CN102435234B - 一种基于简化的快速傅氏变换fft算法的涡街流量计 - Google Patents

一种基于简化的快速傅氏变换fft算法的涡街流量计 Download PDF

Info

Publication number
CN102435234B
CN102435234B CN 201110296161 CN201110296161A CN102435234B CN 102435234 B CN102435234 B CN 102435234B CN 201110296161 CN201110296161 CN 201110296161 CN 201110296161 A CN201110296161 A CN 201110296161A CN 102435234 B CN102435234 B CN 102435234B
Authority
CN
China
Prior art keywords
signal
voltage signal
vortex shedding
cpu
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110296161
Other languages
English (en)
Other versions
CN102435234A (zh
Inventor
王长密
马小永
汪金
贾建钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ZHONGRUI ZHICHENG TECHNOLOGY Co Ltd
Original Assignee
BEIJING ZHONGRUI ZHICHENG TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ZHONGRUI ZHICHENG TECHNOLOGY Co Ltd filed Critical BEIJING ZHONGRUI ZHICHENG TECHNOLOGY Co Ltd
Priority to CN 201110296161 priority Critical patent/CN102435234B/zh
Publication of CN102435234A publication Critical patent/CN102435234A/zh
Application granted granted Critical
Publication of CN102435234B publication Critical patent/CN102435234B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

本发明公开了一种基于简化的快速傅氏变换FFT算法的涡街流量计,包括:压电传感器检测流体的当前流量,输出电荷信号;信号处理装置,将电荷信号转化为电压信号,对电压信号进行放大和滤波,并将滤波后电压信号与预设参考值进行比较,输出相应的脉冲序列,同时对放大后电压信号进行快速并行ADC转换,得到采样序列发送至CPU;CPU对脉冲序列进行采集,得到频率信号转化为流体当前的瞬时流量,同时对采样序列进行简化的FFT,得到采样序列的频率特性和幅值特性,设置放大倍数和滤波频带,发送至信号处理装置。采用本发明,能够避免传统技术中采用过放大技术导致信噪比严重降低的问题,使得涡街流量计的可用量程比得到有效扩展。

