至30度的范围内。旋转增强组件还包括固定至支座的固定增强磁铁。固定增强磁铁的同性极相对于从传动轴的轴线延伸的径向线以第二切向偏斜角对齐。第二切向偏斜角在1度至30度的范围内。
在本发明的另一方面,提供了一种用于操作多级轴向磁通发电机的方法,其包括提供绕轴线限定的定子组件的步骤。定子组件包括限定至少两个操作电压输出级的多个线圈。这些线圈与电压装置电气连通。用于操作多级轴向磁通发电机的方法还包括以下步骤:提供绕所述轴线限定的转子组件,将转子组件设置在足够靠近定子组件的位置处,以使得转子组件绕所述轴线的旋转在线圈中产生磁场,通过外力来驱动转子组件,以及当转子组件的旋转速度增加时,将连续的操作电压输出级加至电压装置。转子组件包括多个永久磁铁。
在本发明的另一方面,翼板组件耦接至转子组件。当风速达到5英里/小时时,将第一操作电压输出级加至电压装置。
附图说明
为了进一步理解本发明,将参考本发明的以下详细说明,应结合附图来阅读该详细说明,其中:
图1为根据本发明的实施方案的垂直轴风力涡轮机的透视图;
图2为图1的垂直轴风力涡轮机的横截面图,该横截面通过传动轴的垂直轴截取;
图3为图1的垂直轴风力涡轮机的多级轴向磁通发电机的分解透视图;
图4为图1的垂直轴风力涡轮机的旋转增强组件的透视图;
图5为图4的旋转增强组件的一部分的平面图;
图6为根据本发明的另一个实施方案的垂直轴风力涡轮机的透视图;以及
图7为图1的垂直轴风力涡轮机的俯视图。
具体实施方式
参见图1,垂直轴风力涡轮机100一般包括支座2,在一个实例中,该支座安装在屋顶上。在所公开的实施方案中,支座2包括多级轴向磁通发电机6设置在其中的壳体部分4。支座2还可包括垂直延伸的支承柱8,用以为安装在其上的翼板组件10提供支撑。
翼板组件10包括翼板轮毂12、固定至翼板轮毂12的多个翼板安装臂14,以及附接至翼板安装臂14的多个翼板16。翼板轮毂12为具有上法兰18、下法兰20和中央加强环22的空心圆柱。顶盖24保护旋转部件不暴露在外部环境中。位于翼板轮毂12顶部的翼板安装臂14固定在上法兰18和上轮毂26之间。位于翼板轮毂12底部的翼板安装臂14固定在下法兰20和下轮毂28之间。上轮毂26和下轮毂28均由轴承组件支承,如将在下文中所详细描述的。翼板加强臂30附接至翼板16的中跨且栓接至加强环22,以向大型翼板16提供附加刚度。
与本领域中已知的且用于垂直式风力涡轮机的常规机翼形状不同,本发明中所公开的翼板16具有非常低的宽高比。如本文中所使用的,宽高比被定义为翼展(例如,翼板的高度)的平方除以翼板平面形的面积。翼板16被设计为捕集风力,而并不只是产生气动升力。翼板16为刚性的,并且可由例如玻璃纤维、碳纤维或铝制造。
现转到图2,垂直轴风力涡轮机100以横截面示出,以更好地示出旋转部件。为了清楚起见,移除了翼板16、翼板安装臂14和翼板加强臂30。传动轴32绕垂直轴34在支承柱8中旋转。上轮毂26固定至传动轴32的顶部或近端36。这样,由吹在翼板16上的风引起的翼板轮毂12的旋转便直接传送至传动轴32。在所公开的实施方案中,上轮毂26由锥形轴承38支承。轴承38的内座圈固定至邻接支承柱8的顶面的上止动环40,且其外座圈固定于上轮毂26中。
类似地,下轮毂28由第二锥形轴承42支承。所述轴承的内座圈固定至与支承柱8(该支承柱被横截)的表面接触的下止动环44,且其外座圈由下轮毂28固定。另外,下轮毂28以及翼板组件10的很大部分重量由磁性轴承组件46支承。磁性轴承组件46包括两个半部分:固定至下轮毂28的底部且自由旋转的上半部分46a和固定至支承柱8的下半部分46b。在所公开的实施方案中,下半部分46b固定至磁性轴承支架48,且磁性轴承支架固定至支承柱8。在一个实例中,磁性轴承组件46由两个45级钕磁铁构成。测得每个轴承半部分的外径为6英寸,内径为4英寸,且厚度为0.5英寸。磁性轴承组件46可用于卸去垂直轴风力涡轮机100的旋转部件的几乎所有重量,从而可使该组件“悬浮”在垂直轴34中。另外,磁性轴承组件46理论上可吸附阵风等引起的瞬时抖振载荷。
传动轴32的下端或远端50耦接至多级轴向磁通发电机6。发电机6还由下轴承52支承,该发电机在一个实施方案中为常规的汽车轮毂组件。下轴承的固定部分52a安装在支座2上,且旋转部分52b将发电机6的旋转部件固定至传动轴环54。该传动轴环54被紧固至传动轴32的远端50。
转到图3,多级轴向磁通发电机6包括固定定子组件56和至少一个转子组件58。在所公开的实施方案中,多级轴向磁通发电机6包括第二转子组件60,其优点将在下文讨论。定子组件56包括刚性附接至支座2(未示出)的圆盘形非磁性定子壳体62。多个线圈64间隔设置在定子壳体62的外围周围。线圈64可为有芯线圈或无芯线圈。当附近通过磁场时,线圈64会产生电流。线圈64分为至少两组或两级的操作输出电压。通过利用多级输出电压,本发明的多级轴向磁通发电机6在较大的风速范围内产生有效功率。
在所公开的实施方案中,利用了由线圈64a、64b、64c和64d表示的四个电压输出级。这四个电压输出级以按序重复的方式来布置,如图3所示。每个电压输出级均被设计成在转子组件58的不同旋转速度时开始产生有效电压(这将在下文中进行详细描述),并且在不同旋转速度时进一步达到其峰值效率。
可能存在用于将线圈64固定到定子壳体62内的若干构造。在所公开的实施方案中,在定子壳体62内加工与线圈64的数量相等的多个切口。可将线圈64压力配合、用环氧树脂粘合或以其它方式固定到这些切口内。在给定的实例中,切口为优选的,以便暴露定子壳体62的两个平面表面上的线圈64。然而,在另一个实施方案中,其中利用了单个转子组件58(例如,第二转子组件60不存在),则更可取的是在定子壳体62内加工槽口(而非切口)。在另一个实例中,线圈64可被装入或嵌入定子壳体62内。
