CN102435708A - 驱动线圈、包含驱动线圈的测量探头和测量探头使用方法 - Google Patents
驱动线圈、包含驱动线圈的测量探头和测量探头使用方法 Download PDFInfo
- Publication number
- CN102435708A CN102435708A CN2011102573790A CN201110257379A CN102435708A CN 102435708 A CN102435708 A CN 102435708A CN 2011102573790 A CN2011102573790 A CN 2011102573790A CN 201110257379 A CN201110257379 A CN 201110257379A CN 102435708 A CN102435708 A CN 102435708A
- Authority
- CN
- China
- Prior art keywords
- compound system
- particle
- drive coil
- goods
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9006—Details, e.g. in the structure or functioning of sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4865—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
- B29C65/487—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
- B29C65/4875—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being spherical, e.g. particles or powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/02—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
- B29C70/021—Combinations of fibrous reinforcement and non-fibrous material
- B29C70/025—Combinations of fibrous reinforcement and non-fibrous material with particular filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/88—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
- B29C70/882—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/485—Multi-component adhesives, i.e. chemically curing as a result of the mixing of said multi-components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4855—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by their physical properties, e.g. being electrically-conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5007—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like
- B29C65/5021—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like being multi-layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5057—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8253—Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8269—Testing the joint by the use of electric or magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8269—Testing the joint by the use of electric or magnetic means
- B29C65/8284—Testing the joint by the use of electric or magnetic means by the use of magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/116—Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
- B29C66/1162—Single bevel to bevel joints, e.g. mitre joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/20—Inserts
- B29K2105/203—Magnetic parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0008—Magnetic or paramagnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/083—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本发明提供驱动线圈和包含该驱动线圈的测量探头。所述驱动线圈具有从线圈中心到线圈外部边缘单调增加的电流密度。所述测量探头包含:具有从线圈中心到线圈外部边缘单调增加的电流密度的驱动线圈;和传感器。所述测量探头可用于例如,原位、无损检测方法,该方法也由本文提供。
Description
背景
本文所公开的主题主要涉及复合体系、加入该复合体系的制品和原位(in-situ)无损检测复合体系的方法。
在很多(若不是全部)制造产业中,所制造的物品和制造它们的方法经常受到与部件及其运输有关的成本的影响。例如,在很多产业中,可能期望制造尽可能大尺度的部件,例如,用于钻探应用的管道,或用于风力涡轮机的叶片,但这样做将带来可能无法克服的运输挑战或费用。另一方面,制造较小尺度的用于此类应用的部件则带来不得不实地组装它们的挑战以及随之产生的困难,至少包括成品组装中形成的任何结合破坏的可能性。