Description

一种基于简化的快速傅氏变换FFT算法的涡街流量计
技术领域
本发明涉及流体流量测量技术领域,特别是涉及一种基于简化的快速傅氏变换FFT算法的涡街流量计。
背景技术
涡街流量计是依据卡门漩涡原理进行封闭管道流体流量测量的新型流量计,通过在流体中安放一个非流线型漩涡发生体,使流体在发生体两侧交替的分离,释放出两串规则的交错排列的漩涡,且在一定范围内漩涡分离频率与流量成正比。涡街流量计可以直接测量气体、液体、蒸汽等多种介质,具有压力损失小,量程范围大,精度高等特点,是一种比较先进、理想的测量仪器。
参照图1,为现有典型的涡街流量计的结构图。现有涡街流量计包括:压电传感器1a、信号处理装置、CPU(Central Processing Unit,中央处理器)2a。其中,信号处理装置包括:前置电荷放大器3a、滤波电路4a、信号放大电路5a、阈值比较电路6a、以及第一拨码开关组7a、第二拨码开关组8a。
压电传感器1a输出的电荷信号经所述前置电荷放大器3a转化为电压信号,并进行前置放大;前置放大后的电压信号经所述滤波电路4a滤波,再通过所述信号放大电路5a进行再次放大,使其幅值满足所述阈值比较电路6a的要求;所述阈值比较电路6a的比较结果送入CPU 2a,计算得到当前的大致频率。
现有的涡街流量计,使用拨码开关组来设置滤波电路4a的滤波带和信号放大电路5a的放大倍数,使得在任何量程下,对应于不同的信号频率和信号幅值,都只能使用同样的一组电路参量。这样不仅使用不方便,而且由于放大倍数是固定的,所以无法兼顾大信号和小信号的需求,只能采用过放大的方式,在传感器输入信号较大时,造成信号的信噪比降低,使得涡街流量计的量程较低。例如,对于现有的涡街流量计,如果量程比希望达到30∶1,则其输入信号的幅值将要达到900∶1。而在很多工业环境下,有效信号与噪声之间的信噪比也仅仅只有20∶1左右。假设在某一个流量时,有效信号强度为20,噪声信号强度为1,此时,现有的涡街流量计可以实现正常测量;但是,当流量增加到10倍时,其有效信号强度变为200,而噪声信号强度为100,此时,采用现有的涡街流量计时,噪声信号将被视为有效信号,导致测量误差。
因此,现有的涡街流量计无法实现较高的量程比。
发明内容
有鉴于此,本发明的目的在于提供一种基于简化的快速傅氏变换FFT算法的涡街流量计,能够避免传统技术中采用过放大技术导致信噪比严重降低的问题,使得涡街流量计的可用量程比得到有效扩展。
本发明提供一种基于简化的快速傅氏变换FFT算法的涡街流量计,所述涡街流量计包括:压电传感器、信号处理装置、以及CPU;
所述压电传感器,检测流体的当前流量,输出电荷信号至所述信号处理装置;
所述信号处理装置,将接收到的电荷信号转化为电压信号;接收所述CPU发送的放大倍数和滤波频带,根据所述放大倍数对所述电压信号进行放大,再根据所述滤波频带对放大后的电压信号进行滤波处理,并将滤波处理后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU;同时,对放大后的电压信号进行快速并行ADC转换,并将转换后得到的采样序列发送至所述CPU;
所述CPU,对所述脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收到的所述采样序列进行简化的快速傅氏变换FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述信号处理装置,并根据所述频率特性,设置滤波频带,发送至所述信号处理装置。
优选地,所述信号处理装置包括:前置电荷放大器、程控放大器、数控滤波器、阈值比较器、以及比较器阵列;
所述前置电荷放大器,将接收到的电荷信号转化为电压信号,并对所述电压信号进行前置放大后输出至所述程控放大器;
所述程控放大器,根据接收自所述CPU的放大倍数对所述前置电荷放大器输出的电压信号进行二次放大,使得二次放大后的电压信号满足所述阈值比较器的要求,并将二次放大后的电压信号分别发送至所述数控滤波器和所述比较器阵列;
所述数控滤波器,根据接收自所述CPU的滤波频带对所述二次放大后的电压信号进行滤波,并将滤波后的电压信号输出至所述阈值比较器;
所述阈值比较器,将接收到的所述滤波后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU;
所述比较器阵列,对接收到的所述二次放大后的电压信号进行快速并行ADC转换,并将转换得到的采样序列直接发送至所述CPU。
优选地,所述CPU,对所述阈值比较器输出的脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收自所述比较器阵列的采样序列进行简化的FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述程控放大器,并根据所述频率特性,设置滤波频带,发送至所述数控滤波器。
优选地,所述程控放大器为可编程增益放大器PGA。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明实施例所述基于简化的快速傅氏变换FFT算法的涡街流量计,通过FFT运算获取压电传感器输出信号的频率特性和幅值特性,并根据该频率特性和幅值特性实时调整所述信号处理装置的放大倍数和滤波参数,使得压电传感器的输出信号的幅值在一个比较固定的范围内,且能够滤除外部噪声,从而获得良好的测量效果,有效提高了所述涡街流量计的信噪比,使得所述涡街流量计的可用量程比得到有效扩展。
附图说明
图1为现有典型的涡街流量计的结构图;
图2为本发明实施例所述的基于简化的快速傅氏变换FFT算法的涡街流量计的结构图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
有鉴于此,本发明的目的在于提供一种基于简化的FFT(Fast FourierTransformation,快速傅氏变换)算法的涡街流量计,能够避免传统技术中采用过放大技术导致信噪比严重降低的问题,使得涡街流量计的可用量程比得到有效扩展。
参照图2,为本发明实施例所述的基于简化的快速傅氏变换FFT算法的涡街流量计的结构图。如图2所示,所述涡街流量计包括:压电传感器11、信号处理装置、CPU 12。
