CN102420323B - Electrode composite material of lithium secondary battery and preparation method thereof - Google Patents

Electrode composite material of lithium secondary battery and preparation method thereof Download PDF

Info

Publication number
CN102420323B
CN102420323B CN201110051233.0A CN201110051233A CN102420323B CN 102420323 B CN102420323 B CN 102420323B CN 201110051233 A CN201110051233 A CN 201110051233A CN 102420323 B CN102420323 B CN 102420323B
Authority
CN
China
Prior art keywords
graphene
secondary battery
lithium secondary
lithium
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110051233.0A
Other languages
Chinese (zh)
Other versions
CN102420323A (en
Inventor
刘兆平
唐长林
周旭峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201110051233.0A priority Critical patent/CN102420323B/en
Publication of CN102420323A publication Critical patent/CN102420323A/en
Application granted granted Critical
Publication of CN102420323B publication Critical patent/CN102420323B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明实施例公开了一种锂二次电池的电极复合材料及其制备方法,电极复合材料包括:锂二次电池电极活性材料、石墨烯和导电材料。由于石墨烯具有较好的电子导电性,提高了电极复合材料的电子导电性。此外,本发明提供的电极复合材料中还包括具有较高的导电性的导电材料,从而进一步提高了电极复合材料的导电性。本发明提供的锂二次电池的电极复合材料采用锂二次电池电极活性材料、石墨烯和导电材料相复合的形式,具有良好的导电性。实验结果证明,本发明提供的电极复合材料的电子电导率可高达0.87S/cm,离子扩散系数可高达8.4×10-8cm2/S。

Figure 201110051233

The embodiment of the invention discloses an electrode composite material for a lithium secondary battery and a preparation method thereof. The electrode composite material includes: an electrode active material for a lithium secondary battery, graphene and a conductive material. Since graphene has better electronic conductivity, the electronic conductivity of the electrode composite material is improved. In addition, the electrode composite material provided by the present invention also includes a conductive material with higher conductivity, thereby further improving the conductivity of the electrode composite material. The electrode composite material of the lithium secondary battery provided by the invention adopts the composite form of the electrode active material of the lithium secondary battery, graphene and conductive material, and has good conductivity. Experimental results prove that the electronic conductivity of the electrode composite material provided by the invention can be as high as 0.87S/cm, and the ion diffusion coefficient can be as high as 8.4×10 -8 cm 2 /S.

Figure 201110051233

Description

锂二次电池的电极复合材料及其制备方法Electrode composite material for lithium secondary battery and preparation method thereof

技术领域 technical field

本发明涉及储能材料技术领域,更具体地说,涉及一种锂二次电池的电极复合材料及其制备方法。The invention relates to the technical field of energy storage materials, and more specifically, relates to an electrode composite material for a lithium secondary battery and a preparation method thereof.

背景技术 Background technique

近年来,随着资源的日益枯竭和全球气候变暖等问题的突显,绿色低碳的生活方式受到了倡导。其中,发展电动车及混合电动车来部分代替消耗化石燃料的内燃机汽车是解决能源危机及环境恶化的主要方法之一。驱动电源是影响电动车推广使用的关键部件,如今广泛使用的驱动电源包括铅酸电池,镍氢/镍镉、锂二次电池等。在各种驱动电源中,锂二次电池由于具有能量密度高,循环性好,自放电率低、使用寿命长和环境负担小等优点,得到了广泛的研究。In recent years, with the increasing depletion of resources and the emergence of issues such as global warming, green and low-carbon lifestyles have been advocated. Among them, the development of electric vehicles and hybrid electric vehicles to partially replace internal combustion engine vehicles that consume fossil fuels is one of the main methods to solve the energy crisis and environmental degradation. Driving power is a key component that affects the popularization and use of electric vehicles. Today, widely used driving power includes lead-acid batteries, nickel metal hydride/nickel cadmium, and lithium secondary batteries. Among various driving power sources, lithium secondary batteries have been extensively studied due to their advantages such as high energy density, good cycle performance, low self-discharge rate, long service life and low environmental burden.

锂二次电池的电极材料包括正极材料和负极材料。锂二次电池的负极材料包括石墨、金属单质、合金、半金属、金属氧化物、金属氮化物和金属硫化物等。石墨是目前锂二次电池中最常见的负极材料;金属及其合金,例如Li金属及其合金、Ni基材料和Zn基材料等,是锂二次电池中最早被使用的负极材料;半金属材料比石墨的比容量有了较大的提高,对提高二次电池的比能量具有重要的战略意义;金属氧化物、金属氮化物、金属硫化物可表示为MmXn,其中X为O,S,或N,M选自Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10,且M、X、m、n之间进行选择组合以保证MmXn呈电中性。但是,上述负极材料的导电性并不理想。Electrode materials for lithium secondary batteries include positive electrode materials and negative electrode materials. The negative electrode materials of lithium secondary batteries include graphite, simple metals, alloys, semimetals, metal oxides, metal nitrides, and metal sulfides. Graphite is currently the most common negative electrode material in lithium secondary batteries; metals and their alloys, such as Li metal and its alloys, Ni-based materials, and Zn-based materials, are the earliest negative electrode materials used in lithium secondary batteries; semi-metals Compared with graphite, the specific capacity of the material has been greatly improved, which has important strategic significance for improving the specific energy of the secondary battery; metal oxides, metal nitrides, and metal sulfides can be expressed as M m X n , where X is O , S, or N, M selected from Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, Ta, Mo , W, Ru, Ag, Sn, Si, Pb, In, Y, P, one or more of them, 0<m<10, 0<n<10, and choose among M, X, m, n combination to ensure that M m X n is electrically neutral. However, the conductivity of the above negative electrode materials is not ideal.

锂二次电池的正极材料包括含锂的金属氧化物和聚阴离子材料。常用的含锂金属氧化物包括钴酸锂、锰酸锂、富锂层状镍锰酸锂和镍酸锂等,其中钴酸锂的电导率为10-2S/cm、富锂层状镍锰酸锂的电导率为10-4S/cm、镍酸锂的电导率为10-3S/cm。但是,含锂的金属氧化物的在大电流充放电时,容易存在安全问题,此时需要采用一些具有较高导电性但电化学惰性的材料进行复合,从而改善使用性能。Cathode materials for lithium secondary batteries include lithium-containing metal oxides and polyanion materials. Commonly used lithium-containing metal oxides include lithium cobaltate, lithium manganate, lithium-rich layered nickel The electrical conductivity of lithium manganese oxide is 10 -4 S/cm, and the electrical conductivity of lithium nickelate is 10 -3 S/cm. However, lithium-containing metal oxides are prone to safety problems during high-current charging and discharging. At this time, some materials with high conductivity but electrochemical inertness need to be used for compounding to improve performance.

聚阴离子材料的通式为AaM′b′Mb(XcYd)eZf,其中,A为Li,且0<a<8;M为一种或多种金属,其中的至少一种金属能被氧化至较高价态,包括铁、铝、钛、钴、硼、铬、镍、镁、锆、镓、钒、锰和锌中的至少一种,且0<b≤5;M′可占据A或M的位置或同时占据两者位置,包括1~4价金属离子,如,碱金属离子、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn和Pb中的一种或几种,0≤b′≤5;在XcYd中,X选自P、As、Sb、Si、Ge、V、S中的一种或几种,Y选自S、O、N中的一种或几种,0<c≤5,0<d≤10;Z为可选项,包括OH,卤素、N、S中的一种或几种,0<f≤10;其中,对A,M,M′,X,Y,Z,a,b,b′,c,d,e,f进行选择以保持化合物呈电中性。由于聚阴离子材料中含有聚阴离子,因此具有很强的结构稳定性,安全性能较高,适合于作为动力电池的电极材料。但另一方面,聚阴离子和过渡金属离子及锂金属离子之间强的化学键合作用,导致该材料的导电性能较差,很难进行大电流充放电,因此需要通过各种方式如添加电子导电材料和/或离子导电材料来提高该材料的倍率性能。The general formula of the polyanion material is A a M'b' M b (X c Y d ) e Z f , wherein, A is Li, and 0<a<8; M is one or more metals, wherein at least A metal that can be oxidized to a higher valence state, including at least one of iron, aluminum, titanium, cobalt, boron, chromium, nickel, magnesium, zirconium, gallium, vanadium, manganese and zinc, and 0<b≤5;M' can occupy the position of A or M or both positions at the same time, including 1 to 4 valent metal ions, such as alkali metal ions, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, One or more of Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn and Pb, 0≤b'≤5; in X c Y d , X is selected from P, As, Sb, One or more of Si, Ge, V, S, Y selected from one or more of S, O, N, 0<c≤5, 0<d≤10; Z is optional, including OH , one or more of halogen, N, S, 0<f≤10; among them, for A, M, M', X, Y, Z, a, b, b', c, d, e, f Selection is made to keep the compound electrically neutral. Since the polyanion material contains polyanions, it has strong structural stability and high safety performance, and is suitable as an electrode material for a power battery. But on the other hand, the strong chemical bonding between polyanions and transition metal ions and lithium metal ions leads to poor electrical conductivity of the material, making it difficult to charge and discharge large currents. materials and/or ionically conductive materials to improve the rate capability of the material.

在公开号为CN101453020A的中国专利文献中,加拿大魁北克水电公司的M·阿尔蒙提出使用热解碳包覆聚阴离子材料,使材料的电导率达到10-8S/cm;在专利CN1652999A中,威伦斯技术公司的杰里米·巴克等人提出使用碳热还原制备聚阴离子材料,在一定程度上提高了聚阴离子材料的导电性,但是,该聚阴离子材料得导电性能并不理想,原因为制备聚阴离子材料时,为了避免聚阴离子材料将会发生相变,所使用的热处理温度通常为600~750℃,但是,当热处理温度为750度以下时,决定热解碳材料的导电性能的Sp2杂化的石墨化程度通常较低。在专利CN101345099A中,台湾立凯电能科技股份有限公司的廖本杰提出使用氧化物的共晶提高聚阴离子材料的导电性能,但是,单一的氧化物材料的导电性能仍然较低。In the Chinese patent literature with the publication number CN101453020A, M. Almon of the Canadian Hydro-Quebec Company proposed to use pyrolytic carbon to coat the polyanion material so that the electrical conductivity of the material can reach 10 -8 S/cm; in the patent CN1652999A, Wei Jeremy Barker of Lens Technology Co., Ltd. proposed to use carbothermal reduction to prepare polyanion materials, which improved the conductivity of polyanion materials to a certain extent. However, the conductivity of the polyanion materials was not ideal because of When preparing polyanion materials, in order to avoid phase transition of polyanion materials, the heat treatment temperature used is usually 600-750°C, but when the heat treatment temperature is below 750°C, the Sp that determines the electrical conductivity of pyrolytic carbon materials The degree of graphitization of 2 hybrids is usually lower. In the patent CN101345099A, Liao Benjie of Taiwan Likai Power Technology Co., Ltd. proposed to use the eutectic of oxides to improve the conductivity of polyanion materials, but the conductivity of a single oxide material is still low.