从强度、完整性和寿命的观点考虑,可优选许多物理结合方法以形成这样的结合,但会带来不期望的部件本身的花费和它们的运输费用。而且,物理结合方法不是绝对可靠的。
化学结合方法可在那些物理结合方法被证明欠佳的应用中表现出优势。然而,一般而言,化学结合可能较不可靠,因此可能在加入这些结合的制品的利用前需要全面的无损评价。在实地存在装配和化学结合的应用中,结合的强度和/或完整性的无损评估可能非常困难。并且用于这样做的传统方法普遍耗费时间或者另外为昂贵的,通常需要应用无损检测(NDT)的高级技术专家。在某些应用中,被结合的材料会干扰传统的NDT方法。另外,由于许多传统的NDT方法不适合于原位检测,不可能对所检测到的任意异常进行实时校正,因此在过程开发、制造和接合装配中使用NDT是不可行的。
因此期望提供能够通过在现场情况下有用的方法有效地探询(interrogation)到的化学结合体系,这样它们的完整性可原位评价。进行原位评价(例如在树脂的施用或固化期间)的能力提供了在使用期间完成实时校正策略或评估结合完整度的机会。如果不需要专业实施,与传统体系相比,这种体系可提供其他优点,和/或它们适用于使用广泛种类的通常禁止用于NDT方法的材料。
概述
第一方面,本发明提供一种驱动线圈,其电流密度由线圈中心到线圈外部边缘单调增加。
第二方面,本发明提供一种测量探头。该测量探头包含驱动线圈和传感器,该驱动线圈具有的电流密度由线圈中心到线圈外部边缘单调增加。
第三方面提供进行复合系统无损检测的方法。更具体地,该方法包括提供包含可固化树脂的复合体系以及制品,所述可固化树脂还包含至少多个可检测颗粒(at least one plurality of detectable particles)。还提供至少一个测量探头,且其包含传感器和电流密度由线圈中心到线圈外部边缘单调增加的驱动线圈。该测量探头能够检测复合体系内的该多个可检测颗粒。该复合体系相对于制品有效地布置,且传感器用于检测复合体系内的可检测颗粒。
附图
在参考附图阅读以下详述后,本发明的这些和其他特征、方面和优点将被更好地理解,贯穿在附图中相同的符号代表相同的部件,其中:
图1是根据本发明的一个实施方案的加入复合体系的制品的剖面图;
图2是根据本发明的一个实施方案的加入复合体系的制品的剖面图;
图3A是反向平行驱动的示意图;
图3B是描述图3A所示反向平行驱动在不同深度处的标准电流密度的曲线图;
图3C是平行驱动的示意图;
图3D是描述图3C所示平行驱动在不同深度的标准电流密度的曲线图;
图4A是根据一个实施方案的涡流阵列探头的俯视示意图,包含两个补偿层;
图4B是图4A所示两层涡流阵列探头中仅一层的俯视示意图;
图5是显示来自单个传感元件的响应和图4所示阵列的三个传感线圈的组合响应的曲线图;
图6是根据另一实施方案的涡流阵列探头的示意图;
图7A是涡流阵列探头的一个实施方案的示意图,其中返回路径与驱动线圈正交,因此磁通量平行于驱动所产生的磁通量;
图7B是涡流阵列探头的一个实施方案的示意图,其中返回路径在驱动线圈平面上;
图8是本发明制品的又一实施方案的示意图;
图9是描述由与图8所示相似的制品所得的涡流信号的测量结果的曲线图,其使用传统的环形探头、具有传统探头的平行驱动作为传感探头,以及具有传统探头的反向平行驱动作为传感探头;
图10是本发明制品的另一实施方案的示意图;
图11A是图10所示制品的涡流扫描图像,其中复合体系所含可固化树脂与可检测组分的重量比为9∶1;
图11B是图10所示制品的涡流扫描图像,其中复合体系所含可固化树脂与可检测组分的重量比为9∶2;
图12A显示本发明制品的另一实施方案,仅包含第一部件,且由导电材料组成;
图12B显示本发明制品的另一实施方案,仅包含第一部件,且由导电材料组成,在第一部件和复合体系间布置有空隙;
图13A是图12A所示制品的涡流扫描图像;
图13B是图12B所示制品的涡流扫描图像;和
图14是包含螺旋驱动线圈和传感平面的测量探头的一个实施方案的图示。
详述
除非另有定义,本文使用的技术和科学名词与本发明所属领域的技术人员普遍理解的意义相同。本文使用的术语“第一”、“第二”等不表示任何顺序、数量或重要性,而是用于将一个要素与其他要素区分开。同样,词语“一”和“一个”不表示数量的限制,而表示至少一个所引用物品的存在,并且,除非另有说明,术语“前”、“后”、“底部”和/或“顶部”等仅为了描述的方便而使用,并不限于任一位置或空间朝向。如果范围被公开,指向同一组分或性能的所有范围的端点是包括在内且独立地可结合的(例如,“多达约25%重量,或,更具体地,约5%重量到约20%重量”的范围是包括“约5%重量到约25%重量”等范围的端点和所有中间值在内的)。结合数量使用的修饰词“约”包括所述值,且具有由上下文规定的含义(例如,包括与特定量的测量有关的误差度)。
一方面,本发明涉及复合体系,其包含可固化树脂,所述可固化树脂还包含至少多个可检测颗粒。可固化树脂的实例包括可加入其他物体或制品中或与其他物体或制品结合的那些,包括例如,粘合剂、密封剂、堵漏品(caulk)、填隙材料、涂料、一致性包装(conforming wrap)等。
因此合适的可固化树脂包括热塑性聚合物组合物,这些组合物包括聚苯乙烯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯、聚乙酸乙烯酯、聚酰胺、聚氯乙烯、聚丙烯腈、聚氯乙烯、聚酯、聚萘二甲酸乙二醇酯、聚醚酮、聚砜、聚碳酸酯及它们的共聚物。其他有用的热塑性塑料包括热塑性工程塑料和热塑性弹性体。如果期望热塑性聚合物组合物用作可固化树脂,该热塑性树脂可与多个可检测颗粒如下结合:通过将热塑性树脂加热到其熔点或玻璃转化温度以上直到达到合适的粘度,加入多个可检测颗粒,混合,随后使复合体系冷却。
有利地在本复合体系中应用的一类可固化树脂的一个实例包含粘合剂和预粘合剂(pre-adhesive)组合物。使用这些可固化树脂的复合体系可有利地分配,且其中的颗粒在分配、聚合或交联期间或随后在使用期间被探询/检测到。
特别适用于本发明的粘合剂组合物包括交联热固性体系,诸如聚酯、乙烯基酯环氧树脂(包括酸、碱和加成固化的环氧树脂)、聚氨酯、有机硅树脂、丙烯酸酯聚合物、聚硅氧烷、聚有机硅氧烷和酚醛塑料以及这些中任意的共混物或混杂物。
有用的热熔粘合剂包括多种聚烯烃聚酯、聚酰胺、聚碳酸酯、聚氨酯、聚乙酸乙烯酯、较高分子量的蜡以及相关的共聚物和共混物。其他合适的粘合剂包括形成为膜或胶带的那些,包括在使用中任一时刻为压敏的那些。
结构粘合剂,包括环氧树脂,可在本复合体系中特别有用。结构粘合剂用于结合应用中的多种制造情境,以减少焊接的需要,减少噪声振动粗糙度(noise vibration harshness)特性,或增加制品的整体刚度。
结构粘合剂通常如下制备:通过将两种或更多的预聚合试剂互相反应以形成中间产物或乙阶树脂,其随后进一步固化形成最终产物。在这些实施方案中,能监测颗粒的可检测性能以提供组分是否按合适比率混合的指示。在这样的实施方案中,粘合剂的每一组分可包含多个可检测颗粒,并监测每种的相应可检测性能以提供类似的指示,和使用这样的检测,例如,来调整正施用的每一组分的量,如果需要的话。优选的用于本复合体系的结构粘合剂包括聚酯、甲基丙烯酸甲酯等。