多级轴向磁通发电机6的转子组件58包括圆盘形转子壳体66,其中该壳体66的周边的周围固定有多个永久磁铁68。转子壳体66可由例如钢来制造。磁铁68的放置可使得其磁场通量与传动轴的轴线34平行,从而与轴向磁通发电机平行。磁铁68被设置为紧密耦接至定子组件56上的线圈64,以使得来自每个磁铁68的磁通场均在线圈64中引起电流。这样,便可实现足够的有效电流。在一个实例中,测得厚度为2英寸×1英寸×0.5英寸的三十六(36)个42级矩形钕磁铁固定至转子壳体66,这些磁铁与线圈64的紧密耦接距离为约0.0625英寸。
在一个实施方案中,四级线圈64用于定子组件56中,其中每级中有十二(12)个线圈。在一个实例中,1级包括23号(gage)漆包绕组线的450个绕组,2级包括22号线的375个绕组,3级包括21号线的340个绕组,并且4级包括20号线的290个绕组。因此,对于任何给定风速,第一级会产生最高电压,第二级会产生第二最高电压,以此类推。表I显示了每级对于给定风速而产生的理论电压。参照表I可见,1级在5英里/小时(mph)时开始产生有效电压输出(定义为13伏特)。在8mph时,2级开始产生有效电压,而1级产生24伏特的电压。在14mph时,3级开始产生有效电压,而2级产生24伏特的电压,且1级产生36伏特的电压。最后,在18mph时,4级开始产生有效电压,而在相同的风速下,3级产生24伏特的电压,2级产生36伏特的电压,并且1级产生48伏特的电压。
表I
Figure BDA0000112416760000091
电压输出级的数量可根据特定应用和情况而变化。较小的系统可仅需两个电压输出级,而产生500千瓦或更高电压的大型商用系统可能需要超过100个电压输出级。
尽管本发明未要求,但多级轴向磁通发电机6包括第二转子组件60,以增加线圈64中的磁通量和感应电流。在所公开的实施方案中,第二转子组件60被构造为与第一转子组件58大致相同。即,转子组件60包括第二转子壳体70和多个第二磁铁72,所述第二磁铁被取向以产生与传动轴32的轴线平行的磁通量。第二磁铁72紧密耦接至定子组件56中的线圈64,以在绕组中引起附加电流。
将线圈64的电导线捆扎并连接至利用由多级轴向磁通发电机6产生的电能的电压装置(未示出)。在所公开的实施方案中,四个电压输出级通过定子壳体62上的四个支柱74来输送。每个电压输出级经电线连接至电压装置,该电压装置在一个实例中为用于转换成直流电(DC)的整流器。
在本发明的另一个实施方案中,翼板组件10未从支座2的壳体部分4垂直延伸。即,支承柱8不存在,传动轴32被大幅缩短,并且翼板组件10设置在靠近多级轴向磁通发电机6的位置处。在一个实例中,翼板组件10耦接至靠近转子组件58的轴环54。在另一个实例中,翼板组件10直接耦接至转子组件58。
参见图4和5,垂直轴风力涡轮机100还包括旋转增强组件76,用以协助克服启动的惯性。示出了此前公开的旋转部件,即轴环54、第一转子组件58和第二转子组件60。为了清楚起见而在视图中隐藏的是定子组件56。旋转增强组件76的第一部分包括耦接至第一转子组件58的外径的多个转子增强磁铁78。转子增强磁铁78的通量场的轴线80相对于从传动轴32的轴线34延伸的径向线以切向偏斜角对齐。在所公开的实施方案中,第一转子组件58中的165个转子增强磁铁78包含42级钕,测得每个磁铁的直径为0.25英寸且长度为0.5英寸。
旋转增强组件76还包括固定至支座(未示出)的多个垂直柱82。示出了十二根柱子82,但可根据转子部件的直径和重量以及增强磁铁的强度设置更多或更少的柱子。附接至每个柱子82的是上增强磁铁84和下增强磁铁86。上增强磁铁84在与第一转子组件58相同的平面上垂直对齐,并且下增强磁铁86在与第二转子组件60相同的平面上垂直对齐。当然,如果垂直轴风力涡轮机100为单转子类型,则不需要下增强磁铁组。
转到图5,其中为了清楚起见,省去了下增强磁铁86,上增强磁铁84的通量场的轴线88相对于从传动轴32的轴线34延伸的径向线以切向偏斜角β对齐。在所示出的实例中,轴线80的切向偏斜角α与轴线88的切向偏斜角β相等,但可容许其间存在一些变化。此重要设计特征在于使某些程度的切向偏斜沿相对于转子的切线方向产生偏斜力。因此,参照图5可见,上增强磁铁84和转子增强磁铁78的磁通场彼此对齐(例如,相对),但相对于从旋转轴延伸的半径切向偏斜角度α。本发明人已确定角度α(和β)的有效值范围为介于1度和30度之间。角度α(和β)的优选范围为介于15度和20度之间。
两个相对的旋转增强磁铁78、84(或78、86)紧密耦接,以从磁通量产生最大的切向力。这些增强磁铁的磁极被设置为使得同性极(例如,N-N)彼此相对,以产生斥力。在所公开的实施方案中,具有(12个)上增强磁铁84和(12个)下增强磁铁86,每个磁铁包含42级钕,并且测得直径为0.5英寸且长度为1英寸。这些磁铁彼此紧密耦接的距离d在0.0625英寸至0.5英寸的范围内。
旋转增强组件76可为无源或有源。在一个实例中,无源系统利用了有助于旋转但不足以独立地引起翼板16旋转的一系列磁铁。在另一个实例中,有源系统可利用远足以引起旋转但通过例如控制器激励的一系列磁铁。
所公开的垂直轴风力涡轮机100的额定输出为10kW,因此理论上适合住宅用途。然而,通过采用所公开的用于操作多级轴向磁通发电机的方法可实现更大的商用形式。参见图6,其中相同的附图标记表示图1-5中的相同的元件,商用垂直轴风力涡轮机200包括多级轴向磁通发电机206(诸如上文中相对于住宅用风力涡轮机所公开的)。发电机206包括固定至支座202的定子组件256。非盘状结构的定子组件256嵌入支座202上的圆周导轨290中。定子组件256包括限定至少两个操作电压输出级的多个线圈(未示出)。如上文所述,商用多级轴向磁通发电机206可具有最多(或可能超过)100个电压输出级。