石墨烯材料是一类具有单层或少数几层sp2杂化的六方碳材料,多层结构中层间以π键形式结合,由于该类电子在费米能附近为狄拉克电子,有效质量为零,因此电导率达到106S/cm,是目前人类发现的导电性能最高的材料。在申请号为200910155316.7和申请号为201010226062.6的中国专利文献中,中科院宁波材料技术与工程研究所的刘兆平等提出使用石墨烯与聚阴离子材料复合,提高了该复合材料的导电性能。Graphene material is a kind of hexagonal carbon material with a single layer or a few layers of sp 2 hybridization. In the multilayer structure, the layers are combined in the form of π bonds. Since the electrons of this type are Dirac electrons near the Fermi energy, the effective mass It is zero, so the conductivity reaches 10 6 S/cm, which is the material with the highest conductivity found by human beings. In the Chinese patent documents with application number 200910155316.7 and application number 201010226062.6, Liu Zhaoping from the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences proposed to use graphene and polyanion materials to composite, which improved the electrical conductivity of the composite material.

本发明人考虑,提供一种锂二次电池的电极复合材料,该复合材料与上述锂二次电池正极材料和负极材料相比,能够进一步提高锂二次电池材料的导电性能。The present inventor considers to provide an electrode composite material for a lithium secondary battery, which can further improve the conductivity of the lithium secondary battery material compared with the above-mentioned positive electrode material and negative electrode material for the lithium secondary battery.

发明内容 Contents of the invention

有鉴于此,本发明提供要解决的技术问题在于提供一种锂二次电池的电极复合材料,该复合材料具有较高的导电性能。In view of this, the technical problem to be solved by the present invention is to provide an electrode composite material for a lithium secondary battery, and the composite material has relatively high electrical conductivity.

本发明提供一种锂二次电池的电极复合材料,包括:The invention provides an electrode composite material for a lithium secondary battery, comprising:

锂二次电池电极活性材料、石墨烯和导电材料,Lithium secondary battery electrode active materials, graphene and conductive materials,

所述导电材料为石墨、膨胀石墨、碳纳米管、碳纤维、活性碳、无定形碳、导电炭黑、有机物热解产生的导电碳材料、Ag、Cu、Pt、Au、过渡族金属、半金属、MmXn、共轭结构的导电高分子和电导率大于10-10S/cm的离子导电型材料中的一种或几种,The conductive material is graphite, expanded graphite, carbon nanotube, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, conductive carbon material produced by pyrolysis of organic matter, Ag, Cu, Pt, Au, transition metal, semi-metal , M m X n , conductive polymers with conjugated structures, and ion-conductive materials with conductivity greater than 10 -10 S/cm,

其中,X为O,S或N,M为Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10。Among them, X is O, S or N, M is Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, One or more of Ta, Mo, W, Ru, Ag, Sn, Si, Pb, In, Y, P, 0<m<10, 0<n<10.

优选的,所述离子导电型材料为:Preferably, the ion-conducting material is:

含锂的VI主族化合物、含锂的VII主族化合物、LiTi2(PO4)3、LiGe2(PO4)3、LipMrXq、含锂的VI主族化合物的衍生物、含锂的VII主族化合物的衍生物、LiTi2(PO4)3的衍生物、LiGe2(PO4)3的衍生物和LipMrXq的衍生物中的一种或几种,M为P、C、S中的一种或几种,X为O和/或S,p、q和r为正数。Lithium-containing VI main group compounds, lithium-containing VII main group compounds, LiTi 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , Li p M r X q , derivatives of lithium-containing VI main group compounds, One or more of lithium-containing VII main group compound derivatives, LiTi 2 (PO 4 ) 3 derivatives, LiGe 2 (PO 4 ) 3 derivatives and Lip M r X q derivatives, M is one or more of P, C, and S, X is O and/or S, and p, q, and r are positive numbers.

优选的,所述共轭结构的导电高分子为聚苯胺、聚乙炔、聚吡咯、聚噻吩或聚苯硫醚。Preferably, the conductive polymer with conjugated structure is polyaniline, polyacetylene, polypyrrole, polythiophene or polyphenylene sulfide.

优选的,所述锂二次电池电极活性材料、石墨烯和导电材料的质量比为80~99∶0.01~10∶0.01~10。Preferably, the mass ratio of the lithium secondary battery electrode active material, graphene and conductive material is 80-99:0.01-10:0.01-10.

优选的,所述锂二次电池电极活性材料为正极活性材料和/或负极活性材料,所述正极活性材料包括聚阴离子材料和含锂的金属氧化物,所述负极活性材料为中值充放电电位相对金属锂的电位差小于2V的活性材料。Preferably, the electrode active material of the lithium secondary battery is a positive electrode active material and/or a negative electrode active material, the positive electrode active material includes a polyanion material and a lithium-containing metal oxide, and the negative electrode active material is The active material whose potential difference with respect to lithium metal is less than 2V.

优选的,所述负极活性材料为石墨、金属单质、合金、半金属、金属氧化物、金属氮化物和金属硫化物中的一种及几种。Preferably, the negative electrode active material is one or more of graphite, simple metal, alloy, semi-metal, metal oxide, metal nitride and metal sulfide.

优选的,所述聚阴离子材料为磷酸铁锂,所述金属氧化物为锰基金属氧化物,所述负极材料为硅、锡、硅氧化物和/或锡氧化物。Preferably, the polyanion material is lithium iron phosphate, the metal oxide is manganese-based metal oxide, and the negative electrode material is silicon, tin, silicon oxide and/or tin oxide.

优选的,所述石墨烯为单层或层数介于1至20层之间、层内为碳原子以sp2杂化轨道组成六角形蜂巢状晶格、层间为碳原子以π键结合的薄片状碳材料;含氟、氮、氧、羰基、羧基和羟基中一种或几种的石墨烯材料和/或插层石墨烯。Preferably, the graphene is a single layer or the number of layers is between 1 and 20 layers, the carbon atoms in the layer form a hexagonal honeycomb lattice with sp2 hybrid orbitals, and the carbon atoms in the layer are bonded by π bonds flaky carbon material; graphene material and/or intercalated graphene containing one or more of fluorine, nitrogen, oxygen, carbonyl, carboxyl and hydroxyl.

优选的,所述锂二次电池电极活性材料、石墨烯和导电材料以混合、复合、共晶和/或物理接触的形式共存。Preferably, the lithium secondary battery electrode active material, graphene and conductive material coexist in the form of mixing, composite, eutectic and/or physical contact.

本发明还提供一种锂二次电池的电极复合材料的制备方法,包括:The present invention also provides a preparation method of an electrode composite material for a lithium secondary battery, comprising:

将锂二次电池电极活性材料或其前驱体、石墨烯、导电材料或其前驱体混合,然后在200~900℃、非氧化性气氛下热处理,得到锂二次电池的电极复合材料,The lithium secondary battery electrode active material or its precursor, graphene, conductive material or its precursor are mixed, and then heat-treated at 200-900 ° C in a non-oxidizing atmosphere to obtain an electrode composite material for a lithium secondary battery,

所述导电材料为石墨、膨胀石墨、碳纳米管、碳纤维、活性碳、无定形碳、导电炭黑、有机物热解产生的导电碳材料、Ag、Cu、Pt、Au、过渡族金属、半金属、MmXn、共轭结构的导电高分子和电导率大于10-10S/cm的离子导电型材料中的一种或几种,The conductive material is graphite, expanded graphite, carbon nanotube, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, conductive carbon material produced by pyrolysis of organic matter, Ag, Cu, Pt, Au, transition metal, semi-metal , M m X n , conductive polymers with conjugated structures, and ion-conductive materials with conductivity greater than 10 -10 S/cm,

其中,X为O,S或N,M为Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10。Among them, X is O, S or N, M is Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, One or more of Ta, Mo, W, Ru, Ag, Sn, Si, Pb, In, Y, P, 0<m<10, 0<n<10.

优选的,所述离子导电型材料为:Preferably, the ion-conducting material is:

含锂的VI主族化合物、含锂的VII主族化合物、LiTi2(PO4)3、LiGe2(PO4)3、LipMrXq、含锂的VI主族化合物的衍生物、含锂的VII主族化合物的衍生物、LiTi2(PO4)3的衍生物、LiGe2(PO4)3的衍生物和LipMrXq的衍生物中的一种或几种,M为P、C、S中的一种或几种,X为O和/或S,p、q和r为正数。Lithium-containing VI main group compounds, lithium-containing VII main group compounds, LiTi 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , Li p M r X q , derivatives of lithium-containing VI main group compounds, One or more of lithium-containing VII main group compound derivatives, LiTi 2 (PO 4 ) 3 derivatives, LiGe 2 (PO 4 ) 3 derivatives and Lip M r X q derivatives, M is one or more of P, C, and S, X is O and/or S, and p, q, and r are positive numbers.

优选的,所述锂二次电池电极活性材料、石墨烯和导电材料的质量比为80~99∶0.01~10∶0.01∶10。Preferably, the mass ratio of the lithium secondary battery electrode active material, graphene and conductive material is 80-99:0.01-10:0.01:10.

优选的,所述锂二次电池电极活性材料包括正极活性材料和/或负极活性材料,所述正极活性材料包括聚阴离子材料和含锂的金属氧化物,所述负极材料为中值充放电电位相对金属锂的电位差小于2V的活性材料。Preferably, the electrode active material of the lithium secondary battery includes a positive electrode active material and/or a negative electrode active material, the positive electrode active material includes a polyanion material and a lithium-containing metal oxide, and the negative electrode material has a median charge and discharge potential An active material with a potential difference of less than 2V relative to metallic lithium.

优选的,所述石墨烯为单层或层数介于1至20层之间、层内为碳原子以sp2杂化轨道组成六角形蜂巢状晶格,层间为碳原子以π键结合的薄片状碳材料;含氟、氮、氧、羰基、羧基和羟基中一种或几种的石墨烯材料和/或插层石墨烯。Preferably, the graphene is a single layer or the number of layers is between 1 and 20 layers, and the carbon atoms in the layer form a hexagonal honeycomb lattice with sp2 hybrid orbitals, and the carbon atoms between the layers are bonded by π bonds flaky carbon material; graphene material and/or intercalated graphene containing one or more of fluorine, nitrogen, oxygen, carbonyl, carboxyl and hydroxyl.

优选的,所述热处理时间为0.2~50小时。Preferably, the heat treatment time is 0.2-50 hours.

从上述的技术方案可以看出,本发明提供一种锂二次电池的电极复合材料及其制备方法,所述电极复合材料包括:锂二次电池电极活性材料、石墨烯和导电材料。石墨烯和导电材料分布在活性材料表面和活性材料颗粒间,形成了所述锂二次电池的电极复合材料。由于石墨烯具有较好的电子导电性,因此,提高了电极复合材料的电子导电性。此外,本发明提供的电极复合材料中还包括具有较高的导电性的导电材料,从而进一步提高了电极复合材料的导电性。因此,本发明提供的锂二次电池的电极复合材料采用锂二次电池电极活性材料、石墨烯和导电材料相复合的形式,具有良好的导电性。实验结果证明,本发明提供的电极复合材料的电子电导率可高达0.87S/cm,离子扩散系数可高达8.4×10-8cm2/S。It can be seen from the above technical solutions that the present invention provides an electrode composite material for a lithium secondary battery and a preparation method thereof. The electrode composite material includes: an electrode active material for a lithium secondary battery, graphene and a conductive material. Graphene and conductive material are distributed on the surface of the active material and between the particles of the active material to form the electrode composite material of the lithium secondary battery. Since graphene has better electronic conductivity, the electronic conductivity of the electrode composite material is improved. In addition, the electrode composite material provided by the present invention also includes a conductive material with higher conductivity, thereby further improving the conductivity of the electrode composite material. Therefore, the electrode composite material of the lithium secondary battery provided by the present invention adopts the composite form of the electrode active material of the lithium secondary battery, graphene and conductive material, and has good conductivity. Experimental results prove that the electronic conductivity of the electrode composite material provided by the invention can be as high as 0.87S/cm, and the ion diffusion coefficient can be as high as 8.4×10 -8 cm 2 /S.

