CN102411065A - 激光自混合型加速度传感器 - Google Patents

激光自混合型加速度传感器 Download PDF

Info

Publication number
CN102411065A
CN102411065A CN2011104105579A CN201110410557A CN102411065A CN 102411065 A CN102411065 A CN 102411065A CN 2011104105579 A CN2011104105579 A CN 2011104105579A CN 201110410557 A CN201110410557 A CN 201110410557A CN 102411065 A CN102411065 A CN 102411065A
Authority
CN
China
Prior art keywords
laser
semiconductor laser
cylindrical shell
signal
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104105579A
Other languages
English (en)
Inventor
吕亮
俞本立
朱军
曹志刚
翟龙华
杨竟宇
赵云鹤
杜正婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN2011104105579A priority Critical patent/CN102411065A/zh
Publication of CN102411065A publication Critical patent/CN102411065A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种激光自混合型加速度传感器,其特征是具有:一圆柱壳,在其内部形成一封闭腔,圆柱壳与被测物体固定连接;一弹性膜片,位于圆柱壳封闭腔的横断面上;在弹性膜片的中央固定设置一敏感质量块;一半导体激光器,是以刚性支架固定设置在圆柱壳封闭腔内,与敏感质量块处在同轴位置上;半导体激光器用于向敏感质量块发出光信号,并接收来自敏感质量块的反馈光信号;以光电探测器作为光电信号转换单元;以信号处理单元接收光电探测器的输出信号,并输出加速度检测信号。本发明利用半导体激光自混合效应感测加速度信号,避免了电磁干扰,能够高灵敏度、大动态范围测量待测物体加速度。