用于垂直轴风力涡轮机200的多级轴向磁通发电机206还包括绕旋转轴234限定的转子组件258。转子组件258包括多个永久磁铁(未示出),这些磁铁设置在足够靠近定子组件256的位置处,以使得转子组件258绕着轴线234的旋转在线圈中引起磁场。在所公开的实例中,通过翼板216上的风力来提供旋转。翼板216耦接至沿圆周导轨的轨道延伸的轴承、风力涡轮机200的上部的导轨290a和其下部的导轨290b。
每级中的多个线圈被设计成在转子组件258的不同旋转速度时开始产生有效电压。这些线圈与电压装置(未示出)(诸如整流器)电气连通。
本发明的一个改进之处为增设了磁性轴承组件。强力磁铁可使垂直轴风力涡轮机中的旋转部件“悬浮”,从而吸附阵风引起的瞬时抖振载荷。因为可卸去该组件的很多重量,所以极大地减少了其它轴承的摩擦,从而可用较少的风能来引起风力涡轮机旋转。因此,以无源方式显著地减少了由于部分旋转期间的阻力而导致的低效率的常见问题,而无需复杂的部件和控制件。另外,磁性轴承能够吸附风抖振载荷,而不会向传动轴施加附加力。而且,有效地减弱了转子组件的谐波振动。
旋转增强组件还减少了阻力的影响。增强磁铁在转子上形成的切向力有助于克服轴承上的初始滑动荷载。滑动荷载在静态条件下产生,并且在系统旋转时通常远大于轴承上的阻力。这样,旋转增强组件不仅有助于引起旋转,其还通过抵消一部分阻力有助于保持旋转。
所公开的翼板组件还有助于减少阻力的影响。转到图7,以俯视图示出翼板组件10,其中风W水平吹动。翼板旋转的方向用R表示。翼板16由翼板加强臂30和翼板安装臂14以与轴线34相隔径向距离来支承。每个翼板在翼板的杯状中心部分92捕集风动能,并将其传送以旋转轴,从而使翼板组件的核心(例如,不包括翼板路径的内部圆柱体积)处于低于环境条件的动压下。这种较低的压力结合翼板内边缘的旋转路径产生了如小箭头标示的涡旋94。随着翼板从前进方向A旋转,杯状中心部分92被气动地卸载,并且涡旋94在翼板上提供附加力。此附加力通过抵消一部分阻力而有助于保持旋转。相比之下,现有技术中将翼板直接附接至轴的垂直式风力涡轮机不能形成涡旋,并且通常会在翼板与轴的接合处形成气动力不稳定的区域。该不稳定性还会导致系统中存在的其它低效率情况。
所公开的系统100的一个优点在于:每个输出级的峰值效率延伸于广泛的操作范围内。现有技术中具有一个输出级的风力涡轮机通常需要强风来引起叶片旋转,并且直到风速极高时才能达到额定功率或峰值效率。例如,一种常用的水平轴风力涡轮机需要7mph的风来引起旋转,10-12mph的风来产生有效功率以及大约50mph的风来达到额定功率。相比之下,本文所公开的具有新型翼板设计、磁性轴承组件和多级发电机的风力涡轮机在大约1-3mph的风中开始旋转,在5mph时产生有效功率,并且在大约20mph时达到额定功率。
本文中阐述的发明所属的领域的技术人员将意识到这些发明的许多修改和其它实施方案,它们具有在上述说明书和相关附图中提出的教导的有益效果。因此,应当理解到这些发明不限于所公开的具体实施方案,且对本发明的修改和其它实施方案旨在包括在所附权利要求的范围之内。此外,虽然本文中采用了特定的术语,但这些术语仅以通用和说明意义来使用,而不用于限制目的。

Claims (26)

1.一种多级轴向磁通发电机,其包括:
绕轴线限定的支座;
耦接至所述支座的圆盘形定子组件,所述定子组件具有第一平面侧、与所述第一平面侧相对的第二平面侧,以及沿所述轴线取向的中心孔,所述定子组件包括位于所述第一平面侧上限定至少两个操作电压输出级的多个线圈;
绕所述轴线限定的且耦接至传动轴的圆盘形转子组件,所述转子组件包括固定至其平面表面的多个永久磁铁,所述永久磁铁紧密耦接至所述定子组件上的所述线圈;以及
具有固定环和旋转环的轴承组件,所述固定环耦接至所述支座,所述旋转环耦接至所述转子组件。
2.根据权利要求1所述的多级轴向磁通发电机,还包括旋转增强组件,其包括:
耦接至所述转子组件的直径的转子增强磁铁,所述转子增强磁铁相对于从所述传动轴的所述轴线延伸的径向线以第一切向偏斜角对齐,所述第一切向偏斜角在1度至30度的范围内;以及
固定至所述支座的固定增强磁铁,所述固定增强磁铁的同性极相对于从所述传动轴的所述轴线延伸的径向线以第二切向偏斜角对齐,所述第二切向偏斜角在1度至30度的范围内。
3.根据权利要求2所述的多级轴向磁通发电机,其中所述第一和第二切向偏斜角介于15度和20度之间。
4.根据权利要求1所述的多级轴向磁通发电机,其中所述电压输出级由线绕组直径和多个绕组限定。
5.根据权利要求1所述的多级轴向磁通发电机,其中所述定子组件包括至少四个操作电压输出级。
6.根据权利要求5所述的多级轴向磁通发电机,其中所述第一输出级包括具有大约450个绕组的23号线,所述第二输出级包括具有大约375个绕组的22号线,所述第三输出级包括具有大约340个绕组的21号线,且所述第四输出级包括具有大约290个绕组的20号线。
7.根据权利要求1所述的多级轴向磁通发电机,其中所述定子组件包括至少十个操作电压输出级。
8.根据权利要求1所述的多级轴向磁通发电机,其中所述定子组件还包括位于所述第二平面侧上限定至少两个电压输出级的第二多个绕组,且所述多级轴向磁通发电机还包括绕所述轴线限定的且耦接至所述传动轴的第二圆盘形转子部分,所述第二圆盘形转子部分包括固定至其平面表面的第二多个永久磁铁,所述第二多个永久磁铁紧密耦接至所述定子组件上的所述第二多个绕组。