所述压电传感器11,检测流体的当前流量,输出电荷信号至所述信号处理装置。
所述信号处理装置,将接收到的电荷信号转化为电压信号;接收所述CPU
12发送的放大倍数和滤波频带,根据所述放大倍数对所述电压信号进行放大,再根据所述滤波频带对放大后的电压信号进行滤波处理,并将滤波处理后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU 12;同时,对放大后的电压信号进行快速并行ADC(Analog-to-Digital Converter,模拟/数字转换器)转换,并将转换后得到的采样序列发送至所述CPU 12。
所述CPU 12,对所述脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收到的所述采样序列进行简化的快速傅氏变换FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述信号处理装置,并根据所述频率特性,设置滤波频带,发送至所述信号处理装置。
本发明实施例所述基于简化的快速傅氏变换FFT算法的涡街流量计,通过FFT运算获取压电传感器11输出信号的频率特性和幅值特性,并根据该频率特性和幅值特性实时调整所述信号处理装置的放大倍数和滤波参数,使得压电传感器11的输出信号的幅值在一个比较固定的范围内,且能够滤除外部噪声,从而获得良好的测量效果,有效提高了所述涡街流量计的信噪比,使得所述涡街流量计的可用量程比得到有效扩展。
参照图2所示,所述信号处理装置可以包括:前置电荷放大器13、程控放大器14、数控滤波器15、阈值比较器16、比较器阵列17。
所述前置电荷放大器13将接收到的电荷信号转化为电压信号,并对所述电压信号进行前置放大后输出至所述程控放大器14。
所述程控放大器14,根据接收自所述CPU 12的放大倍数对所述前置电荷放大器11输出的电压信号进行二次放大,使得二次放大后的电压信号满足所述阈值比较器16的要求,并将二次放大后的电压信号分别发送至所述数控滤波器15和所述比较器阵列17。
具体的,所述程控放大器14可以采用PGA(Programmable Gain Amplifier,可编程增益放大器)来实现。
所述数控滤波器15,根据接收自所述CPU 12的滤波频带,对接收到的所述二次放大后的电压信号进行滤波,并将滤波后的电压信号输出至所述阈值比较器16。
所述阈值比较器16将接收到的所述滤波后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU 12。
所述比较器阵列17,对接收到的所述二次放大后的电压信号进行快速并行ADC转换,并将转换得到的采样序列直接发送至CPU 12进行计算。
对应的,所述CPU 12,对所述阈值比较器16输出的脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收自所述比较器阵列17的采样序列进行简化的快速傅氏变换FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述程控放大器14,并根据所述频率特性,设置滤波频带,发送至所述数控滤波器15。
具体的,本发明实施例中,可以采用8比较器阵列,实现对所述放大后的电压信号的精度为3位的快速ADC转换。
需要说明的是,对所述快速ADC转换的采样速率和采样点数的设置可以依据以下原则:首先,根据所述涡街流量计的口径、被测量的流体的介质状态,确定所述压电传感器11输出信号的频率范围;然后,根据所述工作频率范围,设定所述快速ADC转换的采样速率。原则上,所述快速ADC转换的采样速率设置为不低于最大工作频率的2倍。
例如,对于口径为DN50(即为公称直径为50mm)的涡街流量计,当被测量的流体为气体时,其工作频率范围是42~1280Hz,则所述快速ADC变换的采样频率可以设置为2600Hz。所述快速ADC变换的采样点数为512点。按照周期图谱分析方法的误差公式,相应的可以计算得到最恶劣情况下,拟合误差也不大于11%。
再例如,同样是口径为DN50的涡街流量计,当被测量的流体为液体时,其工作频率范围是6.3~190Hz,则所述快速ADC变换的采样频率可以设置为400Hz。所述快速ADC变换的采样点数为512点。按照周期图谱分析方法的误差公式,相应的可以计算得到最恶劣情况下,拟合误差也不大于11%。
所述CPU 12,根据接收自所述比较器阵列17的采样序列,对该采样序列进行简化的FFT,计算得到所述采样序列的频率特性和幅值特性。
所述CPU 12对所述采样序列的幅值特性进行分析,得到经所述程控放大器14二次放大后的电压信号的最大幅值,根据上一个采样周期内的最大幅值,设置所述程控放大器14的放大倍数,来调整所述程控放大器14,其目的在于使所述经程控放大器14二次放大后的电压信号在930~1320mV之间,即对应的ADC采样值在5~7之间。
同时,所述CPU 12根据计算得到的所述采样序列的频率特性,设置所述数控滤波器15的滤波频带。例如,假设当前的频率为200Hz,则可以设置所述数控滤波器15的滤波频带为150~220Hz,实现对低频扰动和高频噪声进行抑制,从而提高信噪比。
本发明实施例中,通过对程控放大器14的放大倍数和数控滤波器15的滤波频带的动态调整,不仅使得经过调理后的信号可以满足所述阈值比较器16的需求,同时又能够控制程控放大器14的放大倍数在适当的范围内,而不会对噪声进行过放大,从而可以保证信号处理装置的信噪比,有效提高了所述涡街流量计的信噪比,使得所述涡街流量计的可用量程比得到有效扩展。
需要说明的是,本发明实施例中,对流体瞬时流量测量的精度只要取决于对所述阈值比较器16输出的脉冲序列测量的精度,而不是取决于FFT的计算精度。因此,采用简化的FFT运算,所述FFT运算只是需要给出大致的频率特性和幅值特性即可,并且对FFT运算的实时性要求也比较低,其存储量和计算量都大大降低。因此,本发明实施例的FFT运算对CPU要求比较低,可以应用低功耗的单片机实现,从而可以广泛应用于过程工业上的4~20mA应用。
以上对本发明所提供的一种基于简化的快速傅氏变换FFT算法的涡街流量计,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (3)