可固化树脂可包含多种添加剂,这些添加剂设计以加强树脂在固化前或固化后的性能,包括反应性或不反应性稀释剂、增塑剂、增韧剂和偶联剂。可加入组合物的其他材料,包括触变剂以提供流动性控制(例如热解硅石)、颜料、填料(例如滑石、碳酸钙、二氧化硅、镁、硫酸钙等)、粘土、玻璃和陶瓷颗粒(例如珠、泡和纤维)和增强材料(例如有机和无机纤维和粒状或球状颗粒)。
可固化树脂还包含至少多个可检测颗粒。期望所述颗粒包含可区分于树脂体系中同样的材料性能的一种或更多材料性能,即颗粒的材料性能可能与树脂体系的材料性能不同,不论处于潜伏状态或是激励状态,或者材料性能可能没有通过树脂体系表现,因此在树脂体系的性能不存在的情况下,颗粒的性能是可辨识的。期望在树脂体系和可检测颗粒性能之间相异的材料性能的实例将取决于颗粒组分而不同,但可能将至少包括磁导率、介电常数、电导率、热导率、密度或光透射率。
优选原位监测时,即,树脂体系施用时、固化时,或在使用将该复合体系加入的制品的期间,所使用的颗粒应具有与树脂体系性能相异的性能。
所述颗粒可由任何材料或材料的组合构成,其具有至少一种在复合体系中可检测的性能。期望在有关条件下颗粒在选定的可固化树脂中为充分化学惰性的,且对于降解和浸析稳定。合适的颗粒材料将取决于所选定用于复合体系中的可固化树脂,和期望检测的性能。适当地由介电常数测量所检测的材料的实例包括,但不限于,环氧树脂、玻璃和陶瓷。适当地由电导率测量所检测的材料的实例包括,但不限于,金属(如铜、铝和银)、金属合金和金属化合物,如碳化物、氧化物、氮化物、硅化物和季铵盐。适当地由热导率测量所检测的材料的实例包括,但不限于,金属(如铜、铝、钢、银)、玻璃、碳和陶瓷。适当地由密度测量所检测的材料的实例包括,但不限于,玻璃、陶瓷、金属、氧化铅和二氧化硅。适当地由核四级共振测量所检测的材料的实例包括,但不限于,基于铜、钛、氮、氯等的特定化合物。适当地由压电电导率测量所检测的材料的实例包括,但不限于,压电陶瓷,如锆钛酸铅(PZT)、石英和聚偏二氟乙烯(PVDF)。适当地由光学方法所检测的材料的实例包括,但不限于,金属、碳、氧化钛和陶瓷。颗粒当然可能包含具有超过一种区别于可固化树脂的性能的材料,具有至少两种可区别于多数可固化树脂的性能的材料的实例为钢,它既具有电导性又具有铁磁性。
由于它们普遍的低成本和便捷的可得性,磁性材料,包括铁磁和亚铁磁材料,可在本发明的某些实施方案中得到有利的利用。例如,适当地通过磁导率方法检测的颗粒通常可能包含铁磁或铁氧体材料,以及为磁铁矿、磁赤铁矿、锰尖晶石、镍磁铁矿和镁铁矿的矿物氧化物,为磁黄铁矿和胶黄铁矿的硫化物和为铁、镍、钴、铁镍矿和铁钴矿的金属/合金。在这些中,铁磁或铁氧体材料大多容易获得且具有经济上的吸引力,因此在本发明的许多实施方案中得到使用。
颗粒可包含两种或更多材料的组合,即该颗粒可包含涂覆或另外表面处理的材料,或可包含复合材料。唯一的标准是,不论选择什么材料,以及以什么型式选择,所述颗粒具有至少一种可区分于所述可固化树脂的性能。
在本发明的某些实施方案中,所述颗粒可被选择、设计和/或处理,使可固化树脂获得增强的机械或化学性能。预计具有此能力的颗粒的实例包括,但不限于,具有设计的几何形状、磁性和/或机械性能的磁性纳米颗粒。如果要求,颗粒可进一步由例如硅烷或其他偶联剂处理,以增强颗粒与可固化树脂的结合。
如果理想地被涂覆,涂层或颗粒或两者都可包含可检测性能。如果存在,涂层的平均厚度可为约0.1纳米(nm)到约500nm之间,或约0.5nm到约250nm,或约1nm到约100nm,以及在这之间的所有子范围。另外,涂层可以,但不必须,覆盖颗粒之一或基本全部颗粒的整个表面,且多层涂料可提供为重叠层,或作为基本离散的岛状物在颗粒的表面上。
如果可检测性能理想地以涂层提供,颗粒本身可为相对惰性的,并可能典型地由在可固化树脂中通常用作颜料、增强剂、流变调节剂、密度控制剂或其他添加剂的材料组成。包含惰性材料的颗粒的实例包括,但不限于,玻璃泡、玻璃珠、玻璃纤维、热解硅石颗粒、熔融硅石颗粒、云母片、单组分和多组分聚合物颗粒及它们的组合。
词语“颗粒”的使用不意味着表示特定需要的形式或形状,且颗粒可能以任何可加入所选复合体系的适当形式存在。理想地,所选的颗粒及其型式将不会对树脂的材料性能产生不利的影响。一般而言,颗粒可为多种形状(包括基本球形的、细长的或扁平形状)中的任一种,并且可选择形状以赋予相应复合体系期望的流动性能,其在复合体系内提供了选定的可检测颗粒浓度。
合适颗粒的平均最大尺寸期望为约1A(0.1nm)到约5000A(500nm),或约10A(1nm)到约1000A(100nm),或甚至约100A(10nm)到约500A(50nm),以及其间的所有子范围。在某些实施方案中,颗粒将期望被研磨,且在这些实施方案中颗粒期望具有至少约5微米(5000nm)的平均最大尺寸。颗粒尺寸的混合也可使用,并可能帮助颗粒在树脂体系中性能的可检测性或表达的一致性,和/或允许可固化或已固化树脂中颗粒的最佳化分散。
另外,可检测颗粒可以任何浓度提供,只要使用的浓度并不实质干扰可固化树脂的性能。在可固化树脂包含可检测官能团的那些实施方案中,不需要包含可检测颗粒,且认为具有0%可检测颗粒的复合体系在本发明的范围内。
合适的颗粒载荷或颗粒密度将取决于所使用的颗粒,以及待检测的可区分的性能。一般而言,树脂中颗粒的密度不应对树脂的性能有实质的负面影响,且实际上说,不需要高于提供可检测水平的待检测性能所要求的颗粒密度。合适的可检测颗粒的体积分数期望为,基于复合体系的总重量,从约0.001%到约80%重量(wt%),或从约0.01wt%到约50wt%,或甚至从约0.1wt%到约10wt%,以及其间的所有子范围。在本发明的可检测颗粒为磁性的那些实施方案中,低于1%的颗粒体积分数可能足以引起可检测的响应。并且尽管该多个可检测颗粒和可固化树脂中官能团的组合可用作可检测组分,某些官能团自身可提供可检测响应,且在这样的实施方案中,复合体系不需要包含任何可检测颗粒。
使用接近于液体树脂材料的颗粒密度可帮助达到适当的浮性,使得颗粒的分离不会随之产生,或者,特征化颗粒尺寸(包括但不限于纳米尺度颗粒)的混合,可用于使树脂中颗粒的悬浮最佳化和得到复合体系的最佳储存寿命。颗粒也可用密度调节剂处理以保证最佳的分散。例如,可向磁性颗粒添加蜡涂层以达到与例如环氧树脂相同的总密度,使复合体系中的磁性颗粒实现均匀和非分散悬浮。
本复合体系可有利地加入制品中。任何期望具有可检测性能的制品可受益于复合体系的加入。希望现场装配的制品也可理想地加入本复合体系装配并通过本方法测试,因为两者都提供实时监控的优点并可容易地由非-NDT专家测试。
理想地在其中有利地加入复合体系的制品的实例可包括:包含多条纤维的制品,或加入一个或多个部件的制品,所述部件理想地含有相对于其有效布置的可检测组分。即复合体系可加入复合制品,即包含布置在固化的复合体系基质(matrix)中的纤维的制品中。图1显示了这样的制品。更具体地,图1显示制品100,其具有基质101,基质101包含其中布置有纤维102的复合体系。虽然纤维102显示为相似的取向和相对平均的分散,但并不需要如此,且认为基质101中纤维102的任何排列都在本发明的范围内。