9.一种垂直式风力涡轮机,其包括:
绕轴线限定的支座;
包括固定环和旋转环的轴承组件,所述固定环耦接至所述支座;
具有近端和相对的远端的传动轴,所述传动轴耦接至所述轴承组件的所述旋转环;
多级轴向磁通发电机,其包括耦接至所述传动轴的转子组件和耦接至所述支座的定子组件,所述转子组件包括多个永久磁铁,所述定子组件包括限定至少两个电压输出级的多个线圈,其中所述转子组件上的所述永久磁铁紧密耦接至所述定子组件上的所述线圈;以及
耦接至所述传动轴的多个翼板。
10.根据权利要求9所述的垂直式风力涡轮机,还包括旋转增强组件,其包括:
耦接至所述转子组件的直径的转子增强磁铁,所述转子增强磁铁相对于从所述传动轴的所述轴线延伸的径向线以第一切向偏斜角对齐,所述第一切向偏斜角在1度至30度的范围内;以及
固定至所述支座的固定增强磁铁,所述固定增强磁铁的同性极相对于从所述传动轴的所述轴线延伸的径向线以第二切向偏斜角对齐,所述第二切向偏斜角在1度至30度的范围内。
11.根据权利要求10所述的垂直式风力涡轮机,其中所述第一和第二切向偏斜角介于15度和20度之间。
12.根据权利要求9所述的垂直式风力涡轮机,还包括耦接至所述传动轴的翼板组件,所述翼板组件包括翼板轮毂,多个翼板安装臂耦接至所述翼板轮毂,所述多个翼板耦接至所述翼板安装臂。
13.根据权利要求9所述的垂直式风力涡轮机系统,其中所述轴承组件为磁性轴承组件且所述多个翼板限定垂直载荷,所述垂直载荷的至少一部分被所述磁性轴承组件抵消。
14.根据权利要求9所述的垂直式风力涡轮机系统,其中所述支座包括壳体部分和支承柱,所述支承柱与所述轴线同心。
15.根据权利要求14所述的垂直式风力涡轮机系统,其中所述轴承组件的所述固定环耦接至所述支承柱,且所述轴承组件的旋转环耦接至所述传动轴的所述近端。
16.根据权利要求14所述的垂直式风力涡轮机系统,其中所述轴向磁通发电机的所述转子组件耦接至所述传动轴的所述远端,且所述定子组件耦接至所述支座的所述壳体部分。
17.根据权利要求14所述的垂直式风力涡轮机系统,其中所述多个翼板耦接至所述传动轴的所述近端。
18.根据权利要求9所述的垂直式风力涡轮机系统,其中所述定子组件还包括限定至少两个电压输出级的第二多个绕组,且所述垂直式风力涡轮机系统还包括绕所述轴线限定的且耦接至所述传动轴的第二转子组件,所述第二转子组件包括固定至其平面表面的第二多个永久磁铁,所述第二多个永久磁铁紧密耦接至所述定子组件上的所述第二多个绕组。
19.一种垂直式风力涡轮机,其包括:
绕轴线限定的支座;
包括固定环和旋转环的轴承组件,所述固定环耦接至所述支座;
具有近端和相对的远端的传动轴,所述传动轴耦接至所述轴承组件的所述旋转环;
轴向磁通发电机,其包括耦接至所述传动轴的转子组件和耦接至所述支座的定子组件,所述转子组件包括多个永久磁铁,所述定子组件包括多个线圈,其中所述转子组件上的所述永久磁铁紧密耦接至所述定子组件上的所述线圈;
耦接至所述转子组件的直径的转子增强磁铁,所述转子增强磁铁相对于从所述传动轴的所述轴线延伸的径向线以第一切向偏斜角对齐,所述第一切向偏斜角在1度至30度的范围内;
固定至所述支座的固定增强磁铁,所述固定增强磁铁的同性极相对于从所述传动轴的所述轴线延伸的径向线以第二切向偏斜角对齐,所述第二切向偏斜角在1度至30度的范围内;以及
耦接至所述传动轴的多个翼板。
20.根据权利要求19所述的垂直式风力涡轮机,其中所述轴向磁通发电机为多级轴向磁通发电机,所述定子组件上的所述多个线圈限定至少两个电压输出级。
21.一种用于操作多级轴向磁通发电机的方法,其包括以下步骤:
提供绕轴线限定的定子组件,所述定子组件包括限定至少两个操作电压输出级的多个线圈,所述线圈与电压装置电气连通;
提供绕所述轴线限定的转子组件,所述转子组件包括多个永久磁铁;以及
将所述转子组件设置在足够靠近所述定子组件的位置处,以使得所述转子组件绕所述轴线的旋转在所述线圈中产生磁场;
通过外力来驱动所述转子组件;以及
当所述转子组件的旋转速度增加时,将连续的操作电压输出级加至所述电压装置。
22.根据权利要求21所述的方法,其中所述电压装置为整流器。
23.根据权利要求21所述的方法,还包括提供耦接至所述转子组件的翼板组件的步骤,其中驱动所述转子组件的所述外力为风能。
24.根据权利要求21所述的方法,其中所述多个线圈限定至少四个操作电压输出级。
25.根据权利要求21所述的方法,其中所述转子组件限定垂直载荷,且所述方法还包括提供磁性轴承组件以抵消所述垂直载荷的至少一部分的步骤。
26.根据权利要求25所述的方法,还包括以下步骤:提供耦接至所述转子组件的翼板组件,以及当风速达到5英里/小时时,将所述第一操作电压输出级加至所述电压装置。
CN2010800229769A 2009-05-22 2010-03-31 垂直轴风力涡轮机及其发电机 Pending CN102483035A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US21328109P 2009-05-22 2009-05-22
US61/213,281 2009-05-22
US12/711,808 US8487470B2 (en) 2009-05-22 2010-02-24 Vertical axis wind turbine and generator therefore
US12/711,808 2010-02-24
PCT/US2010/029402 WO2010135032A1 (en) 2009-05-22 2010-03-31 Vertical axis wind turbine and generator therefore