Description

激光自混合型加速度传感器
技术领域
本发明涉及一种惯性参数测量装置,特别涉及一种光学加速度传感器。
背景技术
加速度信号测量通常是利用惯性原理响应加速度矢量信息。加速度传感器作为一种重要的力学传感器可广泛应用于工业自动化控制、汽车安全与检测以及地震测试、军事和空间系统等领域。在进行加速度传感时,将加速度传感器的外壳固定在待测物体上,加速度使传感器外壳和惯性质量体之间产生相对运动,通过对这个相对运动的测量就可以测得待测物体加速度。
理想情况下,加速度传感器等价于如图1所示的质量-弹簧系统,其由惯性质量m、弹性体K和阻尼器c组成的二阶单自由度系统。
当传感器感应到加速度时,敏感质量块受惯性力作用而发生位移,位移变化量与输入加速度的大小有确定的对应关系。由牛顿第二运动定律可得:
m d 2 x m dt 2 + c dx m dt + Kx m = c dx s dt + Kx s - - - ( 1 )
式(1)中,m为惯性体质量,K为弹性体弹簧刚度,c为系统阻尼系数,xm为敏感质量块的位移,xs为运动系统主体的位移。当加速度传感器系统感受到外界加速度时,由于弹性体的存在,敏感质量块和运动系统间存在相对位移,也表现为弹性体的形变,定义为Δx(t):
Δx(t)=xm(t)-xs(t)    (2)
通过对Δx(t)的测量,可获得加速度传感器所感知的加速度信号。
目前传统机电型加速度传感器一般采用压电、超声等技术测量质量块的惯性力或位移进而获的待测物体加速度。但这类传感器普遍存在动态范围小,工作频带窄,易受电磁干扰等问题。
光学型加速度传感器一般对光波的强度和相位进行检测,因此具有抗电磁干扰、高灵敏度、大动态范围、易复用、可应用于高温高压、易燃易爆等恶劣环境等优势,可充分解决传统机电型加速度传感器所存在的主要问题。
但是,目前的光学型加速度传感器一般需多光路设计,相对传统压电型加速度传感器往往又存在造价高、结构复杂的劣势,无法大范围取代现存的传统压电性加速度传感器。
半导体激光器作为光源的激光自混合干涉原理如图2所示。干涉系统由半导体激光器和外部反射物体组成。反馈光存在的时候可以通过改变激光器腔内的载流子密度造成激光介质折射率发生变化进而调制激光器本身的频率和强度,形成了自混合干涉。
图2中半导体激光器长度为L0,它的端面反射系数分别为r1和r2,外腔反射系数为r3,Lext为激光器外腔长度,n为激光介质的折射率。初始的光场为E0,自混合干涉后的光场E(t):
E ( t ) = r 1 r 2 exp { - j 4 πv nL 0 c + ( g - γ ) L 0 } E 0 + (3)
r 1 ( 1 - r 2 2 ) exp { - j 4 πv nL 0 + L ext c + ( g - γ ) L 0 } E 0
式(3)中g为激光腔内单位长度引起的线性增益,γ为激光腔内单位长度的损耗,v为激光的振荡频率。由于激光器阈值增益被反馈光调制,激光输出功率比例于激光阈值增益,因此,激光的输出功率被反馈光调制,输出的光功率可表示为:
I=I0[1+mcos(2πvτL)]    (4)
这里调制系数m在工作电流一定时为比例于反馈强度的常数。
Figure BDA0000118329390000023
代表激光在内外腔传播一周的延迟时间,I0为激光器没有外腔反馈时的激光强度。
式(4)中,激光器的输出强度与激光器外腔长度的变化相关及反馈物的位移相关。
但是,迄今为止,半导体激光器作为光源的激光自混合干涉原理并没有在加速度传感器中进行应用。
发明内容
本发明是为避免上述现有技术所存在的不足,提供一种制作成本低、灵敏度高,易于批量化生的基于自混合干涉测量方法的激光自混合型加速度传感器。
本发明为解决技术问题采用如下技术方案:
本发明激光自混合型加速度传感器装置的结构特点是具有:
一圆柱壳,在其内部形成一封闭腔,所述圆柱壳与被测物体固定连接;
一弹性膜片,位于圆柱壳封闭腔的横断面上,所述弹性膜片是以周边支撑在所述圆柱壳的内侧壁上;在所述弹性膜片的中央,固定设置一敏感质量块;
一半导体激光器,是以刚性支架固定设置在圆柱壳封闭腔内,与所述敏感质量块处在同轴位置上;以光电探测器、驱动和调制单元和信号处理单元与所述半导体激光器共同构成信号传感单元;其中,所述半导体激光器用于向敏感质量块发出光信号,并接收来自敏感质量块的反馈光信号;所述光电探测器作为光电信号转换单元;所述驱动和调制单元通过改变半导体激光器的注入电流或其它相关参数调制半导体激光器的光源强度、波长、激光相位或激光偏振态;所述信号处理单元接收光电探测器的输出信号,并输出加速度检测信号。
本发明激光自混合型加速度传感器装置的结构特点也在于:
在所述敏感质量块的表面具有金属反光镀层。
在所述半导体激光器的前端设置透镜或透镜组,以所述透镜或透镜组调节半导体激光器出射光强和所获得的反馈光光强。
所述半导体激光器为F-P激光器(Fabry-perot Laser)、DFB激光器(Distributed FeedbackLaser)或VCSEL激光器(Vertical Cavity Surface Emitting Laser)。
本发明通过激光自混合型加速度传感器中的弹性体,将加速器信号转化为弹性体的形变即位移量,再利用自混合效应测量出形变的大小,最终获得传感器所感受的外界加速度信息。与已有技术相比,本发明有益效果体现在:
1、本发明利用半导体激光自混合效应感测加速度信号,完全避免了电磁干扰,能够高灵敏度、大动态范围测量待测物体加速度;
2、本发明采用激光调制方案,可有效避免外界非目标振动对自混合信号的影响,降低了系统的噪声,提高系统的抗干扰能力以及探测微弱加速度信号的能力;
3、本发明结构简单紧凑、重量轻、耗电低、工作稳定可靠。
附图说明
图1为加速度传感器的质量惯性模型;
图2为自混合干涉系统示意图;
图3为本发明结构示意图;
图中标号:1圆柱壳;2半导体激光器;3弹性膜片;4敏感质量块;5上盖;6通孔;7光电探测器;8驱动和调制单元;9信号处理单元;10透镜组。
具体实施方式
本实施例中激光自混合型加速度传感器装置的结构形式是具有:
一圆柱壳1,在其内部形成一封闭腔,圆柱壳1与被测物体固定连接;
一弹性膜片3,位于圆柱壳封闭腔的横断面上,弹性膜片是以周边支撑在圆柱壳1的内侧壁上;弹性膜片一般选择线膨胀系数小、温度系数小而稳定、高弹性模量、弹性滞后效应小的金属或非金属材料,如铌基弹性合金等。在弹性膜片3的中央,固定设置一敏感质量块4;敏感质量块4的质量远大于弹性膜片3的质量,用于增加由敏感质量块4和弹性膜片3所构成的弹性系统在加速度作用下的变形,以获得因弹性膜片3的变形所带来的敏感质量块4的位移,同时,敏感质量块4的设置也减小激光自混合加速度计的非线性效应。
一半导体激光器2,是以刚性支架固定设置在圆柱封闭腔内,与敏感质量块4处在同轴位置上;以光电探测器7、驱动和调制单元8和信号处理单元9与半导体激光器2共同构成信号传感单元;
具体实施中,半导体激光器2用于向敏感质量块4发出光信号,并接收来自敏感质量块的反馈光信号;半导体激光器2发出的光通过封闭腔传播到敏感质量块4,此时的敏感质量块4因为受外界加速度的作用而产生轴向相对位移。轴向相对位移量y和外界加速度a有如下关系:
ma = 2 y Ebh 3 4 l 3 - - - ( 5 )
式(5)中E为弹性膜片3的杨氏弹性模量,m为敏感质量块4的质量,l、b、h分别为弹性膜片3的长、宽、高。因此经敏感质量块4反馈的光场携带有外界加速度a的相关信息。反馈光经封闭腔反馈回半导体激光器2;光电探测器7封装在半导体激光器2的尾部,作为光电信号转换单元,将反馈回半导体激光器2的光信号转换成电信号;驱动和调制单元8通过改变半导体激光器2的注入电流或其它相关参数调制半导体激光器2的光源强度、波长、激光相位或激光偏振态;信号处理单元9接收光电探测器7的输出信号,输出加速度检测信号。信号处理单元按常规设置有放大、滤波和解调部分。
图3中所示的其它结构也包括:在圆柱壳的顶部设置一通孔6,用于贯穿数据线和电源线;上盖5用于封堵通孔6,以形成圆柱壳内的封闭空腔;
此外,在敏感质量块4的表面具有金属反光镀层,在半导体激光器2的前端设置透镜或透镜组10,以透镜或透镜组10调节半导体激光器2出射光强和所获得的反馈光光强;半导体激光器2可以采用F-P激光器(Fabry-perot Laser)、DFB激光器(Distributed Feedback Laser)或VCSEL激光器(Vertical Cavity Surface Emitting Laser)等。