或者,可使用复合体系以提供制品,其包含两个结合在一起的部件,或理想地作为层压材料提供的复合部件。这样的制品的一个实施方案在图2中显示,其中制品200,包括第一部件203和第二部件204以及有效布置在它们之间的复合体系201。
不论什么制品,其纤维(例如图1所示的纤维102)或部件(例如图2所示的部件203和204)可有利地包含导电材料,诸如碳或碳复合物。尽管与传统粘合剂结合和/或用传统方法测试时,包含这些材料的制品会难以检测,但它们便于加入本发明制品中,且实际上可在一些实施方案中使用以加强可检测颗粒提供的测量信号。
更具体地,并仅作为一个实例,在本发明的可检测颗粒包含铁氧体粉末且可固化树脂包含粘合剂的那些实施方案中,制品可包含一种或多种导电材料,其能增强由于铁氧体粉末的存在而产生的涡流检测信号。由于导电材料通常作用为屏蔽并因此通常可能减弱涡流检测灵敏度,所以此结果是令人惊奇的和意料之外的。作为本领域普通技术人员所了解的,在本发明的这些实施方案中,制品的电导率、待检测的复合体系的磁导率、涡流传感器状态(如尺寸和工作频率),都可利用和调整以增强检测的灵敏度。
本复合体系有利地应用在无损检测方法中,且本文也提供了这样的方法。这样的检测可用于测定一旦相对于制品加入的复合体系的多种性能,包括厚度、完整性、取向和连续性。类似地可得到指示复合体系位置的形态图(map)。
仅作为一个特别的实例,当包含结构粘合剂的可固化树脂形成与制品部件一起连接的结合的情况下,结合线(bond line)的性能可被检查。可固化树脂及由此复合体系中,可检测颗粒的探询可用于对复合体系中可检测颗粒的量定量,这继而可用于确定,例如,双组分粘合剂(two part adhesive)的每一组分的适当数量是否已结合。如果包含可检测颗粒的复合体系正在移动,从可检测颗粒获得的信息也可用于确定复合体系沉积的流量和速率。如果复合体系是固定的,可检测颗粒的探询可提供整个制品、结合空间内等复合体系分布的信息。
在本发明的某些实施方案中,可检测颗粒的测量结果可有利地用作可固化树脂或复合体系中压力的指示。压力水平继而可用于,例如,确定粘合剂或其他可热固或可交联的可固化树脂的固化程度、施用于复合体系或具有加入其中的复合体系的制品的外力的水平、制品上粘性复合体系的粘着的数量或品质、复合体系的热史等。
所检测的特定性能将取决于应用/加入于复合体系中的可检测颗粒。表现出电磁性能的颗粒可利用此性能来执行所需的检测。例如,某些金属可对X-射线充分地散射,因此X-射线透射检测可用于对材料中这些颗粒的数量定量,这继而可用于确定,例如,是否已施用适量的双组分粘合剂。
如果颗粒具有足够高的介电常数,它们将增加其中它们以与颗粒载荷相关的量加入的可固化树脂的介电常数。颗粒/官能团的介电常数可由检测包含该颗粒的平行板电容器的电容确定。
微波或感应加热方法也可用于加热颗粒,在这之后,可测量相关的红外发射以对可固化树脂中可检测颗粒的数量定量,以及由此对,例如,双组分粘合剂的组分的数量进行定量。
如果可检测组分表现出磁性,通常通过感应系数或感应电阻的测量,磁导率可被测定,并用作树脂体系内或施用于其的压力水平的指示。磁导率定义为样品中总磁通密度与外部施加磁场的比率,且其本身可为树脂体系中磁性颗粒数量的函数。
测量的特定方法将取决于期待被测量的可检测性能。测量可检测性能的方法已知,且通常包括:用于测量热导率的温度计和热电偶;用于测量磁导率的磁强计如霍尔效应传感器、巨磁阻传感器、各向异性磁阻传感器、原子磁强计、超导量子干涉仪(SQUID)或涡流线圈;用于测量介电常数的电容性板或带状线;用于测量电导率的欧姆计和涡流线圈;用于测量密度的密度计、超声波或X-射线;用于测量核四级共振频率的磁强计(如上所述)和线圈。在可检测颗粒包含铁磁材料的那些实施方案中,传感器或传感器阵列可理想地包含,例如射频(RF)线圈,带有合适的驱动测试仪器以检测复合体系的材料性能分布。
因此,不论要求怎样的测量方法,合适的传感器或传感器阵列,相对于制品(复合体系理想地加入其中)良好地有效布置。在一些实施方案中,传感器或传感器阵列(一或多个)可有利地附着于制品,紧密靠近复合体系良好施用的地方。例如,在复合体系用于将制品部件结合在一起的那些实施方案中,传感器和/或传感器阵列可安装在临近该结合的表面上。
如果需要,并取决于所采用的测量方法,一个或更多发射器可与传感器/阵列共同使用,由此提供增强的检测能力和/或穿透深度。它也可证明有利于由外部源(如机械振动或电磁激励)活跃性激励可检测颗粒,以进一步反映可固化树脂结构完整性的方式改变颗粒的性能。
为了进行本发明的无损测试方法,将选定的可固化树脂和多个可检测颗粒组合以提供复合体系。该复合体系将施用于要求的制品,通常以诸如结合制品的两个部件的方式,并相对其将传感器和/或传感器阵列有效布置。当复合体系被施用、正固化、固化后或在施用了复合体系的制品使用期间,可由传感器/传感器阵列进行测量。测量结果便于传给数据处理和/或图像显示组件,该组件能实时检测复合体系中的缺陷,例如间隙、多孔性、裂痕等。结果可有利地表示,因此它们可容易地由非-NDT专家所解释。该解释继而可用于改变复合体系的性能、复合体系的施用、复合体系施用的条件或其它能够影响固化的复合体系的完整性的参数。
无损检测方法的一个实施方案可参考图2进一步理解。如上所述,图2显示制品200,其包含第一部件203和第二部件204以及散布于它们之间的复合体系201。传感器205相对于复合体系201有效布置,且在复合体系201施用或固化时或制品200使用期间,可从其中的可检测组分接收信号,这些信号可指示复合体系201中的压力水平,在复合体系201包含多组分粘合剂的那些实施例中复合体系201内的组分的比率等。在图2中,描绘了间隙206,它将由传感器205检测到。由传感器205接收的信号将良好地传给数据处理和/或图像显示组件,这些组件能实时检测复合体系204中的缺陷,例如间隙(如间隙206)、多孔性、裂痕等。
尽管本发明的复合体系和方法期望在广泛种类的应用中得以使用,期望它们特别有利地应用于希望部件装配现场进行的领域,由此可避免运输完整装配好的制品。这种能力可作为优势的产业的实例包括能源产业,其中期望运输例如管道或其他工厂设备的大型片段,而不是将要使用的实际长度或完整部件。能源产业中的另一实例将是在风能产业中,其中风能设备的风力叶片或其他部件可能期望按部分地运输。风力叶片翼梁端(spar cap)斜面接合可良好地在现场装配/完成,且确认其完整性的能力为有利的。本发明的方法将提供这种能力和对风力叶片前缘、后缘和抗剪腹板接合以及风力叶片的关键复合区域(如根部截面,翼梁端和尖端)进行使用中(in-service)检查的能力。本发明的方法也将在现场装配期间通过将传感器或传感器阵列固定安装在风力叶片上,实现对风力叶片的结构健康监测。
在某些实施方案中,本发明理想地提供能够在复合体系施用时、固化期间、固化后和/或施用复合体系的制品的使用期间,提供复合体系的原位监测的优点。在这些实施方案中,以及当可检测材料包含导电或铁磁材料时,复合体系的原位监测可通常由电导率或磁导率测量实现,这可使用涡流传感器完成。