Publications (1)

Publication Number Publication Date
CN102483035A true CN102483035A (zh) 2012-05-30

Family

ID=43124087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800229769A Pending CN102483035A (zh) 2009-05-22 2010-03-31 垂直轴风力涡轮机及其发电机

Country Status (7)

Country Link
US (1) US8487470B2 (zh)
EP (1) EP2432999A1 (zh)
JP (1) JP2012527864A (zh)
KR (1) KR20120034663A (zh)
CN (1) CN102483035A (zh)
CA (1) CA2762158A1 (zh)
WO (1) WO2010135032A1 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155574B2 (ja) * 2006-04-25 2013-03-06 赤 嶺 辰 実 慣性力を利用した風力発電用回転翼及びそれを用いた風力発電装置、並びに風力発電システム
US20110089699A1 (en) * 2008-06-13 2011-04-21 Vertical Wind Ab Vertical wind turbine having blades with varying geometry
US8513826B2 (en) * 2008-06-26 2013-08-20 Ed Mazur Wind turbine
US20100148516A1 (en) * 2008-07-18 2010-06-17 Buhtz Barton A Wind powered generator
US20110115232A1 (en) * 2009-11-17 2011-05-19 Two-West Wind And Solar Inc. Vertical axis wind turbine with flat electric generator
US20110204638A1 (en) * 2010-02-25 2011-08-25 Stuart Lahtinen Wind turbine with integrated rotor and generator assembly
US20110156392A1 (en) * 2010-03-15 2011-06-30 Thacker Ii Andrew Carlton Wind turbine control
US20120074701A1 (en) * 2010-09-24 2012-03-29 Frank Hernandez Ridge cap wind generation system
TWI425145B (zh) * 2010-11-15 2014-02-01 Hiwin Mikrosystem Corp 可自動收合葉片之垂直式風力發電機
ITAV20100008A1 (it) * 2010-12-14 2011-03-15 Mario Montagna Generatore eolico universale
DE102011107672A1 (de) * 2011-02-23 2012-09-06 Walter Zimmerly Vorrichtung zur Energieumwandlung
CN102828784B (zh) * 2011-06-13 2015-06-17 刘新广 空气动力及发电器
GB201122210D0 (en) * 2011-12-22 2012-02-01 Curtis Brian Electricity generating apparatus
FR2985788A1 (fr) * 2012-01-16 2013-07-19 Sarl Eolie Architecture de montage de rotor de type darrieus ou savonius permettant de pre charger les roulements
KR101157389B1 (ko) * 2012-02-03 2012-06-18 주식회사 한림메카트로닉스 저풍속 풍력발전장치
FR2988144B1 (fr) * 2012-03-14 2016-12-23 Newwind Aerogenerateur comprenant un tronc et une pluralite de branches s'etendant a partir de ce tronc.
US8926261B2 (en) 2012-04-18 2015-01-06 4Sphere Llc Turbine assembly
EP2839149A4 (en) 2012-04-20 2015-12-30 Regenedyne LLC MAGNET CONFIGURATIONS FOR MAGNETIC LEVITATION OF WIND TURBINES AND OTHER APPLIANCES
US9435319B2 (en) * 2012-05-01 2016-09-06 Thomas Mackie Wind power generation assembly