Claims (4)

1.一种激光自混合型加速度传感器,其特征是具有:
一圆柱壳(1),在其内部形成一封闭腔,所述圆柱壳(1)与被测物体固定连接;
一弹性膜片(3),位于圆柱壳封闭腔的横断面上,所述弹性膜片(3)是以周边支撑在所述圆柱壳(1)的内侧壁上;在所述弹性膜片(3)的中央,固定设置一敏感质量块(4);
一半导体激光器(2),是以刚性支架固定设置在圆柱壳封闭腔内,与所述敏感质量块(4)处在同轴位置上;以光电探测器(7)、驱动和调制单元(8)和信号处理单元(9)与所述半导体激光器(2)共同构成信号传感单元;其中,所述半导体激光器(2)用于向敏感质量块(4)发出光信号,并接收来自敏感质量块的反馈光信号;所述光电探测器(7)作为光电信号转换单元;所述驱动和调制单元(8)通过改变半导体激光器(2)的注入电流或其它相关参数调制半导体激光器(2)的光源强度、波长、激光相位或激光偏振态;所述信号处理单元(9)接收光电探测器(7)的输出信号,并输出加速度检测信号。
2.根据权利要求1所述的激光自混合型加速度传感器,其特征是在所述敏感质量块(4)的表面具有金属反光镀层。
3.根据权利要求1所述的激光自混合型加速度传感器,其特征是在所述半导体激光器(2)的前端设置透镜或透镜组(10),以所述透镜或透镜组(10)调节半导体激光器(2)出射光强和所获得的反馈光光强。
4.根据权利要求1所述的激光自混合型加速度传感器,其特征是所述半导体激光器(2)为F-P激光器、DFB激光器或VCSEL激光器。
CN2011104105579A 2011-12-09 2011-12-09 激光自混合型加速度传感器 Pending CN102411065A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104105579A CN102411065A (zh) 2011-12-09 2011-12-09 激光自混合型加速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104105579A CN102411065A (zh) 2011-12-09 2011-12-09 激光自混合型加速度传感器