更具体地,涡流传感器可用于检测复合体系中涡流所感应的磁场。由于缺陷的存在,涡流和相应磁场将被干扰,这会产生指示缺陷的传感器响应变化。当大制品被结合时,可利用反向平行的(也被称为曲折的(meandering))驱动线圈,因为这些能大面积产生驱动场和相应的涡流。然而,由于电流在邻近的线路中反方向流动,场/涡流可能无法深度穿透到制品/复合体系中,且检测可能限制于基本位于表面或接近表面的缺陷。
为了克服这个问题,本发明的某些实施方案中用于检测可检测组分的涡流传感器可具有平行排列的驱动线路(如图3C所示),这产生了比反向平行驱动线路(如图3A所示)强得多的场和深得多的穿透。图3显示反向平行(图3B)和平行驱动(图3D)在不同穿透深度的电流密度,其为对于四条线路的简单情况,相同的电流量通过每条平行线路和反向平行驱动线路。可见,对于平行线路不仅电流密度峰值高,平行驱动的衰减也慢的多。另外,在更大的深度,对于平行驱动激励,电流密度更为一致。
阵列探头的基本构型将为一组平行驱动线路和在驱动线路间的传感(或接收)线圈阵列。然而,传感线圈对于缺陷的响应取决于缺陷相对于驱动和传感线圈的位置。例如,如果两个相邻驱动线路间有1-D传感线圈阵列,且如果约低于传感线圈的中心碰巧有一个缺陷,由于在传感线圈中感应的电压倾向于抵消,所以其将具有非常低的响应。由于该区域中的缺陷可能遗漏,这些区域被称作盲区。即使传感线圈位于驱动线路的顶部而不是在驱动线路之间,盲区仍将存在。
为了保证任何位置的缺陷可以适当的信号水平而检测,本方法中有用的阵列探头的一个实施方案可包含驱动线路和传感线圈的第二层,其与第一层相同,但与第一层相补偿,以使一个传感线圈的空响应由相邻层中两个传感线圈的高响应所补偿。用于该方法中的阵列探头也可具有超过2层,这种情况下这些层将相应地补偿。图4显示阵列400的一个这样的实施方案。或者,如果空间不受限制且阵列被扫描,代替多层,可存在两列或更多列驱动和传感元件,相互补偿。
如前所述,基于相对于驱动线路和传感线圈的缺陷位置,固定深度上相同缺陷的响应可能差别很大。理想地,这种响应为平坦的(flat),即不论缺陷的位置,将提供恒定的响应。在图4A所示的设计中,由2个层410和412中传感线圈得到的响应可组合,以提供一个相当平坦的补偿响应,即该补偿响应将不再取决于缺陷的位置。为了清楚说明的目的,图4B只显示了一层,412。
图5显示阵列400中单个传感元件的响应,以及三个最近的传感线圈的补偿(组合)响应。该补偿响应是三个传感线圈在各自位置的绝对值之和(Sum Abs)。列表表示对于每一传感线圈和对于补偿响应的缺陷响应的标准偏差。可见补偿响应的σ(sigma)显著低于单个线圈的σ。也可通过组合信号的替代途径实现补偿。
在本方法的一个特殊示例性应用中,可使用涡流(EC)阵列系统来检测可检测颗粒,其中阵列包括:以单电流循环或多电流循环形式存在的驱动,以及在相邻驱动线路间的一个或更多传感线圈的线性一维(1-D)阵列。在此实施方案中,驱动将直接与涡流仪器相连,同时线圈阵列将与复接电路相连,该电路将线圈阵列与涡流仪器连接。然后将把EC阵列置于与复合体系良好结合的接合结构的外表面。例如,在风力叶片中,这可以是翼梁端的斜面接合处、抗剪腹板的双搭接接合处(double strap joint)、或外壳的对接接合处(butt joint)。所述阵列也可与编码器相连以在表面被扫描时进行记录。扫描可以手动进行,也可机动化进行。可制备要求的复合体系,例如,包含粘合剂(作为可固化树脂)和铁氧体颗粒。可有利地选择颗粒大小、表面处理和体积分数,以充分产生可检测信号,并保持粘合剂的化学和物理性能,例如,粘度、固化速率、固化后杨氏模量、极限剪切强度、疲劳强度、储存寿命等,或它们的组合。可在复合体系注入时、注入后、固化期间、固化后、再加工后或使用中进行扫描。处理从线圈阵列和编码器采集的数据以形成结合空间内复合体系分布的2-D图像。
或者,涡流阵列可包括:以单电路循环或多电路循环形式存在的驱动和两相邻驱动线路间的二维(2-D)传感线圈阵列。如前所述,在复合体系注入时、注入后、固化期间、固化后、再加工后或使用中,所述阵列将用于为复合体系扫描并产生图像。
在另一实施方案中,相邻驱动线路间存在1-D或2-D阵列或传感线圈的涡流阵列可提供为检查区的实际尺寸,这样无需手动或机动扫描便能产生图像。驱动线路可为多匝数,以增加涡流密度和信号水平。
图6描绘了本方法中有用的具有反向平行驱动构型的阵列探头,其中驱动线路以多匝和多层形式设置,这样能使相邻两组驱动线路间的磁通量方向交替。这种构型的确产生比平行情况更低的净通量,但仍能相对于传统EC探头所用的环形驱动线圈显著改进穿透深度。
如果平行驱动要在电流阵列探头中使用,使循环完整的返回路径必须在与驱动线圈平面垂直的平面上(如图7A和7B所示),否则整体结构如同环形回路地作用(除非随之使回路与平行驱动区域面积相比非常大)。另一方面,反向平行回路非常适合于在空间紧凑的情况下使用,如风力叶片中接合(例如,抗剪腹板接合)的情形可以是这样。具有反向平行驱动线路的阵列探头也可具有多层/列驱动和传感,进行补偿以避免任何盲区并获得平坦的补偿响应。
在一些实施方案中,驱动线圈可用于产生均匀场和/或增加驱动可能的穿透深度。在这样的实施方案中,驱动线圈可理想地包含从线圈中心到线圈外部边缘单调增加的电流密度。电流密度可由增加电流和/或增加匝数密度而增加。在一些实施方案中,线圈可包含约5到约100匝。在一些实施方案中,驱动线圈可有利地包含螺旋驱动线圈。在这样的螺旋驱动线圈的一些实施方案中,线圈可具有由公式ln(1+k*n)给定的电流密度,其中r是与线圈中心的距离,n是匝数,且k为约0.05到3之间,或从约0.1到2。
在一些实施方案中,驱动线圈可与传感器或多个传感器组合提供,以提供测量探头。该探头可产生2-D图像,而不具有可与单点或光栅扫描测量探头相联系的问题。例如,为了从单点测量系统产生2D信息,须采用和汇集多次测量以产生2-D图像,且对于光栅扫描测量,为了做到这一点,通常必须将单独的从左到右的扫描进行组合。
传感器或多个传感器可理想地与一表面共同提供,所述表面与包含至少一部分驱动线圈的表面相隔从约0mm到约25mm的距离。在一些实施方案中,驱动线圈理想地为扁平的,因此几乎其整体位于同一驱动线圈表面内。在其他实施方案中,驱动线圈可被弯曲。在这样的实施方案中,在位于或邻近穿过传感平面和驱动线圈平面二者的水平轴处,传感平面与驱动线圈平面间的距离良好地测量。在测量探头包含多个传感器的那些实施方案中,传感器可以任何构型排列在传感表面内。在一些实施方案中,传感器排列为阵列。
图14所示为包含螺旋驱动线圈1410的测量探头的一个实施方案。如图14所示,驱动线圈1410基本为扁平且几乎驱动线圈1410的整体位于驱动线圈表面(未显示)内。如上所述,这不是必要的情况,且如果需要,驱动线圈1410可被弯曲。驱动线圈1410包含从驱动线圈1410中心到驱动线圈1410外部边缘单调增加的电流密度。在如图14所示的实施方案中,电流密度的增加由驱动线圈1410的匝数密度提供。
提供传感表面1420并布置于距驱动线圈1420约0mm到约25mm的位置,且基本与其平行。传感表面1420包含至少一个传感器,多个传感器,这在某些实施方案中可排列在阵列中。