DK2667493T3 (da) * 2012-05-21 2020-02-24 Siemens Gamesa Renewable Energy As Fremgangsmåde til vertikal samling af en generator af en vindmølle
US8786126B2 (en) * 2012-07-16 2014-07-22 Thomas Meyer Wind turbine having two hemispherical blades
WO2014033715A1 (en) 2012-08-27 2014-03-06 Albus Technologies Ltd. Rotor with magnet pattern
CN102857148B (zh) * 2012-09-04 2016-04-06 张运泉 一种磁电混合直轴驱动方法及动力装置
US9103321B1 (en) * 2012-09-13 2015-08-11 Jaime Mlguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonomous battlefield robot recharging and forward operating base horizontal axis wind turbine
JP5882174B2 (ja) * 2012-10-05 2016-03-09 株式会社J・M・P 風力発電装置
EP2746579B1 (fr) * 2012-12-20 2015-11-18 Sarl Eolie Architecture de montage de rotor de type Darrieus ou Savonius permettant de charger les roulements
US8796878B1 (en) * 2013-03-15 2014-08-05 Joseph M. Hill Frictionless wind turbine
FR3006012B1 (fr) * 2013-05-22 2015-05-08 Crea Concept Hydrolienne a generatrice electrique integree
WO2014194134A1 (en) * 2013-05-29 2014-12-04 ReVair Inc. Modified halbach array generator
USD738305S1 (en) * 2013-06-24 2015-09-08 Kiril Stefanov Gochev Wind turbine
TWI522529B (zh) * 2013-06-28 2016-02-21 國立臺灣海洋大學 垂直軸風力發電機
ITPI20130067A1 (it) * 2013-07-12 2015-01-13 Treecube S R L Turbina eolica ad asse verticale
CN103912443B (zh) * 2014-04-15 2017-02-22 新疆奥奇新能源科技有限公司 适应于垂直轴风力发电机的自动同心结构
CN107250531A (zh) * 2014-08-12 2017-10-13 蒋素芳 一种风力发电装置和系统
KR20160028688A (ko) 2014-09-04 2016-03-14 정현배 발전 효율이 향상된 유도 발전기
DK3001540T3 (en) * 2014-09-26 2018-06-25 Alstom Renewable Technologies Direct drive wind turbines
FR3033600B1 (fr) * 2015-03-11 2018-07-20 Laurent Pannier Eolienne a axe vertical
USD768844S1 (en) * 2015-05-18 2016-10-11 Saudi Arabian Oil Company Catalyst basket
USD779049S1 (en) * 2015-06-09 2017-02-14 Youngo Limited Ceiling fan
TW201710599A (zh) * 2015-09-07 2017-03-16 Taiwan Vertical Axis Wind Turbine Co Ltd 垂直軸風力發電設備
KR101665061B1 (ko) * 2015-11-24 2016-10-12 (주)하이에너지 코리아 풍력발전장치용 제너레이터 조립장치
GB2546635B (en) * 2015-12-12 2019-09-04 Spinetic Energy Ltd Wind turbine apparatus with rotor to blade connection
US11143163B2 (en) 2016-03-08 2021-10-12 Semtive Inc. Vertical axis wind turbine
US10447124B2 (en) * 2016-05-20 2019-10-15 Pacific International Energy Solutions Inc. Pairs of complementary unidirectionally magnetic rotor/stator assemblies
PT109472A (pt) * 2016-06-20 2017-12-20 Melodysymbol Ltda Dispositivo modular de captura eólica omnidirecional.