附图说明 Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为LiFePO4、本发明实施例2制备的LiFePO4/石墨烯/C和LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的XRD图;Figure 1 is the XRD patterns of LiFePO 4 , LiFePO 4 /graphene/C and LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 prepared in Example 2 of the present invention;

图2为本发明实施例2制备的LiFePO4/石墨烯/C的SEM照片;Fig. 2 is the SEM photo of LiFePO 4 /graphene/C prepared in Example 2 of the present invention;

图3为本发明实施例2制备的LiFePO4/石墨烯/C的SEM照片;Fig. 3 is the SEM photo of LiFePO 4 /graphene/C prepared in Example 2 of the present invention;

图4为本发明实施例制备的LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的TEM照片;Fig. 4 is the TEM photo of LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 prepared in the embodiment of the present invention;

图5为LiFePO4和本发明实施例2制备的LiFePO4/石墨烯/C的I-V特性图;Fig. 5 is LiFePO 4 and the LiFePO 4 /graphene/C IV characteristic figure prepared by the embodiment 2 of the present invention;

图6为LiFePO4、LiFePO4/石墨烯、本发明实施例2制备的LiFePO4/石墨烯/C和本发明实施例制备的LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的充放电性能曲线;Fig. 6 is LiFePO 4 , LiFePO 4 /graphene, LiFePO 4 /graphene/C prepared in Example 2 of the present invention and LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 prepared in Example 2 of the present invention Charge and discharge performance curve;

图7为LiMn2O4和LiMn2O4/石墨烯的XRD图;Figure 7 is the XRD pattern of LiMn 2 O 4 and LiMn 2 O 4 /graphene;

图8为LiMn2O4和本发明实施例制备的LiAl0.02Mn1.98O4/石墨烯/Li3PO4的SEM照片;Fig. 8 is the SEM photo of LiMn 2 O 4 and LiAl 0.02 Mn 1.98 O 4 /graphene/Li 3 PO 4 prepared by the embodiment of the present invention;

图9为LiMn2O4和本发明实施例制备的LiAl0.02Mn1.98O4/石墨烯/Li3PO4的SEM照片;Fig. 9 is the SEM photo of LiMn 2 O 4 and LiAl 0.02 Mn 1.98 O 4 /graphene/Li 3 PO 4 prepared by the embodiment of the present invention;

图10为LiMn2O4和本发明实施例制备的LiAl0.02Mn1.98O4/石墨烯/Li3PO4的充放电曲线;Figure 10 is the charge and discharge curves of LiMn 2 O 4 and LiAl 0.02 Mn 1.98 O 4 /graphene/Li 3 PO 4 prepared by the embodiment of the present invention;

图11为本发明实施例20制备的Si/石墨烯/C的SEM照片;Fig. 11 is the SEM photo of Si/graphene/C prepared by the embodiment of the present invention 20;

图12为本发明实施例20制备的Si/石墨烯/C的SEM照片;Fig. 12 is the SEM photo of the Si/graphene/C prepared by the embodiment of the present invention 20;

图13为本发明实施例20制备的Si/石墨烯/C的SEM照片;Fig. 13 is the SEM photo of the Si/graphene/C prepared by the embodiment of the present invention 20;

图14为本发明实施例20制备的Si/石墨烯/C的SEM照片;Fig. 14 is the SEM photo of Si/graphene/C prepared by the embodiment of the present invention 20;

图15为Si/C和本发明实施例20制备的Si/石墨烯/C的充放电曲线。Figure 15 is the charge and discharge curves of Si/C and Si/graphene/C prepared in Example 20 of the present invention.

具体实施方式 Detailed ways

下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following clearly and completely describes the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

本发明实施例公开了一种锂二次电池的电极复合材料,包括:The embodiment of the present invention discloses an electrode composite material for a lithium secondary battery, comprising:

锂二次电池电极活性材料、石墨烯和导电材料,Lithium secondary battery electrode active materials, graphene and conductive materials,

所述导电材料为石墨、膨胀石墨、碳纳米管、碳纤维、活性碳、无定形碳、导电炭黑、导电碳材料、Ag、Cu、Pt、Au、Ag的氧化物、Cu的氧化物、Pt的氧化物、Au的氧化物、Ag的硫化物、Cu的硫化物、Pt的硫化物、Au的硫化物、Ag的氮化物、Cu的氮化物、Pt的氮化物、Au的氮化物、有机导电材料和电导率大于10-8S/cm的离子导电型材料中的一种或几种。The conductive material is graphite, expanded graphite, carbon nanotube, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, conductive carbon material, Ag, Cu, Pt, Au, Ag oxide, Cu oxide, Pt Oxides of Au, oxides of Au, sulfides of Ag, sulfides of Cu, sulfides of Pt, sulfides of Au, nitrides of Ag, nitrides of Cu, nitrides of Pt, nitrides of Au, organic One or more of conductive materials and ion-conductive materials with conductivity greater than 10 -8 S/cm.

所述锂二次电池电极活性材料优选包括正极活性材料和/或负极活性材料,所述正极活性材料包括聚阴离子材料和含锂的金属氧化物,所述负极活性材料优选为中值充放电电位相对金属锂的电位差小于2V的活性材料。The electrode active material of the lithium secondary battery preferably includes a positive electrode active material and/or a negative electrode active material, the positive electrode active material includes a polyanion material and a lithium-containing metal oxide, and the negative electrode active material preferably has a median charge and discharge potential An active material with a potential difference of less than 2V relative to metallic lithium.

本发明中,所述聚阴离子材料为电化学活性材料,通式为AaM′b′Mb(XcYd)eZf,其中,A为Li,且0<a<8;M优选为一种或多种金属,其中的至少一种金属能被氧化至较高价态,包括铁、铝、钛、钴、硼、铬、镍、镁、锆、镓、钒、锰和锌中的至少一种,0<b≤5;M′可占据A或M的位置或同时占据两者位置,优选包括1~4价金属离子,如,碱金属离子、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Pb中的一种或几种,0≤b′≤5;XcYd中,其中X选自P、As、Sb、Si、Ge、V、S中的一种或几种,Y选自S、O、N中的一种或几种,0<c≤5,0<d≤10;Z为可选项,包括OH,卤素、N、S中的一种或几种,0<f≤10;其中,对A,M,M′,X,Y,Z,a,b,b′,c,d,e,f进行选择以保持化合物呈电中性。In the present invention, the polyanion material is an electrochemically active material, the general formula is A a M'b' M b (X c Y d ) e Z f , wherein, A is Li, and 0<a<8; M Preferably one or more metals, at least one of which can be oxidized to a higher valence state, including iron, aluminum, titanium, cobalt, boron, chromium, nickel, magnesium, zirconium, gallium, vanadium, manganese and zinc At least one of, 0<b≤5;M' can occupy the position of A or M or both positions, preferably including 1 to 4 valent metal ions, such as alkali metal ions, Ti, Sc, Ge, V, One or more of Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, Pb, 0≤b'≤5; X c Y d , wherein X is selected from one or more of P, As, Sb, Si, Ge, V, S, Y is selected from one or more of S, O, N, 0<c≤5,0 <d≤10; Z is optional, including one or more of OH, halogen, N, S, 0<f≤10; among them, for A, M, M', X, Y, Z, a, b, b', c, d, e, f are selected to keep the compound electrically neutral.

上述含锂的金属氧化物具有通式为AaMbM′cOdZfThe above lithium-containing metal oxides have the general formula A a M b M′ c O d Z f ,

其中a,b,c,d不为零,为1~10之间的数值,A优选包括Li,Na,K、Mg、Ca、Al等碱金属中的一种或几种;M优选包括过渡金属,更优选为锰、铁、钴、镍、钒、钼、钛、锆中的一种或几种;M′可占据A或M的位置或同时占据两者位置,优选为1~4价金属离子,更优选为碱金属离子、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Pb等的一种或几种,0≤b′≤5;Z优选为OH,卤素、N、S中的一种或几种,所述锂的金属氧化物呈电中性。Where a, b, c, d are not zero, and are values between 1 and 10, A preferably includes one or more of alkali metals such as Li, Na, K, Mg, Ca, Al, etc.; M preferably includes transition Metal, more preferably one or more of manganese, iron, cobalt, nickel, vanadium, molybdenum, titanium, zirconium; M' can occupy the A or M position or both positions, preferably 1 to 4 valence Metal ions, more preferably alkali metal ions, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, Pb, etc. One or more of Z, 0≤b'≤5; Z is preferably OH, one or more of halogen, N, and S, and the metal oxide of lithium is electrically neutral.

本发明中所述锂的金属氧化物更优选为锂化的钼氧化物,锂化的钒氧化物,锂化的锰氧化物,锂化的钴氧化物,锂化的钛氧化物,锂化的镍氧化物及其被掺杂和改性的衍生物。The metal oxide of lithium described in the present invention is more preferably lithiated molybdenum oxide, lithiated vanadium oxide, lithiated manganese oxide, lithiated cobalt oxide, lithiated titanium oxide, lithiated Nickel oxide and its doped and modified derivatives.

上述负极活性材料优选为中值充放电电位相对金属锂的电位差小于2V的活性材料,优选为石墨、金属单质、合金、半金属、金属氧化物、金属氮化物和金属硫化物中的一种及几种,具体包括金属锂、碳材料、能与锂形成合金的材料、金属氧化物、金属硫化物等。所述的碳材料可以为石墨、热解碳、焦炭、活性炭、碳纤维及高温烧结的有机高分子化合物等。所述的能与锂形成合金的材料可以为金属元素,例如Mg、B、Al、Ga、In、Si、Sn、Pb、Sb、Bi、Cd、Ag、Zn、Hf、Zr、Y等,含Si和Sn的合金,例如SiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2和ZnSi2等;及其他活性材料,如SiC、Si3N4、Si2N2O、Ge2N2O、SiOx(0<x≤2)、SnOx(0<x≤2)、LiSiO和LiSnO等。所述金属氧化物、金属硫化物可表示为MmXn(X=O,S,或N),包括可表示为MmXn(X=O,S,或N),其中M选自Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10,且M、X、m、n之间进行选择组合以保证MmXn呈电中性,尤其包括SnO、SnO2、SiO2基材料、氧化物和金属的复合物,如Si/SiO2复合物、Sn/SnO、Sn/SnO2The above-mentioned negative electrode active material is preferably an active material with a median charge-discharge potential relative to metal lithium with a potential difference less than 2V, preferably one of graphite, metal element, alloy, semimetal, metal oxide, metal nitride and metal sulfide And several kinds, specifically including metal lithium, carbon materials, materials that can form alloys with lithium, metal oxides, metal sulfides, etc. The carbon material can be graphite, pyrolytic carbon, coke, activated carbon, carbon fiber, high-temperature sintered organic polymer compound, and the like. The material capable of forming an alloy with lithium can be a metal element, such as Mg, B, Al, Ga, In, Si, Sn, Pb, Sb, Bi, Cd, Ag, Zn, Hf, Zr, Y, etc., containing Alloys of Si and Sn, such as SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 and ZnSi 2 ; and other active materials such as SiC, Si 3 N 4 , Si 2 N 2 O, Ge 2 N 2 O, SiO x (0<x ≤2), SnO x (0<x≤2), LiSiO and LiSnO, etc. The metal oxide and metal sulfide can be expressed as M m X n (X=O, S, or N), including M m X n (X=O, S, or N), wherein M is selected from Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, One or more of Si, Pb, In, Y, P, 0<m<10, 0<n<10, and select and combine M, X, m, n to ensure that M m X n is electrically Neutral, especially including SnO, SnO 2 , SiO 2 -based materials, composites of oxides and metals, such as Si/SiO 2 composites, Sn/SnO, Sn/SnO 2 .