1.一种基于简化的快速傅氏变换FFT算法的涡街流量计,其特征在于,所述涡街流量计包括:压电传感器、信号处理装置、以及CPU;
所述压电传感器,检测流体的当前流量,输出电荷信号至所述信号处理装置;
所述信号处理装置,将接收到的电荷信号转化为电压信号;接收所述CPU发送的放大倍数和滤波频带,根据所述放大倍数对所述电压信号进行放大,再根据所述滤波频带对放大后的电压信号进行滤波处理,并将滤波处理后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU;同时,对放大后的电压信号进行快速并行ADC转换,并将转换后得到的采样序列发送至所述CPU;
所述CPU,对所述脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收到的所述采样序列进行简化的快速傅氏变换FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述信号处理装置,并根据所述频率特性,设置滤波频带,发送至所述信号处理装置;
所述信号处理装置包括:前置电荷放大器、程控放大器、数控滤波器、阈值比较器、以及比较器阵列;
所述前置电荷放大器,将接收到的电荷信号转化为电压信号,并对所述电压信号进行前置放大后输出至所述程控放大器;
所述程控放大器,根据接收自所述CPU的放大倍数对所述前置电荷放大器输出的电压信号进行二次放大,使得二次放大后的电压信号满足所述阈值比较器的要求,并将二次放大后的电压信号分别发送至所述数控滤波器和所述比较器阵列;
所述数控滤波器,根据接收自所述CPU的滤波频带对所述二次放大后的电压信号进行滤波,并将滤波后的电压信号输出至所述阈值比较器;
所述阈值比较器,将接收到的所述滤波后的电压信号与预设的参考值进行比较,根据比较结果输出相应的脉冲序列至所述CPU;
所述比较器阵列,对接收到的所述二次放大后的电压信号进行快速并行ADC转换,并将转换得到的采样序列直接发送至所述CPU。
2.根据权利要求1所述的基于简化的快速傅氏变换FFT算法的涡街流量计,其特征在于,所述CPU,对所述阈值比较器输出的脉冲序列进行采集,得到该脉冲序列的频率信号,并转化为流体当前的瞬时流量;同时,对接收自所述比较器阵列的采样序列进行简化的FFT,得到所述采样序列的频率特性和幅值特性,根据所述幅值特性,设置放大倍数,发送至所述程控放大器,并根据所述频率特性,设置滤波频带,发送至所述数控滤波器。
3.根据权利要求1所述的基于简化的快速傅氏变换FFT算法的涡街流量计,其特征在于,所述程控放大器为可编程增益放大器PGA。
CN 201110296161 2011-09-27 2011-09-27 一种基于简化的快速傅氏变换fft算法的涡街流量计 Expired - Fee Related CN102435234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110296161 CN102435234B (zh) 2011-09-27 2011-09-27 一种基于简化的快速傅氏变换fft算法的涡街流量计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110296161 CN102435234B (zh) 2011-09-27 2011-09-27 一种基于简化的快速傅氏变换fft算法的涡街流量计