图8所示为根据一个实施方案的制品。如所示的,制品800包含第一部件803和第二部件804,且复合体系801散布在其之间。第一部件803、第二部件804或两者都可包含碳复合物。复合体系801可理想地包含粘合剂作为可固化树脂,以及铁氧体粉末作为可检测颗粒。此实施方案中的传感器805,一个阵列,相对于复合体系801有效布置,且在复合体系801施用或固化时或制品800使用期间,可从其中的可检测颗粒接收信号。由传感器阵列805接收的信号将理想地传给数据处理和/或图像显示组件,该组件可通过仪器接口807对缺陷进行实时检测。
如果需要,上述的任何阵列可有效地布置于待结合制品的部件内表面(即结合表面)上,这样阵列更靠近复合体系。在这样的实施方案中,阵列将理想地装配于薄基底上,且由将充分结合到该结构的内表面和复合体系的材料组成,这样外部缺陷将不会引入复合体系中。
另外,上述的任何阵列可布置在待结合制品的任何层中。例如,待结合制品可为玻璃纤维或碳纤维复合物。则阵列可为薄膜聚酰亚胺的印刷电路,其置于复合物层间(在叠层期间),或置于结构的内表面(即结合表面)上且随后用该结构相同材料(或用能增强阵列和粘合剂间结合的不同材料)的附加层覆盖。
当然,在上述任何实例中,也可使用另外的可检测颗粒,其可用上述涡流探头检测。
上述任何实施方案也可应用于检查通过复合纤维的复合体系流,例如,在真空辅助树脂传递成型或树脂传递成型工艺中。在这样的实施方案中,可固化树脂可理想地包含特定尺寸、形状和表面处理(例如硅烷或其他偶联剂)的可检测颗粒。本方法的这些实施方案可理想地用于检查风力叶片玻璃或碳复合材料部件,如叶片根部预制截面、翼梁端、前缘、后缘、尖端或芯。
实施例1
根据一个实施方案的复合体系,其包含粘合剂作为可固化树脂,以及铁氧体粉末(TSF-50ALL,来自TSC International)作为多个可检测颗粒,粘合剂与铁氧体的重量比为9∶1,该复合体系用于结合碳复合材料样品。这样制得的制品800与图8所示制品相似,并包含第一部件803和第二部件804,有复合体系801散布在它们之间。第二部件804包含碳复合材料,并以不同的厚度制备。图9显示从各自包含不同厚度的第二部件804的制品800的涡流信号检测所得的实验结果,使用传统环形探头、具有传统探头的平行驱动作为传感探头(图9中的设计2)和具有传统探头的反向平行驱动作为传感探头(图9中的设计1)。为了对比,在所有检测中使用传统探头作为传感元件。
实施例2
根据一个实施方案的复合体系,包含粘合剂作为可固化树脂,以及铁氧体粉末(TSF-50ALL,来自TSC International)作为多个可检测颗粒,该复合体系用于结合碳复合材料样品。这样制得的制品1000示于图10中,并包含第一部件1003、第二部件1004,有复合体系1001散布在它们之间。第一和第二部件1003和1004可有利地包含碳复合材料。通过在复合体系1001施用期间将1.5″塑料盘1008放置在复合体系1001中,把人工间隙引入复合体系1001中。
在固化后,使用涡流探头(700P24A4,来自GE InspectionTechnologies)扫描样品。对粘合剂和铁氧体粉末混合比率不同的两个样品进行试验,即粘合剂与铁氧体粉末质量比为9∶1和9∶2。该实验的结果分别在图11A和图11B中显示。如所示出的,在可检测颗粒的两个浓度,都可迅速并容易地观察到通过引入塑料盘1008而引入的间隙。
实施例3
制备根据一个实施方案的复合体系,其包含粘合剂作为可固化树脂以及铁氧体粉末作为多个可检测颗粒,并根据另一实施方案,在包含导电材料的制品(例如,碳复合物)中使用。如图12A所示,对于一个样品,第一部件1203的厚度为35mm,且复合体系1201直接对其施用。对于第二样品,如图12B所示,厚度为5mm的第一部件1203相对于复合体系1201而布置,且30mm的空隙1209在它们之间。对2个样品,传感器1205都放置于第一部件1203的表面上,与复合体系1201相对。
图13显示常规涡流探头的涡流信号,在传感器和待检查的铁氧体-粘合剂复合物间存在5-mm和35-mm的碳复合物。如所示出的,由35-mm碳复合物提供的信号强于含有30mm空隙的5mm碳复合物提供的信号,表明导电组分可用于本文所述制品,且根据本方法检测时提供增强的信号,而不是产生降低的灵敏度。
虽然本文只说明和描述了本发明的某些特征,许多变更和替换将被本领域的技术人员想到。因此应理解,所附权利要求意欲覆盖落入本发明实际精神中所有的变更和替换。
部件列表
100制品
101具有复合体系的基质
102纤维
200制品
201复合体系
203第一部件
204第二部件
205传感器
206间隙
400阵列
410第一层
412第二层
800制品
801复合体系
803第一部件
804第二部件
805传感器
807仪器接口
1000制品
1001复合体系
1003第一部件
1004第二部件
1008塑料盘
1200制品
1201复合体系
1203第一部件
1204第二部件
1209空隙
1410螺旋驱动线圈
1420传感表面
Claims (10)
1.具有从线圈中心到线圈外部边缘单调增加的电流密度的驱动线圈。
2.权利要求1所述的驱动线圈,其包含螺旋驱动线圈(1410)。
3.测量探头,其包含:
具有从线圈中心到线圈外部边缘单调增加的电流密度的驱动线圈;和
传感器(1420)。
4.权利要求3所述的测量探头,其包含多个传感器。
5.权利要求3所述的测量探头,其中所述传感器位于传感表面上,所述传感表面与包含至少一部分驱动线圈的表面相分离。
6.权利要求3所述的测量探头,其中多个传感器的至少一部分位于传感表面上,所述传感表面与包含至少一部分驱动线圈的表面相分离。
7.权利要求6所述的测量探头,其中所述多个传感器以平面阵列布置于传感表面内。
8.对复合体系进行无损检测的方法,其包括:
提供包含可固化树脂的复合体系,所述可固化树脂还包含至少多个可检测颗粒;
提供制品;
提供至少一个测量探头,其包含:
具有从线圈中心到线圈外部边缘单调增加的电流密度的驱动线圈;和
至少一个传感器(1420);
相对于所述制品有效地布置所述复合体系;并
使用所述传感器检测所述复合体系中的可检测组分。
9.权利要求8所述的方法,其中所述至少一个传感器位于传感表面上,所述传感表面与包含至少一部分驱动线圈的表面相分离。
10.权利要求9所述的方法,其中驱动线圈基本整体位于驱动线圈表面内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/870804 | 2010-08-28 | ||
US12/870,804 US8710834B2 (en) | 2008-11-29 | 2010-08-28 | Drive coil, measurement probe comprising the drive coil and methods utilizing the measurement probe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102435708A true CN102435708A (zh) | 2012-05-02 |