石墨烯是一类具有单层或少数几层sp2杂化的六方碳材料,多层结构中层间以π键形式结合,由于该类电子在费米能附近为狄拉克电子,有效质量为零,因此电导率达到106S/cm,是目前人类发现的导电性能最高的材料。所述的石墨烯是单层或层数为1至20层之间,层内为碳原子以Sp2杂化轨道组成六角形蜂巢状晶格,层间以π键结合的薄片状碳材料。此外,本发明还包括了含氟、氮、氧、羰基、羧基、羟基中一种或几种的石墨烯材料和插层石墨烯等,以及包含不可避免的缺陷的石墨烯材料。Graphene is a kind of hexagonal carbon material with a single layer or a few layers of sp 2 hybridization. In the multilayer structure, the interlayers are combined in the form of π bonds. Since the electrons of this type are Dirac electrons near the Fermi energy, the effective mass is Zero, so the conductivity reaches 10 6 S/cm, which is the material with the highest conductivity found by human beings. The graphene is a single layer or between 1 and 20 layers, in which carbon atoms form a hexagonal honeycomb lattice with Sp 2 hybrid orbitals in the layer, and a flaky carbon material bonded by π bonds between layers. In addition, the present invention also includes graphene materials and intercalated graphene containing one or more of fluorine, nitrogen, oxygen, carbonyl, carboxyl, and hydroxyl groups, as well as graphene materials containing inevitable defects.

本发明中所述导电材料优选为除石墨烯以外的电子导电型或离子导电型材料,以及电子导电性和离子导电性均较好的材料。所述电子导电材料具体为石墨、膨胀石墨、碳纳米管、碳纤维、活性碳、无定形碳、导电炭黑、有机物热解产生的导电碳材料、Ag、Cu、Pt、Au、过渡族金属、半金属、MmXn、共轭结构的导电高分子和电导率大于10-10S/cm的离子导电型材料中的一种或几种,其中,X为O,S或N,M为Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10,且M、X、m、n之间进行选择组合以保证MmXn呈电中性。所述半金属优选为Si或Ge,所述共轭结构的导电高分子优选为聚苯胺、聚乙炔、聚吡咯、聚噻吩和聚苯硫醚中的一种或几种。The conductive material in the present invention is preferably an electron-conductive or ion-conductive material other than graphene, and a material with good electronic conductivity and ion conductivity. The electronically conductive material is specifically graphite, expanded graphite, carbon nanotubes, carbon fibers, activated carbon, amorphous carbon, conductive carbon black, conductive carbon materials produced by pyrolysis of organic matter, Ag, Cu, Pt, Au, transition metals, One or more of semi-metals, M m X n , conductive polymers with conjugated structures, and ion-conductive materials with conductivity greater than 10 -10 S/cm, where X is O, S or N, and M is Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, One or more of Si, Pb, In, Y, P, 0<m<10, 0<n<10, and select and combine M, X, m, n to ensure that M m X n is electrically neutral. The semimetal is preferably Si or Ge, and the conductive polymer with a conjugated structure is preferably one or more of polyaniline, polyacetylene, polypyrrole, polythiophene and polyphenylene sulfide.

所述离子导电型材料为含锂的VI主族化合物、含锂的VII主族化合物、LiTi2(PO4)3、LiGe2(PO4)3、LipMrXq、含锂的VI主族化合物的衍生物、含锂的VII主族化合物的衍生物、LiTi2(PO4)3的衍生物、LiGe2(PO4)3的衍生物和LipMrXq的衍生物中的一种或几种,M为P、C、S中的一种或几种,X为O和/或S,p、q和r为正数。The ion-conductive material is lithium-containing VI main group compound, lithium-containing VII main group compound, LiTi 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , Li p M r X q , lithium-containing VI Among the derivatives of main group compounds, derivatives of lithium-containing VII main group compounds, derivatives of LiTi 2 (PO 4 ) 3 , derivatives of LiGe 2 (PO 4 ) 3 and derivatives of Lip M r X q One or more of them, M is one or more of P, C, and S, X is O and/or S, and p, q, and r are positive numbers.

所述锂二次电池电极活性材料、石墨烯和导电材料的质量比优选为80~99∶0.01~10∶0.01~10,更优选为85~99∶0.1~5∶0.1~10,最优选为90~99∶1~3∶1~5。The mass ratio of the lithium secondary battery electrode active material, graphene and conductive material is preferably 80-99: 0.01-10: 0.01-10, more preferably 85-99: 0.1-5: 0.1-10, most preferably 90-99: 1-3: 1-5.

本发明中所述石墨烯和导电材料通过均匀混合、复合、包裹、共晶、物理接触的一种或几种接触方式共存形式分布在活性材料表面和活性材料颗粒间。由于石墨烯具有较好的电子导电性,因此,提高了电极复合材料的电子导电性。此外,本发明提供的电极复合材料中还包括具有较高的导电性的导电材料,从而进一步提高了电极复合材料的导电性。In the present invention, the graphene and the conductive material are distributed on the surface of the active material and among the particles of the active material through one or more contact modes of uniform mixing, compounding, encapsulation, eutectic, and physical contact. Since graphene has better electronic conductivity, the electronic conductivity of the electrode composite material is improved. In addition, the electrode composite material provided by the present invention also includes a conductive material with higher conductivity, thereby further improving the conductivity of the electrode composite material.

本发明还提供一种锂二次电池的电极复合材料的制备方法,包括:The present invention also provides a preparation method of an electrode composite material for a lithium secondary battery, comprising:

将锂二次电池电极活性材料或其前驱体、石墨烯、导电材料或其前驱体混合,然后在200~900℃、非氧化性气氛下热处理,得到锂二次电池的电极复合材料,The lithium secondary battery electrode active material or its precursor, graphene, conductive material or its precursor are mixed, and then heat-treated at 200-900 ° C in a non-oxidizing atmosphere to obtain an electrode composite material for a lithium secondary battery,

所述导电材料为石墨、膨胀石墨、碳纳米管、碳纤维、活性碳、无定形碳、导电炭黑、有机物热解产生的导电碳材料、Ag、Cu、Pt、Au、过渡族金属、半金属、MmXn、共轭结构的导电高分子和电导率大于10-10S/cm的离子导电型材料中的一种或几种,The conductive material is graphite, expanded graphite, carbon nanotube, carbon fiber, activated carbon, amorphous carbon, conductive carbon black, conductive carbon material produced by pyrolysis of organic matter, Ag, Cu, Pt, Au, transition metal, semi-metal , M m X n , conductive polymers with conjugated structures, and ion-conductive materials with conductivity greater than 10 -10 S/cm,

其中,X为O,S或N,M为Li,Na,K、Mg、Ca、AL、Ti、Sc、Ge、V、Cr、Zr、Co、Ni、Zn、Cu、Mn、Hf、Nb、Ta、Mo、W、Ru、Ag、Sn、Si、Pb、In、Y、P中的一种或几种,0<m<10,0<n<10。Among them, X is O, S or N, M is Li, Na, K, Mg, Ca, AL, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, Mn, Hf, Nb, One or more of Ta, Mo, W, Ru, Ag, Sn, Si, Pb, In, Y, P, 0<m<10, 0<n<10.

本发明所述锂二次电池电极活性材料前驱体化合物和导电材料前驱体化合物为本领域中公知的前驱体化合物。The lithium secondary battery electrode active material precursor compound and the conductive material precursor compound described in the present invention are precursor compounds known in the art.

所述锂二次电池电极活性材料包括正极活性材料和/或负极活性材料,所述正极活性材料包括聚阴离子材料和含锂的金属氧化物,所述负极材料为中值充放电电位相对金属锂的电位差小于2V的活性材料。The electrode active material of the lithium secondary battery includes a positive electrode active material and/or a negative electrode active material, the positive electrode active material includes a polyanion material and a lithium-containing metal oxide, and the negative electrode material is a metal lithium with a median charge and discharge potential Active material with a potential difference of less than 2V.

所述离子导电型材料为含锂的VI主族化合物、含锂的VII主族化合物、LiTi2(PO4)3、LiGe2(PO4)3、LipMrXq、含锂的VI主族化合物的衍生物、含锂的VII主族化合物的衍生物、LiTi2(PO4)3的衍生物、LiGe2(PO4)3的衍生物和LipMrXq的衍生物中的一种或几种,M为P、C、S中的一种或几种,X为O和/或S,p、q和r为正数。The ion-conductive material is lithium-containing VI main group compound, lithium-containing VII main group compound, LiTi 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , Li p M r X q , lithium-containing VI Among the derivatives of main group compounds, derivatives of lithium-containing VII main group compounds, derivatives of LiTi 2 (PO 4 ) 3 , derivatives of LiGe 2 (PO 4 ) 3 and derivatives of Lip M r X q One or more of them, M is one or more of P, C, and S, X is O and/or S, and p, q, and r are positive numbers.

所述锂二次电池电极活性材料、石墨烯和导电材料的质量比优选为80~99∶0.01~10∶0.01~10,更优选为85~99∶0.1~5∶0.1~10,最优选为90~99∶1~3∶1~5。The mass ratio of the lithium secondary battery electrode active material, graphene and conductive material is preferably 80-99: 0.01-10: 0.01-10, more preferably 85-99: 0.1-5: 0.1-10, most preferably 90-99: 1-3: 1-5.

所述非氧气气氛优选为氩气、氮气、氢气、一氧化碳和二氧化碳中的一种或几种。所述热处理温度优选为300~800℃,更优选为400~700℃。所述热处理时间优选为0.2~50小时,更优选为5~40小时,更优选为10~30小时。The non-oxygen atmosphere is preferably one or more of argon, nitrogen, hydrogen, carbon monoxide and carbon dioxide. The heat treatment temperature is preferably 300-800°C, more preferably 400-700°C. The heat treatment time is preferably 0.2-50 hours, more preferably 5-40 hours, more preferably 10-30 hours.

本发明所述的混合方式包括简单的物理混合,例如球磨、研磨、超细磨、搅拌混合等,所述混合方式还优选包括分子级混合,例如溶解后混合等。The mixing method described in the present invention includes simple physical mixing, such as ball milling, grinding, ultrafine grinding, stirring and mixing, etc., and preferably also includes molecular level mixing, such as mixing after dissolution.