TWI591941B (zh) 2016-09-07 2017-07-11 Shou-Cheng Weng Vertical magnetic drive energy-saving power generation device
SK500602016A3 (sk) * 2016-09-26 2018-04-04 Mikuláš Forschner Veterná elektráreň s horizontálnou osou rotácie
TWI709689B (zh) * 2017-05-22 2020-11-11 李受勳 交通載具的風力發電設備
WO2019023005A1 (en) * 2017-07-24 2019-01-31 The Board Of Trustees Of The Leland Stanford Junior University VERTICAL AXIS WIND TURBINE WITH MULTI-POINT BEARING SUPPORT
CA3074025A1 (en) * 2017-09-12 2019-03-21 The Corrado Family Limited Partnership, LLC Wind turbine system
MX2020002902A (es) 2017-09-15 2020-10-01 Emrgy Inc Sistemas de hidrotransicion y metodos de uso de los mismos.
PL233605B1 (pl) * 2017-11-07 2019-11-29 Mortka Tomasz Elektromix Generator wiatrowy
FR3074543B1 (fr) * 2017-12-01 2021-10-08 Wind It Eolienne a axe de rotation vertical
GB2577026A (en) * 2018-01-23 2020-03-18 Windward Engineering Ltd Novel turbine to generate electricity
US10724502B2 (en) 2018-05-22 2020-07-28 Creating Moore, Llc Vertical axis wind turbine apparatus and system
US10975839B2 (en) * 2018-05-23 2021-04-13 William Olen Fortner Vertical axis wind turbines with V-cup shaped vanes, multi-turbine assemblies and related methods and systems
US11261574B1 (en) * 2018-06-20 2022-03-01 Emrgy Inc. Cassette
CA3112550A1 (en) 2018-09-12 2020-03-19 Ignacio Juarez Micro inverter and controller
US11204016B1 (en) 2018-10-24 2021-12-21 Magnelan Energy LLC Light weight mast for supporting a wind turbine
US11112077B2 (en) 2019-02-22 2021-09-07 Jenesis International Inc. Illuminated ornament powered by vertical axis wind turbine
WO2020191226A1 (en) 2019-03-19 2020-09-24 Emrgy Inc. Flume
WO2021212134A1 (en) * 2020-04-14 2021-10-21 Monteith Robert Lothar Fluid turbine rotor blade
CN111535992B (zh) * 2020-04-15 2022-04-08 南京工业职业技术学院 一种达里厄型风力发电机与工作方法
US11506172B2 (en) * 2020-08-10 2022-11-22 Jonathan Duane Robinson Collapsible frictionless vertical axis power generating wind/ocean current turbine
CN112776715A (zh) * 2021-01-13 2021-05-11 广州驰享汽车用品有限公司 一种房车监控系统
US12009727B2 (en) * 2022-07-25 2024-06-11 Meng-Theng Wang Maglev generator assembly which reduces friction to enhance power generation efficiency
GR1010490B (el) * 2022-08-10 2023-06-16 Ενελλας Ενεργειακη Ανωνυμη Εταιρεια, Γεννητρια καθετου αξονα

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794777B1 (en) * 2003-12-19 2004-09-21 Richard Benito Fradella Robust minimal-loss flywheel systems
CN1833104A (zh) * 2003-07-08 2006-09-13 宇宙设备公司 风力发电系统、永久磁铁的配置构造以及电/力变换装置
WO2007129299A2 (en) * 2006-05-04 2007-11-15 Daniel Farb Return and limited motion in energy capture devices
US20080286112A1 (en) * 2005-10-31 2008-11-20 Rowan James A Magnetic vertical axis wind turbine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695968B1 (fr) * 1992-09-22 1994-12-23 Aerospatiale Dispositif à palier magnétique et à butée mécanique pour le positionnement d'un corps tournant par rapport à un corps statorique.