CN102435708B CN102435708B (zh) | 2016-01-13 |
Family
ID=44653167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110257379.0A Expired - Fee Related CN102435708B (zh) | 2010-08-28 | 2011-08-26 | 驱动线圈、包含驱动线圈的测量探头和测量探头使用方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8710834B2 (zh) |
EP (1) | EP2423681B1 (zh) |
CN (1) | CN102435708B (zh) |
ES (1) | ES2437929T3 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2522994A1 (en) * | 2011-05-13 | 2012-11-14 | General Electric Company | Magnetic inspection systems for inspection of target objects |
US8232801B2 (en) | 2011-06-30 | 2012-07-31 | General Electric Company | Nuclear quadrupole resonance system and method for structural health monitoring |
JP2019080055A (ja) * | 2017-10-20 | 2019-05-23 | キヤノン株式会社 | 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法 |
US10823655B2 (en) * | 2018-10-10 | 2020-11-03 | Deere & Company | Method and apparatus to measure strains in adhesives of joints |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3624808A1 (de) * | 1986-07-23 | 1988-01-28 | Siemens Ag | Stosswellengenerator mit flachspule |
US6586930B1 (en) * | 2000-04-28 | 2003-07-01 | Quantum Magnetics, Inc. | Material thickness measurement using magnetic information |
US20060145697A1 (en) * | 2002-11-06 | 2006-07-06 | Mikhaltsevitch Vassili T | Probe coil for detecting nqr-responsive materials in large volumes |
WO2008091772A1 (en) * | 2007-01-23 | 2008-07-31 | The Boeing Company | Method and apparatus for detecting inconsistencies in fiber reinforced resin parts using eddy currents |
WO2009155000A2 (en) * | 2008-05-27 | 2009-12-23 | University Of Florida Research Foundation, Inc. | Method and apparatus for producing substantially uniform magnetic field |
US20100134098A1 (en) * | 2008-11-29 | 2010-06-03 | General Electric Company | Composite systems, articles incorporating the system, methods for in-situ, non-destructive testing of these and array probes useful for the methods |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4944185A (en) | 1989-01-17 | 1990-07-31 | Westinghouse Electric Corp. | System and method for qualitatively and nondestructively inspecting adhesive joints and other materials |
US5833795A (en) * | 1996-09-19 | 1998-11-10 | Mcdonnell Douglas Corporation | Magnetic particle integrated adhesive and associated method of repairing a composite material product |
KR100869741B1 (ko) * | 2006-12-29 | 2008-11-21 | 동부일렉트로닉스 주식회사 | 나선형 인덕터 |
US8250928B2 (en) | 2008-07-09 | 2012-08-28 | The Boeing Company | Measurement of strain in an adhesively bonded joint including magnetostrictive material |
-
2010
- 2010-08-28 US US12/870,804 patent/US8710834B2/en active Active
-
2011
- 2011-08-09 ES ES11176935.2T patent/ES2437929T3/es active Active
- 2011-08-09 EP EP11176935.2A patent/EP2423681B1/en not_active Not-in-force
- 2011-08-26 CN CN201110257379.0A patent/CN102435708B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3624808A1 (de) * | 1986-07-23 | 1988-01-28 | Siemens Ag | Stosswellengenerator mit flachspule |