本发明提供的锂二次电池的电极复合材料的制备方法可以控制制备得到的电池的电极复合材料的形状,例如优选采用喷雾干燥、沉淀、共沉淀、团聚和/或造粒的方法制备。在采用喷雾干燥时,制备得到的锂二次电池的电极复合材料的形状为球形团聚体,其尺寸为0.5~50微米,每个团聚体由更小的颗粒组成。The preparation method of the electrode composite material of the lithium secondary battery provided by the present invention can control the shape of the electrode composite material of the prepared battery, for example, it is preferably prepared by spray drying, precipitation, co-precipitation, agglomeration and/or granulation. When spray drying is adopted, the shape of the electrode composite material of the prepared lithium secondary battery is a spherical aggregate with a size of 0.5-50 microns, and each aggregate is composed of smaller particles.

在制备所述锂二次电池的电极复合材料的过程中优选在促进固体粉末平衡的反应器中进行,例如选自如下反应器:流化床、转炉、推板炉、皮带带动的转炉,所述反应器能够控制气体气氛的组成和流动。In the process of preparing the electrode composite material of the lithium secondary battery, it is preferably carried out in a reactor that promotes the balance of solid powder, for example, selected from the following reactors: fluidized bed, converter, pusher furnace, belt-driven converter, so The reactor is capable of controlling the composition and flow of the gas atmosphere.

本发明的导电材料为碳材料,尤其是在颗粒表面较均匀分布的碳材料,优选采用有机物热解在活性材料表面原位产生的碳材料。其中原位产生的热解碳材料可以提高活性材料颗粒表面的导电性,同时石墨烯用于提高颗粒之间的导电性,因此采用石墨烯和热解碳材料两种导电材料,其导电功效可优于其中任意一种导电材料。The conductive material of the present invention is a carbon material, especially a carbon material uniformly distributed on the particle surface, preferably a carbon material produced in situ on the surface of the active material by pyrolysis of organic matter. Among them, the pyrolytic carbon material generated in situ can improve the conductivity of the surface of the active material particles, and graphene is used to improve the conductivity between the particles. Therefore, two conductive materials, graphene and pyrolytic carbon material, are used. Superior to any of the conductive materials.

在另一种实施方式中,本发明的导电材料为电导率大于10-10S/cm的离子导电型材料。由于离子导电型材料具有提高活性材料界面的离子导电性的作用,同时石墨烯用于提高颗粒之间的导电性,因此由锂二次电池电极活性材料、石墨烯和离子导电型材料形成的锂二次电池的电极复合材料的导电性良好。In another embodiment, the conductive material of the present invention is an ion-conductive material with a conductivity greater than 10 −10 S/cm. Since the ion-conductive material has the effect of improving the ion conductivity of the active material interface, and graphene is used to improve the conductivity between the particles, the lithium secondary battery electrode active material, graphene and ion-conductive material formed lithium The electrode composite material of the secondary battery has good electrical conductivity.

本发明中所述锂二次电池电极活性材料、导电材料从市场上采购,也可以采用自行制备的方式。电极活性材料、导电材料的制备可以采用本领域技术人员熟知的方法进行制备。The lithium secondary battery electrode active materials and conductive materials described in the present invention are purchased from the market, or can be prepared by themselves. The preparation of electrode active materials and conductive materials can be carried out by methods well known to those skilled in the art.

本发明所述锂二次电池电极活性材料中的聚阴离子化合物的制备方法优选采用如下方法:The preparation method of the polyanion compound in the lithium secondary battery electrode active material of the present invention preferably adopts the following method:

(1)选取含变价的过渡金属离子化合物、锂盐和聚阴离子盐原料,按化学计量比称取后置于丙酮分散剂中,使固含量达10%-70%;(1) Select transition metal ion compound, lithium salt and polyanion salt raw material containing variable price, place in acetone dispersant after taking by stoichiometric ratio, make solid content reach 10%-70%;

(2)在高能球磨机中混合1~20小时至均匀后,干燥;(2) Mix in a high-energy ball mill for 1 to 20 hours until uniform, then dry;

(3)将(2)中混合物置于气氛烧结炉中,于非氧化性气氛保护下在200~800℃下处理1h~48小时后冷却至室温,得到所需的聚阴离子材料;(3) Put the mixture in (2) in an atmosphere sintering furnace, treat it at 200-800°C for 1h-48 hours under the protection of a non-oxidizing atmosphere, and then cool it to room temperature to obtain the required polyanion material;

(4)测试该材料电化学性能和电导率。(4) Test the electrochemical performance and conductivity of the material.

所述锂盐优选包括氢氧化锂、碳酸锂、醋酸锂、硝酸锂、硫酸锂、氯化锂、溴化锂、氟化锂、氮化锂、含聚阴离子的锂盐的一种或几种的组合。过渡金属离子化合物包括过渡金属氧化物、硫酸盐、磷酸盐、硝酸盐、草酸盐、醋酸盐、柠檬酸盐、含聚阴离子的金属盐中的一种或几种的组合。聚阴离子盐优选包括含聚阴离子的酸、铵盐、酯类、烃类、含聚阴离子的金属盐的一种或几种的组合。其中锂、含变价的金属离子M、聚阴离子的摩尔比为化学式中所标定的含量,浮动范围为计量比的80%至120%;The lithium salt preferably includes one or more combinations of lithium hydroxide, lithium carbonate, lithium acetate, lithium nitrate, lithium sulfate, lithium chloride, lithium bromide, lithium fluoride, lithium nitride, lithium salts containing polyanions . The transition metal ion compound includes one or a combination of transition metal oxides, sulfates, phosphates, nitrates, oxalates, acetates, citrates, and metal salts containing polyanions. The polyanion salt preferably includes one or a combination of polyanion-containing acids, ammonium salts, esters, hydrocarbons, and polyanion-containing metal salts. Wherein the molar ratio of lithium, the metal ion M containing variable valence, and the polyanion is the content demarcated in the chemical formula, and the floating range is 80% to 120% of the stoichiometric ratio;

本发明采用的分散剂还可以为水、醇类、酮类、醚类、酸类、高分子溶液等的一种或几种,溶剂质量为其他反应物前驱体之和的0.3~10倍,固含量为5~60%,优选20%~40%。喷雾干燥采用直接加热干燥或真空抽滤的手段进行。上述热处理时间可在200~1000℃间,加热时间优选为1~48小时,优选温度为600~800℃,优选加热时间为3~15小时。The dispersant used in the present invention can also be one or more of water, alcohols, ketones, ethers, acids, polymer solutions, etc., and the solvent quality is 0.3 to 10 times the sum of other reactant precursors, The solid content is 5-60%, preferably 20%-40%. Spray drying is carried out by means of direct heating drying or vacuum filtration. The above heat treatment time can be between 200-1000°C, the heating time is preferably 1-48 hours, the preferred temperature is 600-800°C, and the preferred heating time is 3-15 hours.

本发明所述锂二次电池电极活性材料中金属氧化物,以LiMn2O4为例的制备方法如下:The preparation method of the metal oxide in the electrode active material of the lithium secondary battery described in the present invention, taking LiMn 2 O 4 as an example is as follows:

(1)选取二氧化锰、碳酸锂原料,按摩尔比Mn∶Li为2∶1.05的比例称取;(1) choose manganese dioxide, Lithium Retard raw material, take by weighing by molar ratio Mn: Li is the ratio of 2: 1.05;

(2)将步骤(1)得到的混合物在高能球磨机中混合7小时至均匀后,研磨过程中加入分散剂,干燥;(2) Mix the mixture obtained in step (1) in a high-energy ball mill for 7 hours until uniform, add a dispersant during the grinding process, and dry;

(3)将步骤(2)得到的产物在850℃热处理5h后冷却至室温,得到所需的锰酸锂材料,所得材料为纯相LiMn2O4(3) The product obtained in step (2) was heat-treated at 850° C. for 5 h and then cooled to room temperature to obtain the desired lithium manganate material, which was pure phase LiMn 2 O 4 .

电化学测试表明20mA/g电流密度下充放电时,该材料的容量为110mAh/g,且材料的电导率为5.1X10-4S/cm。Electrochemical tests show that the capacity of the material is 110mAh/g when charging and discharging at a current density of 20mA/g, and the conductivity of the material is 5.1X10 -4 S/cm.

本发明所述锂二次电池电极活性材料为负极活性材料时,以氧化硅/石墨烯/碳材料为例,制备方法优选为:When the lithium secondary battery electrode active material of the present invention is a negative electrode active material, taking silicon oxide/graphene/carbon material as an example, the preparation method is preferably:

步骤(1)将硅的化合物,含碳的化合物及石墨烯在球磨机中充分混合,同时加入30wt%助磨剂丙酮,其中石墨烯为组合物质量的1%~5%,氧化硅为组合物质量的50%~90%,碳材料质量和为组合物质量的3%~50%;Step (1) Fully mix silicon compounds, carbon-containing compounds and graphene in a ball mill, and add 30wt% grinding aid acetone at the same time, wherein graphene is 1% to 5% of the mass of the composition, and silicon oxide is the composition 50% to 90% of the mass, and the sum of the mass of the carbon material is 3% to 50% of the mass of the composition;

步骤(2)将步骤(1)所得混合物在氮气气氛保护下,在真空炉中200℃~1000℃热处理1~20小时,从而得到终产物氧化硅/石墨烯/碳材料组合物。Step (2) The mixture obtained in step (1) is heat-treated in a vacuum furnace at 200° C. to 1000° C. for 1 to 20 hours under the protection of nitrogen atmosphere, so as to obtain the final product silicon oxide/graphene/carbon material composition.

所述碳材料可以提高锂二次电池的电极复合材料的纳米化程度,抑制电化学过程中的体积变化,并提高电导率。石墨烯可以进一步提高氧化硅电子导电性,并且具有较普通碳材料更好的“抑制体积变化”的作用。使用石墨烯和热解碳材料复合硅负极材料,可以提高负极活性材料的电导率,抑制充放电过程中的体积变化,从而达到提高比容量,提高循环寿命的效果。因此,制备得到的锂二次电池的电极复合材料的成本降低。The carbon material can improve the nanometerization degree of the electrode composite material of the lithium secondary battery, suppress the volume change in the electrochemical process, and improve the electrical conductivity. Graphene can further improve the electronic conductivity of silicon oxide, and has a better effect of "inhibiting volume change" than ordinary carbon materials. The use of graphene and pyrolytic carbon materials as a composite silicon anode material can increase the conductivity of the anode active material and suppress the volume change during charge and discharge, thereby achieving the effect of increasing the specific capacity and improving the cycle life. Therefore, the cost of the prepared electrode composite material of the lithium secondary battery is reduced.

以本发明提供的锂二次电池的电极复合材料为电极,制备得到锂二次电池,该电池将包含正极、负极、电解质和隔膜,至少其中一种电极选自本发明提供的锂二次电池的电极复合材料。Using the electrode composite material of the lithium secondary battery provided by the present invention as an electrode, a lithium secondary battery is prepared, and the battery will include a positive electrode, a negative electrode, an electrolyte and a diaphragm, at least one of which electrodes is selected from the lithium secondary battery provided by the present invention electrode composite materials.