JP3260732B2 (ja) * 1999-11-01 2002-02-25 正治 三宅 風力発電装置
AU2001276593A1 (en) * 2000-08-15 2002-02-25 Hansen Transmissions International Nv Drive assembly for wind turbines
US6891302B1 (en) * 2000-09-23 2005-05-10 Christopher W. Gabrys Light-weight high-power electrical machine
US6849978B2 (en) * 2002-02-05 2005-02-01 Delta Electronics, Inc. Motor having a magnetic bearing
GB0208565D0 (en) * 2002-04-13 2002-05-22 Rolls Royce Plc A compact electrical machine
JP4827380B2 (ja) * 2003-01-28 2011-11-30 金原 士朗 風力発電システム
US20040247438A1 (en) * 2003-02-20 2004-12-09 Mccoin Dan Keith Wind energy conversion system
CA2531383A1 (en) * 2003-07-08 2005-01-13 Cosmo Plant Co., Ltd. Wind power generation system, arrangement structure of permanent magnets, and electricity/force conversion system
US7262536B2 (en) * 2003-08-11 2007-08-28 General Motors Corporation Gearless wheel motor drive system
US7385330B2 (en) * 2004-02-27 2008-06-10 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Reno Permanent-magnet switched-flux machine
US7081696B2 (en) * 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
EA201200033A1 (ru) * 2006-06-08 2012-05-30 Эксро Технолоджис Инк. Устройство электрического генератора или двигателя
US7375449B2 (en) * 2006-08-17 2008-05-20 Butterfield Paul D Optimized modular electrical machine using permanent magnets
GB0713931D0 (en) 2007-07-17 2007-08-29 Nexgen Group Ltd Vertical axis wind turbine
ITNA20070104A1 (it) 2007-10-18 2009-04-19 Oreste Caputi Alternatore a stadi con statori angolarmente sfalzati
JP2009103053A (ja) * 2007-10-23 2009-05-14 Eco Win:Kk 風力発電装置
US7579742B1 (en) * 2008-01-17 2009-08-25 Norman Rittenhouse High-efficiency parallel-pole molded-magnetic flux channels transverse wound motor-dynamo
WO2009149088A1 (en) * 2008-06-02 2009-12-10 Advanced Magnet Lab, Inc. Electrical machine incorporating double helix coil designs for superconducting and resistive windings
US8143738B2 (en) * 2008-08-06 2012-03-27 Infinite Wind Energy LLC Hyper-surface wind generator
US20100111689A1 (en) * 2008-10-06 2010-05-06 Davis Edward L Ultimate wind turbine system method and apparatus
US20100194251A1 (en) * 2009-02-02 2010-08-05 Sikes George W Axial generator for Windcrank™ vertical axis wind turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833104A (zh) * 2003-07-08 2006-09-13 宇宙设备公司 风力发电系统、永久磁铁的配置构造以及电/力变换装置
US6794777B1 (en) * 2003-12-19 2004-09-21 Richard Benito Fradella Robust minimal-loss flywheel systems
US20080286112A1 (en) * 2005-10-31 2008-11-20 Rowan James A Magnetic vertical axis wind turbine
WO2007129299A2 (en) * 2006-05-04 2007-11-15 Daniel Farb Return and limited motion in energy capture devices

Also Published As

Publication number Publication date
CA2762158A1 (en) 2010-11-25
JP2012527864A (ja) 2012-11-08
KR20120034663A (ko) 2012-04-12
WO2010135032A1 (en) 2010-11-25
US20100295316A1 (en) 2010-11-25
US8487470B2 (en) 2013-07-16
EP2432999A1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
CN102483035A (zh) 垂直轴风力涡轮机及其发电机
JP2012527864A5 (zh)
US8193657B2 (en) Vertical axis wind turbine using individual blade pitch and camber control integrated with matrix converter
EP1641101B1 (en) Electrical machine with double-sided stator
CN104389741B (zh) 一种竖直轴外转子磁悬浮风力发电机
US20100232965A1 (en) Vertical axis wind turbine
CN201426055Y (zh) 垂直轴盘式无铁芯风力发电机
US8362635B2 (en) Wind-driven electric power generation system adapted for mounting along the side of vertical, man-made structures such as large buildings
JP2011526986A (ja) 風車
US20100295319A1 (en) Wind turbine
CN101302997B (zh) 磁悬浮自调桨距垂直轴风力发电机
CN104389742A (zh) 一种竖直轴内转子磁悬浮风力发电机
CN1889332A (zh) 一种中高速大容量水轮发电机
CN107013410B (zh) 一种垂直轴永磁直驱风力发电机及其控制方法
US20160312768A1 (en) Wind Power Generating Apparatus
JP2007107496A (ja) 風力発電装置
EP3001540A1 (en) Direct-drive wind turbines
CN201273511Y (zh) 风光互补磁悬浮轻风发电路灯
JP2003286938A (ja) 風力発電装置
CN107514335A (zh) 一种风轮与发电机集成的垂直轴风力发电机
CN103780034B (zh) 中间定子盘式风力发电机
CN205986494U (zh) 一种高转速、快导热电机
CN203412700U (zh) 一种垂直轴风力发电机
CN202811212U (zh) 层架式导风板型中空垂直轴双转子磁悬浮风力发电机
CN109973315A (zh) 中字型风帆式风力发电机组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120530