US6586930B1 (en) * | 2000-04-28 | 2003-07-01 | Quantum Magnetics, Inc. | Material thickness measurement using magnetic information |
US20060145697A1 (en) * | 2002-11-06 | 2006-07-06 | Mikhaltsevitch Vassili T | Probe coil for detecting nqr-responsive materials in large volumes |
WO2008091772A1 (en) * | 2007-01-23 | 2008-07-31 | The Boeing Company | Method and apparatus for detecting inconsistencies in fiber reinforced resin parts using eddy currents |
WO2009155000A2 (en) * | 2008-05-27 | 2009-12-23 | University Of Florida Research Foundation, Inc. | Method and apparatus for producing substantially uniform magnetic field |
US20100134098A1 (en) * | 2008-11-29 | 2010-06-03 | General Electric Company | Composite systems, articles incorporating the system, methods for in-situ, non-destructive testing of these and array probes useful for the methods |
Also Published As
Publication number | Publication date |
---|---|
CN102435708B (zh) | 2016-01-13 |
US8710834B2 (en) | 2014-04-29 |
EP2423681A3 (en) | 2012-09-12 |
EP2423681B1 (en) | 2013-10-16 |
EP2423681A2 (en) | 2012-02-29 |
ES2437929T3 (es) | 2014-01-15 |
US20100321012A1 (en) | 2010-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101747646B (zh) | 复合体系、引入这种体系的制品、原位非破坏性测试它们的方法和用于所述方法的阵列探针 | |
US9759686B2 (en) | Magnetic inspection systems for inspection of target objects | |
EP2070688B1 (en) | Aircraft structures bonded with adhesive including magnetostrictive material | |
US8616068B2 (en) | Array for sensing and inducing strain in an adhesively bonded joint including magnetostrictive material | |
CN102294874B (zh) | 制造预浸渍件和/或层压件的在线检查方法和闭环过程 | |
US6004817A (en) | Method for measuring stress levels in polymeric compositions | |
CN102435708A (zh) | 驱动线圈、包含驱动线圈的测量探头和测量探头使用方法 | |
US20140023837A1 (en) | Aircraft structures bonded with adhesive including magnetostrictive material | |
Frascio et al. | Review of tailoring methods for joints with additively manufactured adherends and adhesives | |
US20110215799A1 (en) | Magnetic inspection systems for inspection of target objects | |
Fereshteh-Saniee et al. | Quality analysis of weld-line defects in carbon fibre reinforced sheet moulding compounds by automated eddy current scanning | |
JP3313165B2 (ja) | 繊維強化プラスチック部材の接着方法及び接着層含有繊維強化プラスチック部材の接着不良検知方法 | |
EP2749615A1 (en) | Aircraft structures bonded with adhesive including magnetostrictive material | |
Crall | Magnetic Self-sensing and Self-healing for Damage Mitigation in Composite Materials | |
Giurgiutiu et al. | In situ fabricated smart material active sensors for structural health monitoring | |
Finch et al. | Electromagnetic Inductive Coupling Analysis (EMICA): A new tool for imaging internal defects in carbon fiber composites | |
Wahjudi et al. | A COMPREHENSIVE REVIEW ON THE NON-DESTRUCTIVE TEST FOR POLYMER MATRIX COMPOSITE | |
Qhonosheane | THE DEVELOPMENT AND CHARACTERIZATION OF PIEZOELECTRIC-MAGNETOSTRICTIVE SMART SELF-SENSING COMPOSITES | |
MXPA99008696A (en) | Method for measuring stress levels in polymeric compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 |