所述隔膜优选为多孔的高分子薄膜,如微孔聚丙烯薄膜等。所述的非水电解液由非水溶剂和电解质构成。所述非水溶剂(非给质子溶剂)优选为碳酸二甲酯、碳酸二丙酯、碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、γ丁内酯、环丁砜、甲基环丁砜、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、四氢呋喃、2-甲基四氢呋喃、甲基丙酸、甲基丁酸、乙腈、丙腈、苯甲醚、醋酸酯、乳酸酯和丙酸酯等中的一种或几种的混合物。电解质优选为含锂的盐、如LiCl、LiBr、LiPF6、LiClO4、LiAsF6、LiBF4、LiCH3SO3、LiCF3SO3、LiN(CF3SO2)2和LiB(C6H5)4等。The separator is preferably a porous polymer film, such as a microporous polypropylene film. The non-aqueous electrolytic solution is composed of non-aqueous solvent and electrolyte. The non-aqueous solvent (non-proton-donating solvent) is preferably dimethyl carbonate, dipropyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, gamma butyrolactone, sulfolane, methyl sulfolane, 1,2 -Dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, methylpropionic acid, methylbutyric acid, acetonitrile, propionitrile, anisole, acetate, milk One or more mixtures of esters and propionates. The electrolyte is preferably lithium-containing salts such as LiCl, LiBr, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 and LiB(C 6 H 5 ) 4 etc.

本发明优选采用如下的方式测试本发明制备的锂二次电池的电极复合材料的电化学性能和电导率。The present invention preferably adopts the following method to test the electrochemical performance and conductivity of the electrode composite material of the lithium secondary battery prepared in the present invention.

测试电化学性能Test electrochemical performance

将本发明制备的锂二次电池的电极复合材料、聚偏氟乙烯(PVDF)、导电乙炔黑按质量比为80∶5∶15加入到N-甲基吡咯烷酮中,磁力搅拌均匀后,烘干制成正极片,并与手套箱中组装成2032扣式电池,其中负极为锂片,隔膜为聚丙烯,电解质为1M LiPF6,电解液质量比为EC∶DMC∶EMC=1∶1∶1。The electrode composite material of the lithium secondary battery prepared by the present invention, polyvinylidene fluoride (PVDF), and conductive acetylene black are added to N-methylpyrrolidone in a mass ratio of 80:5:15, and after magnetic stirring is uniform, oven dry The positive electrode sheet was made and assembled into a 2032 button battery in a glove box, wherein the negative electrode was a lithium sheet, the separator was polypropylene, the electrolyte was 1M LiPF6, and the mass ratio of the electrolyte was EC:DMC:EMC=1:1:1.

测试温度为25℃,电压范围为2.0~4.2V,测试的设备为ArbinBT2000,Autolab电化学工作站。The test temperature is 25°C, the voltage range is 2.0-4.2V, and the test equipment is ArbinBT2000, Autolab electrochemical workstation.

测定电导率Determination of conductivity

将本发明制备的锂二次电池的电极复合材料1g放在直径为1.3厘米的种圆柱状模具中,用压机将其压在两个不锈钢制的活塞之间,压强是14MPa,将片层取出后镀上银电极,并保证镀银后的同一电极片上的任意两点间电阻小于10-2欧姆。用本领域技术人员已知的交流复合阻抗法进行电导率的测量,使用公式ρ=RS/L,由电阻得到电导率,其中R是测量的电阻,S是表面积1.33cm2,L是片层的厚度。离子电导率也使用交流复阻抗测试法,其中离子扩散系数D=R2T2/2A2n4F4C2V2,Zreal=Vω-1/2The electrode composite material 1g of the lithium secondary battery prepared by the present invention is placed in a kind of cylindrical mold with a diameter of 1.3 centimeters, and is pressed between two stainless steel pistons with a press, and the pressure is 14MPa, and the sheet After taking it out, plate a silver electrode, and ensure that the resistance between any two points on the same electrode sheet after silver plating is less than 10 -2 ohms. The conductivity is measured by the AC composite impedance method known to those skilled in the art, and the conductivity is obtained from the resistance using the formula ρ=RS/L, where R is the measured resistance, S is the surface area of 1.33 cm 2 , and L is the sheet thickness of. The ionic conductivity is also measured by the AC complex impedance test method, wherein the ion diffusion coefficient D=R 2 T 2 /2A 2 n 4 F 4 C 2 V 2 , Z real =Vω −1/2 .

为了进一步说明本发明的技术方案,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。In order to further illustrate the technical solution of the present invention, the preferred embodiments of the present invention are described below in conjunction with examples, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention, rather than limiting the claims of the present invention.

本发明采用的石墨烯粉末可以为市场上采购。The graphene powder that the present invention adopts can be purchased on the market.

实施例1Example 1

LiFePO4/石墨烯/Li3PO4的制备Preparation of LiFePO4/graphene/Li 3 PO 4

(1)以草酸亚铁、碳酸锂和磷酸二氢铵为原料,按Fe∶Li∶P的摩尔比为1.15∶1∶1.05称取后置于丙酮溶液中,并加入5wt%的石墨烯,使固含量达20%;(1) take ferrous oxalate, lithium carbonate and ammonium dihydrogen phosphate as raw materials, place in acetone solution after taking by weighing the mol ratio of Fe: Li: P 1.15: 1: 1.05, and add 5wt% graphene, Make the solid content reach 20%;

(2)将步骤(1)得到的物质在高能球磨机中混合20小时至均匀,球磨机转速为500r/min,球与被研磨物质的质量比为2∶1;(2) Mix the material obtained in step (1) in a high-energy ball mill for 20 hours until uniform, the ball mill rotating speed is 500r/min, and the mass ratio of the ball to the ground material is 2:1;

(3)采用喷雾干燥法将步骤(2)得到的材料干燥,喷雾干燥机的进风温度为220℃,出风温度为100℃;(3) The material obtained in step (2) is dried by spray drying, the air inlet temperature of the spray dryer is 220°C, and the air outlet temperature is 100°C;

(4)将步骤(3)得到的混合物置于烧结炉中,于氮气气氛保护下在650℃下处理10小时后冷却至室温,得到所需的LiFePO4/石墨烯/Li3PO4材料,LiFePO4、石墨烯与Li3PO4的质量比为90∶5∶5。本实施例制备的锂二次电池的电极复合材料的性能如表1所示。(4) Place the mixture obtained in step (3) in a sintering furnace, treat it at 650° C. for 10 hours under the protection of nitrogen atmosphere, and then cool to room temperature to obtain the required LiFePO4/graphene/Li 3 PO 4 material, LiFePO4 , The mass ratio of graphene to Li 3 PO 4 is 90:5:5. The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 1.

实施例2Example 2

LiFePO4/石墨烯/C的制备Preparation of LiFePO 4 /graphene/C

将LiFePO4、石墨烯和酚醛树脂混合,然后在400℃、氮气保护下热处理,得到锂二次电池的电极复合材料,所述LiFePO4/石墨烯/C的质量比为97∶1∶2。本实施例制备的锂二次电池的电极复合材料的性能如表1所示。LiFePO 4 , graphene and phenolic resin are mixed, and then heat-treated at 400° C. under nitrogen protection to obtain an electrode composite material for a lithium secondary battery. The mass ratio of LiFePO 4 /graphene/C is 97:1:2. The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 1.

实施例3~10Embodiment 3-10

采用与实施例1相同的制备方法,制备得到锂二次电池的电极复合材料,所述锂二次电池的电极复合材料的原料、性能等如表1所示。Using the same preparation method as in Example 1, an electrode composite material for a lithium secondary battery was prepared. The raw materials and properties of the electrode composite material for a lithium secondary battery are shown in Table 1.

分别对实施例1~10制备的锂二次电池的电极复合材料、LiFePO4、LiFePO4/C电极复合材料、LiFePO4/石墨烯电极复合材料进行性能测定,结果如表1所示。The properties of the lithium secondary battery electrode composite material, LiFePO 4 , LiFePO 4 /C electrode composite material, and LiFePO 4 /graphene electrode composite material prepared in Examples 1-10 were measured respectively, and the results are shown in Table 1.

表1聚阴离子材料/石墨烯/导电材料的制备原料和性能Preparation raw materials and properties of table 1 polyanion material/graphene/conductive material

Figure BDA0000048715000000151
Figure BDA0000048715000000151

本发明附图中G代表石墨烯、C代表碳、LFP代表磷酸铁锂。如图1所示,图中从上至下依次为LiFePO4、实施例2制备的LiFePO4/石墨烯/C和LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的XRD图。In the drawings of the present invention, G represents graphene, C represents carbon, and LFP represents lithium iron phosphate. As shown in Figure 1, the XRD patterns of LiFePO 4 , LiFePO 4 /graphene/C and LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 prepared in Example 2 are shown from top to bottom.

图2、图3为实施例2制备的LiFePO4/石墨烯/C的SEM照片。Fig. 2 and Fig. 3 are SEM photos of LiFePO 4 /graphene/C prepared in Example 2.

图4为表1中LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的TEM照片。FIG. 4 is a TEM photo of LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 in Table 1.

图5为LiFePO4和实施例2制备的LiFePO4/石墨烯/C的I-V特性图。Fig. 5 is the IV characteristic diagram of LiFePO 4 and LiFePO 4 /graphene/C prepared in Example 2.

图6为LiFePO4、LiFePO4/石墨烯、实施例2制备的LiFePO4/石墨烯/C和LiFe0.99Mg0.01PO4/石墨烯/C/Li3PO4的充放电性能曲线。6 is the charge and discharge performance curves of LiFePO 4 , LiFePO 4 /graphene, LiFePO 4 /graphene/C prepared in Example 2, and LiFe 0.99 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 .

从上述结果可以得到,上述实施例制备得到的锂二次电池的电极复合材料具有较好的导电性能。、From the above results, it can be concluded that the electrode composite material of the lithium secondary battery prepared in the above examples has good electrical conductivity. ,

实施例11Example 11

LiMn2O4/石墨烯/Li3PO4的制备Preparation of LiMn 2 O 4 /Graphene/Li 3 PO 4

(1)以二氧化锰、碳酸锂原料,按摩尔比Mn∶Li=2∶1.05的比例称取;(1) take manganese dioxide and lithium carbonate raw materials in a molar ratio of Mn: Li=2: 1.05 by weighing;

(2)将步骤(1)得到的混合物在高能球磨机中混合7小时至均匀,球磨机转速为500r/min,球与被研磨物质的质量比为2∶1;(2) Mix the mixture obtained in step (1) in a high-energy ball mill for 7 hours until uniform, the ball mill rotating speed is 500r/min, and the mass ratio of the ball to the substance to be ground is 2:1;

(3)在100℃电阻式加热烘箱中加热10小时至干燥;(3) Heating in a resistance heating oven at 100°C for 10 hours to dryness;

(4)在850℃热处理5h后冷却至室温,得到LiMn2O4(4) cooling to room temperature after heat treatment at 850° C. for 5 hours to obtain LiMn 2 O 4 ;

(5)将步骤(4)中所得LiMn2O4与石墨烯、LiOH和H3PO4混合,其中石墨烯为LiMn2O4质量的6%,LiOH和H3PO4的摩尔比为3∶1,LiOH和H3PO4的质量之和为LiMn2O4质量的7.5%,研磨混合;(5) Mix LiMn 2 O 4 obtained in step (4) with graphene, LiOH and H 3 PO 4 , wherein graphene is 6% of the mass of LiMn 2 O 4 , and the molar ratio of LiOH and H 3 PO 4 is 3 : 1, the sum of the quality of LiOH and H 3 PO 4 is 7.5% of the LiMn 2 O 4 quality, grinding and mixing;

(6)将步骤5所得混合物与氮气气氛下400℃热处理1小时得到LiMn2O4/石墨烯/Li3PO4(6) The mixture obtained in step 5 was heat-treated at 400° C. for 1 hour under a nitrogen atmosphere to obtain LiMn 2 O 4 /graphene/Li 3 PO 4 .