Publications (1)

Publication Number Publication Date
CN102411065A true CN102411065A (zh) 2012-04-11

Family

ID=45913264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104105579A Pending CN102411065A (zh) 2011-12-09 2011-12-09 激光自混合型加速度传感器

Country Status (1)

Country Link
CN (1) CN102411065A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333387A (zh) * 2018-01-25 2018-07-27 武汉光迅科技股份有限公司 一种光路敏感型加速度计
CN110018329A (zh) * 2019-04-12 2019-07-16 山东科技大学 锥形体光纤加速度传感器系统
CN110646083A (zh) * 2019-10-21 2020-01-03 安徽大学 光纤震动传感探头、及其安装方法和光纤震动传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200972412Y (zh) * 2006-09-07 2007-11-07 延边大学 激光自混频干涉式拾振器
CN101256198A (zh) * 2008-03-26 2008-09-03 北京航空航天大学 基于激光反馈干涉的微光机电加速度计
CN101788569A (zh) * 2009-12-31 2010-07-28 中国科学院声学研究所 一种光纤加速度传感器探头及加速度传感器系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200972412Y (zh) * 2006-09-07 2007-11-07 延边大学 激光自混频干涉式拾振器
CN101256198A (zh) * 2008-03-26 2008-09-03 北京航空航天大学 基于激光反馈干涉的微光机电加速度计
CN101788569A (zh) * 2009-12-31 2010-07-28 中国科学院声学研究所 一种光纤加速度传感器探头及加速度传感器系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333387A (zh) * 2018-01-25 2018-07-27 武汉光迅科技股份有限公司 一种光路敏感型加速度计
CN110018329A (zh) * 2019-04-12 2019-07-16 山东科技大学 锥形体光纤加速度传感器系统
WO2020206836A1 (zh) * 2019-04-12 2020-10-15 山东科技大学 锥形体光纤加速度传感器系统
CN110018329B (zh) * 2019-04-12 2020-10-16 山东科技大学 锥形体光纤加速度传感器系统
CN110646083A (zh) * 2019-10-21 2020-01-03 安徽大学 光纤震动传感探头、及其安装方法和光纤震动传感器

Similar Documents

Publication Publication Date Title
US4265124A (en) Remote acoustic wave sensors
CN101726354B (zh) 光纤激光矢量水听器
CN100585407C (zh) 基于悬臂梁挠度的光纤光栅加速度计
US4294513A (en) Optical sensor system
CN101852643B (zh) 温度自补偿型双光栅对称推挽式光纤光栅振动传感器
US7605391B2 (en) Optically coupled resonator
CN101285845A (zh) 一种悬臂梁式光纤光栅加速度计
EP0244086B1 (en) Resonator device
CN202330458U (zh) 激光自混合型加速度传感器
US7443509B1 (en) Optical and electronic interface for optically coupled resonators
CN102759635A (zh) 一种集成光栅压电调制的微光学加速度传感器及其检测方法
CN105092016B (zh) 一种moems矢量水听器
CN107911782B (zh) 一种光纤传声器探头及光纤传声器系统
CN103335757A (zh) 晶体型压力、应力或加速度传感器及光学测量方法
CN108761134A (zh) 一种弱耦合谐振式传感器的线性化输出检测方法
CN102411065A (zh) 激光自混合型加速度传感器
CN102707091A (zh) 基于悬臂梁的双光栅光纤矢量加速度计
CN101729967A (zh) 基于多模干涉的声光转换方法及光学麦克风
CN102696241A (zh) 光学麦克
CN102087300A (zh) 一种基于金属波纹管结构的光纤光栅加速度传感器
CN102520209B (zh) 基于激光自混合干涉的石英挠性加速度计
CN116519113B (zh) 基于光纤光栅的待测物振动的测量方法及振动传感器
US7661313B2 (en) Acceleration strain transducer
CN103308147A (zh) 一种基于单频激光回馈的振动测量方法及系统
CN110375824A (zh) 基于光纤光栅的加油站储罐液位和密度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120411