Publications (2)

Publication Number Publication Date
CN102435234A CN102435234A (zh) 2012-05-02
CN102435234B true CN102435234B (zh) 2013-08-14

Family

ID=45983427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110296161 Expired - Fee Related CN102435234B (zh) 2011-09-27 2011-09-27 一种基于简化的快速傅氏变换fft算法的涡街流量计

Country Status (1)

Country Link
CN (1) CN102435234B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134181A1 (en) * 2019-12-30 2021-07-08 Goertek Technology Co., Ltd. Input apparatus and electronic device applying same
CN113029258A (zh) * 2021-02-05 2021-06-25 辽宁聚焦科技有限公司 基于涡街幅频特性抗干扰的涡街流量计数字信号处理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158594A (zh) * 2007-09-28 2008-04-09 合肥工业大学 分体式涡街流量计
CN101162162A (zh) * 2007-11-14 2008-04-16 合肥工业大学 低功耗两线制涡街流量计
CN101451864A (zh) * 2008-12-22 2009-06-10 合肥工业大学 改进的低功耗两线制涡街流量计
CN101701834A (zh) * 2009-11-10 2010-05-05 合肥工业大学 基于双传感器的抗强干扰的数字涡街流量计

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463241B2 (ja) * 1999-07-23 2003-11-05 保 五十嵐 渦流量計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158594A (zh) * 2007-09-28 2008-04-09 合肥工业大学 分体式涡街流量计
CN101162162A (zh) * 2007-11-14 2008-04-16 合肥工业大学 低功耗两线制涡街流量计
CN101451864A (zh) * 2008-12-22 2009-06-10 合肥工业大学 改进的低功耗两线制涡街流量计
CN101701834A (zh) * 2009-11-10 2010-05-05 合肥工业大学 基于双传感器的抗强干扰的数字涡街流量计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2001-33287A 2001.02.09

Also Published As

Publication number Publication date
CN102435234A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
CN107290564B (zh) 一种基于相位差的超声波流速测量方法
CN104991142B (zh) 一种信号分析仪、装置及处理方法
CN107687875A (zh) 一种测量含气导电液体流量的电磁式涡街流量计
CN103344825A (zh) 基于交流采样的电能计量系统
CN103399204A (zh) 一种基于Rife-Vincent(II)窗插值FFT的谐波与间谐波检测方法
CN105527056A (zh) 一种基于温度参考的压力补偿校准方法
CN104330120A (zh) 用于低能耗超声波流量表的流量检测方法及系统
CN207586312U (zh) 一种基于fpga的数字频率计
CN102435234B (zh) 一种基于简化的快速傅氏变换fft算法的涡街流量计
CN103412247A (zh) 一种环网柜局部放电监测系统
CN110186521B (zh) 基于小波脊特征提取的涡街湿气过读补偿与流量测量方法
CN103512592A (zh) 无线无源lc谐振传感器检测电路及相应的信息获取方法
Liang et al. Statistical modeling and signal reconstruction processing method of EMF for slurry flow measurement
CN102445608A (zh) 一种电能质量监测装置及校准方法
CN201429655Y (zh) 高压电器设备介质损耗测量仪
CN108680210B (zh) 一种基于电压电流微分的瞬态电磁流量变送器
CN102798488B (zh) 电磁式热能表
CN1687715A (zh) 一种涡街流量传感信号转换器
CN204165597U (zh) 用于流量检测系统的回波信号调理电路
CN200986450Y (zh) 差压式涡街质量流量测量信号处理装置
CN106124371A (zh) 一种基于静电法的气固两相流细度测量装置及测量方法
CN102169101A (zh) 一种电导探针持液率测量仪
JP2013257276A (ja) 電磁流量計
TWI438445B (zh) Measurement method of signal delay time
KR101340650B1 (ko) 초저전도도의 다중 유량대를 구분설정하여 유량을 측정하는 유량계

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20200927

CF01 Termination of patent right due to non-payment of annual fee