本实施例制备的锂二次电池的电极复合材料的性能如表2所示。The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 2.

实施例12Example 12

LiAl0.02Mn1.98O4/石墨烯/Al2O3的制备Preparation of LiAl 0.02 Mn 1.98 O 4 /Graphene/Al 2 O 3

将LiAl0.02Mn1.98O4、石墨烯和硝酸铝混合,然后在400℃、氮气保护下热处理,得到锂二次电池的电极复合材料,所述LiAl0.02Mn1.98O4/石墨烯/Al2O3的质量比为97∶1∶2。本实施例制备的锂二次电池的电极复合材料的性能如表2所示。Mix LiAl 0.02 Mn 1.98 O 4 , graphene and aluminum nitrate, and then heat-treat at 400°C under nitrogen protection to obtain an electrode composite material for a lithium secondary battery. The LiAl 0.02 Mn 1.98 O 4 /graphene/Al 2 O The mass ratio of 3 is 97:1:2. The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 2.

实施例13~18Examples 13-18

采用与实施例12相同的制备方法,制备得到锂二次电池的电极复合材料,所述锂二次电池的电极复合材料的原料、性能等如表2所示。Using the same preparation method as in Example 12, an electrode composite material for a lithium secondary battery was prepared. The raw materials and properties of the electrode composite material for a lithium secondary battery are shown in Table 2.

分别对实施例11~18制备的锂二次电池的电极复合材料、LiMn2O44、LiMn2O4/石墨烯电极复合材料进行性能测定,结果如表1所示。The properties of the lithium secondary battery electrode composite materials, LiMn 2 O 44 , and LiMn 2 O 4 /graphene electrode composite materials prepared in Examples 11-18 were measured respectively, and the results are shown in Table 1.

表2含锂的金属氧化物/石墨烯/导电材料的的制备原料和性能Preparation raw materials and performance of metal oxide/graphene/conductive material containing lithium in table 2

Figure BDA0000048715000000181
Figure BDA0000048715000000181

如图7所示,为LiMn2O4和LiMn2O4/石墨烯的XRD图。As shown in Fig. 7, it is the XRD pattern of LiMn 2 O 4 and LiMn 2 O 4 /graphene.

如图8、图9所示,为LiMn2O4和表2中LiAl0.02Mn1.98O4/石墨烯/Li3PO4的SEM照片。As shown in Fig. 8 and Fig. 9, they are SEM photos of LiMn 2 O 4 and LiAl 0.02 Mn 1.98 O 4 /graphene/Li 3 PO 4 in Table 2.

图10为LiMn2O4和表2中LiAl0.02Mn1.98O4/石墨烯/Li3PO4的充放电曲线。Figure 10 is the charge and discharge curves of LiMn 2 O 4 and LiAl 0.02 Mn 1.98 O 4 /graphene/Li 3 PO 4 in Table 2.

从上述结果可以得到,实施例11~18制备得到的锂二次电池的电极复合材料具有较好的导电性能。From the above results, it can be concluded that the electrode composite materials for lithium secondary batteries prepared in Examples 11-18 have good electrical conductivity.

实施例19Example 19

硅/石墨烯/热解碳材料的制备Preparation of silicon/graphene/pyrolytic carbon materials

(1)以质量比为10∶0.08∶0.1的正硅酸乙酯、石墨烯、葡萄糖为原料,将其溶解在水中,质量浓度为30%;(1) With the mass ratio of 10:0.08:0.1 orthosilicate, graphene, and glucose as raw materials, it is dissolved in water, and the mass concentration is 30%;

(2)将步骤(1)得到的混合物在高能球磨机中混合5小时,球磨机转速为500r/min,球与被研磨物质的质量比为2∶1;(2) Mix the mixture obtained in step (1) in a high-energy ball mill for 5 hours, the ball mill rotating speed is 500r/min, and the mass ratio of the ball to the ground substance is 2:1;

(3)采用喷雾干燥法将上述材料干燥,喷雾干燥机的进风温度为220℃,出风温度为100℃;(3) The above-mentioned materials are dried by spray drying, the air inlet temperature of the spray dryer is 220°C, and the air outlet temperature is 100°C;

(4)将步骤(3)得到的混合物置于气氛烧结炉中,于氮气气氛保护下在(4) the mixture that step (3) obtains is placed in the atmosphere sintering furnace, under the protection of nitrogen atmosphere

900℃下处理10小时后冷却至室温,得到硅/石墨烯/热解碳材料,硅/石墨烯/热解碳材料的质量比为90∶5∶5。本实施例制备的锂二次电池的电极复合材料的性能如表3所示。After being treated at 900° C. for 10 hours, it was cooled to room temperature to obtain silicon/graphene/pyrolytic carbon material, and the mass ratio of silicon/graphene/pyrolytic carbon material was 90:5:5. The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 3.

实施例20Example 20

Si/石墨烯/C的制备Preparation of Si/graphene/C

将Si、石墨烯和葡萄糖混合,然后在400℃、氮气保护下热处理,得到锂二次电池的电极复合材料,所述LSi/石墨烯/C的质量比为90∶2∶8。本实施例制备的锂二次电池的电极复合材料的性能如表3所示。Si, graphene and glucose are mixed, and then heat-treated at 400° C. under nitrogen protection to obtain an electrode composite material for a lithium secondary battery. The mass ratio of LSi/graphene/C is 90:2:8. The properties of the electrode composite material of the lithium secondary battery prepared in this embodiment are shown in Table 3.

实施例21~25Examples 21-25

采用与实施例20相同的制备方法,制备得到锂二次电池的电极复合材料,所述锂二次电池的电极复合材料原料、性能等如表3所示。Using the same preparation method as in Example 20, an electrode composite material for a lithium secondary battery was prepared. The raw materials and properties of the electrode composite material for the lithium secondary battery are shown in Table 3.

分别对实施例19~25制备的锂二次电池的电极复合材料、LiMn2O44、LiMn2O4/石墨烯电极复合材料进行性能测定,结果如表1所示。The properties of the lithium secondary battery electrode composite materials, LiMn 2 O 44 , and LiMn 2 O 4 /graphene electrode composite materials prepared in Examples 19-25 were measured respectively, and the results are shown in Table 1.

表3负极活性材料/石墨烯/导电材料的制备原料和性能Preparation raw materials and properties of table 3 negative electrode active material/graphene/conductive material

Figure BDA0000048715000000191
Figure BDA0000048715000000191

如图11、图12、图13和图14所示,为实施例20制备的Si/石墨烯/C的SEM照片。As shown in FIG. 11 , FIG. 12 , FIG. 13 and FIG. 14 , they are SEM photos of Si/graphene/C prepared in Example 20.

图15为Si/C和实施例20制备的Si/石墨烯/C的充放电曲线。Figure 15 is the charge and discharge curves of Si/C and Si/graphene/C prepared in Example 20.

从上述结果可以得到,实施例19~25制备得到的锂二次电池的电极复合材料具有较好的导电性能。From the above results, it can be concluded that the electrode composite materials for lithium secondary batteries prepared in Examples 19-25 have good electrical conductivity.

本发明提供一种锂二次电池的电极复合材料及其制备方法,所述电极复合材料包括:锂二次电池电极活性材料、石墨烯和导电材料。石墨烯和导电材料分布在活性材料表面和活性材料颗粒间,形成了所述锂二次电池的电极复合材料。由于石墨烯具有较好的电子导电性,因此,提高了电极复合材料的电子导电性。此外,本发明提供的电极复合材料中还包括具有较高的导电性的导电材料,从而进一步提高了电极复合材料的导电性。实验结果证明,本发明提供的电极复合材料的电子电导率达0.87S/cm,离子扩散系数达8.4×10-8cm2/S。The invention provides an electrode composite material of a lithium secondary battery and a preparation method thereof. The electrode composite material comprises: an electrode active material of a lithium secondary battery, graphene and a conductive material. Graphene and conductive material are distributed on the surface of the active material and between the particles of the active material to form the electrode composite material of the lithium secondary battery. Since graphene has better electronic conductivity, the electronic conductivity of the electrode composite material is improved. In addition, the electrode composite material provided by the present invention also includes a conductive material with higher conductivity, thereby further improving the conductivity of the electrode composite material. Experimental results prove that the electronic conductivity of the electrode composite material provided by the invention reaches 0.87S/cm, and the ion diffusion coefficient reaches 8.4×10 -8 cm 2 /S.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (1)

1.一种锂二次电池的电极复合材料,其特征在于,按照以下方法制备:1. an electrode composite material for a lithium secondary battery, characterized in that, it is prepared according to the following method: 以氧化铁、氧化钒、碳酸锂、磷酸二氢铵、PEG、LiOH、H3PO4为原料,称取后置于丙酮溶液中,并加入5wt%的石墨烯,使固含量达20%;Iron oxide, vanadium oxide, lithium carbonate, ammonium dihydrogen phosphate, PEG, LiOH, H 3 PO 4 are used as raw materials, weighed and placed in acetone solution, and 5wt% graphene is added to make the solid content reach 20%; 将上述步骤得到的物质在高能球磨机中混合20小时至均匀,球磨机转速为500r/min,球与被研磨物质的质量比为2:1;Mix the material obtained in the above steps in a high-energy ball mill for 20 hours until uniform, the ball mill speed is 500r/min, and the mass ratio of the ball to the ground material is 2:1; 采用喷雾干燥法将上述步骤得到的材料干燥,喷雾干燥机的进风温度为220℃,出风温度为100℃;The material obtained in the above steps is dried by spray drying, the air inlet temperature of the spray dryer is 220°C, and the air outlet temperature is 100°C; 将上述步骤得到的混合物置于烧结炉中,于氮气气氛保护下在650℃下处理10小时后冷却至室温,得到所需的LiFe0.99V0.01PO4/石墨烯/C/Li3PO4,LiFe0.99V0.01PO4、石墨烯、C和Li3PO4的质量比为95:1:1:3;The mixture obtained in the above steps was placed in a sintering furnace, treated at 650°C for 10 hours under the protection of nitrogen atmosphere, and then cooled to room temperature to obtain the desired LiFe 0.99 V 0.01 PO 4 /graphene/C/Li 3 PO 4 , The mass ratio of LiFe 0.99 V 0.01 PO 4 , graphene, C and Li 3 PO 4 is 95:1:1:3; 或按照以下方法制备:Or prepare as follows: 以氧化铁、氧化钒、氧化镁、碳酸锂、磷酸、PEG、PVA、LiOH、H3PO4为原料,称取后置于丙酮溶液中,并加入5wt%的石墨烯,使固含量达20%;Use iron oxide, vanadium oxide, magnesium oxide, lithium carbonate, phosphoric acid, PEG, PVA, LiOH, H 3 PO 4 as raw materials, weigh and place in acetone solution, and add 5wt% graphene to make the solid content reach 20 %; 将上述步骤得到的物质在高能球磨机中混合20小时至均匀,球磨机转速为500r/min,球与被研磨物质的质量比为2:1;Mix the material obtained in the above steps in a high-energy ball mill for 20 hours until uniform, the ball mill speed is 500r/min, and the mass ratio of the ball to the ground material is 2:1; 采用喷雾干燥法将上述步骤得到的材料干燥,喷雾干燥机的进风温度为220℃,出风温度为100℃;The material obtained in the above steps is dried by spray drying, the air inlet temperature of the spray dryer is 220°C, and the air outlet temperature is 100°C; 将上述步骤得到的混合物置于烧结炉中,于氮气气氛保护下在650℃下处理10小时后冷却至室温,得到所需的LiFe0.98V0.01Mg0.01PO4/石墨烯/C/Li3PO4,LiFe0.98V0.01Mg0.01PO4、石墨烯、C和Li3PO4的质量比为95:1:1:3;The mixture obtained in the above steps was placed in a sintering furnace, treated at 650°C for 10 hours under the protection of nitrogen atmosphere, and then cooled to room temperature to obtain the desired LiFe 0.98 V 0.01 Mg 0.01 PO 4 /graphene/C/Li 3 PO 4 , the mass ratio of LiFe 0.98 V 0.01 Mg 0.01 PO 4 , graphene, C and Li 3 PO 4 is 95:1:1:3; 或按照以下方法制备:Or prepare as follows: 以硝酸锰、硝酸铬、碳酸锂、磷酸、AgNO3、PVA、钛酸四丁酯、H3PO4为原料,称取后置于丙酮溶液中,并加入5wt%的石墨烯,使固含量达20%;Manganese nitrate, chromium nitrate, lithium carbonate, phosphoric acid, AgNO 3 , PVA, tetrabutyl titanate, H 3 PO 4 were used as raw materials, weighed and placed in acetone solution, and 5wt% graphene was added to make the solid content Up to 20%; 将上述步骤得到的物质在高能球磨机中混合20小时至均匀,球磨机转速为500r/min,球与被研磨物质的质量比为2:1;Mix the material obtained in the above steps in a high-energy ball mill for 20 hours until uniform, the ball mill speed is 500r/min, and the mass ratio of the ball to the ground material is 2:1; 采用喷雾干燥法将上述步骤得到的材料干燥,喷雾干燥机的进风温度为220℃,出风温度为100℃;The material obtained in the above steps is dried by spray drying, the air inlet temperature of the spray dryer is 220°C, and the air outlet temperature is 100°C; 将上述步骤得到的混合物置于烧结炉中,于氮气气氛保护下在650℃下处理10小时后冷却至室温,得到所需的LiMn0.99Cr0.01PO4/石墨烯/Ag/C/LiTi2(PO4)3,LiMn0.99Cr0.01PO4、石墨烯、Ag和C/LiTi2(PO4)3的质量比为95:1:1:2。The mixture obtained in the above steps was placed in a sintering furnace, treated at 650°C for 10 hours under the protection of nitrogen atmosphere, and then cooled to room temperature to obtain the desired LiMn 0.99 Cr 0.01 PO 4 /graphene/Ag/C/LiTi 2 ( The mass ratio of PO 4 ) 3 , LiMn 0.99 Cr 0.01 PO 4 , graphene, Ag and C/LiTi 2 (PO 4 ) 3 is 95:1:1:2.
CN201110051233.0A 2011-03-03 2011-03-03 Electrode composite material of lithium secondary battery and preparation method thereof Active CN102420323B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110051233.0A CN102420323B (en) 2011-03-03 2011-03-03 Electrode composite material of lithium secondary battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110051233.0A CN102420323B (en) 2011-03-03 2011-03-03 Electrode composite material of lithium secondary battery and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102420323A CN102420323A (en) 2012-04-18
CN102420323B true CN102420323B (en) 2014-03-19

Family

ID=45944621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110051233.0A Active CN102420323B (en) 2011-03-03 2011-03-03 Electrode composite material of lithium secondary battery and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102420323B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627320B (en) * 2012-04-25 2014-04-09 中国科学院宁波材料技术与工程研究所 Preparation method for nano titanium dioxide lithium ion battery cathode material
KR101920714B1 (en) * 2012-05-16 2018-11-21 삼성전자주식회사 Negative electrode for lithium battery and the lithium battery comprising the same
US20140004412A1 (en) * 2012-06-29 2014-01-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
CN103682332B (en) * 2012-09-26 2016-03-02 华为技术有限公司 Compound negative material of a kind of lithium ion battery and preparation method thereof and lithium ion battery
CN103682295B (en) * 2012-09-26 2016-03-02 华为技术有限公司 A kind of lithium ion battery cathode material and its preparation method, anode plate for lithium ionic cell and lithium ion battery
JP5668993B2 (en) * 2012-10-22 2015-02-12 トヨタ自動車株式会社 Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
CN103000955B (en) * 2012-11-29 2015-02-11 陈小康 Preparation method of lithium ion battery for high-security mobile phone
CN104037393B (en) * 2013-03-06 2019-03-26 佛山市顺德宇红纳米科技有限公司 A kind of tin/graphene/carbon fiber composite lithium cell cathode material preparation method
CN111517319A (en) * 2013-03-26 2020-08-11 三菱化学株式会社 Carbon material and nonaqueous secondary battery using same
CN103227056B (en) * 2013-04-17 2015-12-09 黑龙江大学 The preparation method of LiFePO4/expanded graphite combination electrode material and use the preparation method of lithium-ion capacitor of this material
CN104300129A (en) * 2013-07-19 2015-01-21 苏州宝时得电动工具有限公司 Battery, battery cathode, battery cathode material and preparation method thereof
CN103794787B (en) * 2014-02-21 2016-02-17 北京亿派通科技有限公司 A kind of preparation method of high energy efficiency anode composite material of lithium ion battery
CN103811757A (en) * 2014-03-11 2014-05-21 中国第一汽车股份有限公司 Graphene composite positive electrode material
CN103956271A (en) * 2014-05-09 2014-07-30 天津工业大学 Manganese oxide/graphene porous microspheres, preparation method and energy storage application thereof
CN105098148A (en) * 2014-05-15 2015-11-25 国家纳米科学中心 Preparation method of nanoscale silicon and silicon/carbon composite materials and application thereof
CN104037396B (en) * 2014-05-27 2016-06-29 中南大学 Silico-carbo multi-component composite anode material and preparation method thereof
CN104022283A (en) * 2014-06-09 2014-09-03 上海交通大学 Method for improving electrochemical characteristics of lithium iron phosphate by use of graphene/polyaniline
CN104716320B (en) 2015-03-10 2017-06-16 中国科学院过程工程研究所 A kind of LiFePO4 of composite cladding, its preparation method and lithium ion battery
CN104795569B (en) * 2015-03-18 2017-03-15 江苏乐能电池股份有限公司 Ferric phosphate lithium cell conducting polymer combined conductive agent and preparation method thereof
CN105789589A (en) * 2016-04-06 2016-07-20 苏州思创源博电子科技有限公司 Preparation method of multilayer structure battery cathode material
CN106058187B (en) * 2016-07-13 2018-08-14 董忠贵 A kind of preparation method of LiFePO4/graphene oxide/platinum combination electrode material
CN106207181A (en) * 2016-08-18 2016-12-07 周新凤 A kind of modified polyacetylene solar energy lithium electricity positive electrode and preparation method thereof
CN106129413A (en) * 2016-08-18 2016-11-16 周新凤 A kind of modified polythiophene solar energy lithium electricity positive electrode and preparation method thereof
CN106602030A (en) * 2017-01-06 2017-04-26 中航锂电(洛阳)有限公司 Low-temperature composite lithium iron phosphate material, positive plate and lithium ion battery
CN108807889B (en) * 2018-05-24 2021-05-18 天津工业大学 Preparation method and application of porous iron-doped vanadium oxide electrode material
CN109301195A (en) * 2018-09-18 2019-02-01 天津先众新能源科技股份有限公司 A kind of high conductivity LiFePO 4 material and preparation method thereof
CN109135684B (en) * 2018-09-21 2020-10-27 贵州梅岭电源有限公司 Composite phase change material for thermal battery and preparation method thereof
CN109517283A (en) * 2018-11-30 2019-03-26 东莞市德诚塑化科技有限公司 A kind of conduction polybutene, preparation method and its usage
CN109659531A (en) * 2018-12-17 2019-04-19 中科廊坊过程工程研究院 A kind of nickel cobalt lithium aluminate composite positive pole and its preparation method and application
JP7284281B2 (en) * 2019-02-20 2023-05-30 ユミコア Cathode materials containing solid electrolytes for solid state rechargeable lithium-ion batteries with high thermal stability
CN111009647B (en) * 2019-12-10 2021-03-16 中南大学 Lithium borosilicate alloy cathode active material of lithium secondary battery, cathode, preparation and application thereof
CN113328086B (en) * 2021-08-03 2021-11-02 南杰智汇(深圳)科技有限公司 Pyrophosphate composite material, preparation method and application thereof, and sodium ion battery
CN114695946B (en) * 2022-03-14 2023-08-25 华中科技大学 Fast charging flexible lithium ion battery and preparation method thereof
CN114725345B (en) * 2022-04-19 2023-04-28 江苏理工学院 Preparation method and application of a Fe3O4/NaTi2(PO4)3/C micro-nano composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944593A (en) * 2010-09-15 2011-01-12 天津大学 Positive pole material of lithium ion battery with nanometer structure and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061473C (en) * 1997-01-02 2001-01-31 中国科学院化学研究所 Lithium secondary cell and its preparing method
CN100446307C (en) * 2005-09-23 2008-12-24 中国科学院物理研究所 A kind of preparation method of lithium secondary battery electrode containing nano-additive
CN101794874A (en) * 2009-08-25 2010-08-04 天津大学 Electrode with grapheme as conductive additive and application thereof in lithium ion battery
CN101752561B (en) * 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 Graphite alkene iron lithium phosphate positive active material, preparing method thereof, and lithium ion twice battery based on the graphite alkene modified iron lithium phosphate positive active material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944593A (en) * 2010-09-15 2011-01-12 天津大学 Positive pole material of lithium ion battery with nanometer structure and preparation method thereof

Also Published As

Publication number Publication date
CN102420323A (en) 2012-04-18

Similar Documents

Publication Publication Date Title
CN102420323B (en) Electrode composite material of lithium secondary battery and preparation method thereof
JP6559412B2 (en) Negative electrode active material, negative electrode and lithium battery employing the same, and method for producing the negative electrode active material
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
WO2020134780A1 (en) Positive electrode material, preparation method therefor, and use thereof
US8034485B2 (en) Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN111819718A (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery containing the same
EP2717359B1 (en) Lithium ion secondary cell
WO2015129188A1 (en) Nonaqueous-electrolyte secondary battery
JP2020525993A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP7597921B2 (en) Positive electrode active material and lithium secondary battery including the same
JP7278652B2 (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
JP2021108305A (en) Positive electrode and lithium battery containing positive electrode
JP2016162748A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP5855737B2 (en) Lithium ion battery
CN116210102A (en) Negative electrode material, and negative electrode and secondary battery comprising same
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP7595793B2 (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the same
JP7625709B2 (en) Positive electrode for lithium secondary battery, positive electrode and lithium secondary battery including the same
CN111512478B (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant