CN102404598B - Image generation system and method for stereoscopic 3D display - Google Patents
Image generation system and method for stereoscopic 3D display Download PDFInfo
- Publication number
- CN102404598B CN102404598B CN201110372986.1A CN201110372986A CN102404598B CN 102404598 B CN102404598 B CN 102404598B CN 201110372986 A CN201110372986 A CN 201110372986A CN 102404598 B CN102404598 B CN 102404598B
- Authority
- CN
- China
- Prior art keywords
- image
- dimensional
- display unit
- display
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000013507 mapping Methods 0.000 claims abstract description 15
- 238000003384 imaging method Methods 0.000 claims abstract description 8
- 238000005094 computer simulation Methods 0.000 claims description 3
- 230000004075 alteration Effects 0.000 abstract description 5
- 238000003672 processing method Methods 0.000 abstract 1
- 230000001131 transforming effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种用于体视三维显示图像生成系统及方法。配合光场重建和视场拼接的显示原理获取现有大部分体视三维显示系统的图像源。生成系统包括二维显示单元阵列、透镜阵列、孔阑阵列、定向散射屏、精密导轨、图像采集系统及计算机。生成方法步骤包括:循环扫描显示点;图像采集系统捕获识别;获取映射坐标关系;视角图像源变换;移动图像采集系统重复操作;对各图像进行叠加获取最终显示所需的图像源。本发明视具体的三维显示装置不同而采用灵活且操作性强图像处理方法,优点在于可用于基于平板显示器或多投影的体视三维显示系统中获取图像源。该系统及方法综合考虑了系统成像像差与系统精度问题,可在较低的计算复杂度下获得校正过的图像。
The invention discloses a system and method for stereoscopic three-dimensional display image generation. Cooperate with the display principle of light field reconstruction and field of view splicing to obtain the image sources of most existing stereoscopic 3D display systems. The generating system includes a two-dimensional display unit array, a lens array, an aperture array, a directional scattering screen, a precision guide rail, an image acquisition system and a computer. The steps of the generating method include: circularly scanning display points; capturing and identifying by an image acquisition system; obtaining mapping coordinate relationships; transforming perspective image sources; moving the image acquisition system to repeat operations; superimposing each image to obtain an image source required for final display. The present invention adopts a flexible and operable image processing method depending on the specific three-dimensional display device, and has the advantage that it can be used to obtain image sources in a stereoscopic three-dimensional display system based on a flat panel display or multi-projection. The system and method comprehensively consider the problem of system imaging aberration and system precision, and can obtain corrected images with relatively low computational complexity.
Description
技术领域 technical field
本发明涉及图像生成和显示方法,尤其涉及一种用于体视三维显示图像生成系统及方法。 The invention relates to image generation and display methods, in particular to an image generation system and method for stereoscopic three-dimensional display.
背景技术 Background technique
图像拼接技术一直是计算机视觉和图像处理领域的研究热点,而随着三维全景显示技术的高速发展,以三维方式设计的图像生成系统成为众多三维显示装置图像源获取采用的主要手段。以三维方式设计的图像生成系统是根据透视投影绘制方法,将三维图像信息再现在二维显示系统上。现有的体视三维显示装置大都依据在横向或者纵向通过视场拼接的方式提供足够多的观察视角,让观察者两只眼睛横跨不同的视角以获得细腻的三维感知。据此原理,二维显示系统上再现的图像信息与具体的三维显示装置视角设计参数有关,往往需要经过与所需呈现的视角信息相对应的图像处理过程。目前计算机图形学领域常用的处理思想是基于光场重建、像素点扫描的方式获取对应视角所需图像信息。该方法在计算机领域具有相当的普适性,并且所获取的各视角图像具有很高的分辨率与真实性,但该方案生成的图像并未考虑三维显示系统实际像差和系统精度问题,所生成的图像往往是理论情况下成像所需的图像,经过三维显示系统投影显示出来的效果并非尽如人意。 Image mosaic technology has always been a research hotspot in the field of computer vision and image processing. With the rapid development of 3D panoramic display technology, the image generation system designed in 3D has become the main means of image source acquisition for many 3D display devices. The image generation system designed in a three-dimensional manner reproduces three-dimensional image information on a two-dimensional display system based on a perspective projection drawing method. Most of the existing stereoscopic 3D display devices provide enough viewing angles by splicing the field of view horizontally or vertically, allowing the observer's two eyes to span different viewing angles to obtain a delicate 3D perception. According to this principle, the image information reproduced on the 2D display system is related to the specific viewing angle design parameters of the 3D display device, and often needs to go through an image processing process corresponding to the viewing angle information to be presented. At present, the commonly used processing ideas in the field of computer graphics are based on light field reconstruction and pixel scanning to obtain the image information required for the corresponding viewing angle. This method is quite universal in the computer field, and the images obtained from various perspectives have high resolution and authenticity, but the images generated by this scheme do not consider the actual aberration and system accuracy of the 3D display system, so The generated image is often the image required for imaging under theoretical conditions, and the effect displayed by the projection of the three-dimensional display system is not satisfactory.
通常情况下,成功的三维显示装置需要综合考虑图像分辨率、三维显示效果、计算成本等诸多方面,目前已经开发出的体视三维显示装置受限于系统结构等因素往往导致理论情况生成的图像并不能完美显示,探求一种易综合了考虑了系统成像像差和装置精度等问题的图像生成系统及方法更具实际应用价值。本发明的主要目的在于构建一种具备普适性的、可用于多种体视三维显示图像生成系统及方法,它包括具备较高拓展性的投影式三维显示装置及图像采集识别系统,其初衷在于综合了考虑了系统成像像差和装置精度的问题下从图像点实际投影显示的角度出发获得真实条件下显示所需的图像源,可广泛用于基于多投影显示或分时显示拼接原理的体视三维显示装置。 Usually, a successful 3D display device needs to comprehensively consider many aspects such as image resolution, 3D display effect, and computing cost. Currently, the stereoscopic 3D display devices that have been developed are limited by factors such as system structure, which often lead to images generated in theoretical conditions. It cannot be perfectly displayed, and it is more practical to explore an image generation system and method that easily takes into account the system imaging aberration and device accuracy. The main purpose of the present invention is to construct a system and method for generating a variety of stereoscopic three-dimensional display images with universality, which includes a projection type three-dimensional display device and an image acquisition and recognition system with high scalability. In consideration of system imaging aberration and device accuracy, the image source required for display under real conditions can be obtained from the perspective of actual projection display of image points, and can be widely used in multi-projection display or time-sharing display splicing principles. Stereoscopic three-dimensional display device.
发明内容 Contents of the invention
本发明的目的是克服现有技术和图像生成方法的不足,提供一种用于体视三维显示图像生成系统及方法。 The object of the present invention is to overcome the deficiencies of the prior art and image generation methods, and provide an image generation system and method for stereoscopic three-dimensional display.
所述的用于体视三维显示图像生成系统包括依次设置的二维显示单元阵列、透镜阵列、孔阑阵列、定向散射屏和精密导轨,其中,定向散射屏和精密导轨呈同心布置,在精密导轨上设有图像采集系统,二维显示单元阵列中所有显示单元显示的图像通过对应的透镜阵列、孔阑阵列投影到定向散射屏另一侧成像,计算机分别与图像采集系统和二维显示单元阵列相连接。 The image generation system for stereoscopic three-dimensional display includes a two-dimensional display unit array, a lens array, an aperture array, a directional scattering screen and a precision guide rail arranged in sequence, wherein the directional scattering screen and the precision guide rail are arranged concentrically, and the precise An image acquisition system is installed on the guide rail. The images displayed by all the display units in the two-dimensional display unit array are projected to the other side of the directional scattering screen through the corresponding lens array and aperture array for imaging. The computer is connected with the image acquisition system and the two-dimensional display unit respectively. Arrays are connected. the
所述的用于体视三维显示图像生成系统的二维显示单元阵列、透镜阵列和孔阑阵列为横向视差的N*1阵列,或为横向和纵向视差的N*M阵列。 The two-dimensional display unit array, lens array and aperture array used in the stereoscopic three-dimensional display image generating system are N*1 arrays of lateral parallax, or N*M arrays of lateral and vertical parallax.
所述的用于体视三维显示图像生成系统的二维显示单元阵列为单个二维显示器或多个二维显示器组成的阵列,其中,二维显示器为LCD、LCOS、PDP、LED、CRT、OLED或投影机。 The two-dimensional display unit array used in the stereoscopic three-dimensional display image generation system is a single two-dimensional display or an array of multiple two-dimensional displays, wherein the two-dimensional display is LCD, LCOS, PDP, LED, CRT, OLED or a projector.
所述的用于体视三维显示图像生成系统的图像采集系统为CCD或CMOS拍摄器件。 The image acquisition system used in the stereoscopic three-dimensional display image generation system is a CCD or CMOS shooting device.
所述的用于体视三维显示图像生成方法的步骤如下: The steps of the method for generating stereoscopic three-dimensional display images are as follows:
1)图像采集系统首先设置于系统对称中心线上,并对准系统成像中心拍摄; 1) The image acquisition system is first set on the symmetrical center line of the system, and shoots at the imaging center of the system;
2)二维显示单元阵列中的显示单元显示一个坐标点(X0,Y0); 2) The display unit in the two-dimensional display unit array displays a coordinate point (X 0 , Y 0 );
3)若图像采集系统捕获到相应坐标点信息,则判定为显示单元上显示的点属于该视角所需显示的图像,进行步骤4);若图像采集系统未捕获到相应坐标点信息,则判定为显示单元上显示的点不属于该视角所需显示的图像,返回步骤2)循环扫描显示下一个坐标点; 3) If the image acquisition system captures the corresponding coordinate point information, it is determined that the point displayed on the display unit belongs to the image to be displayed at the viewing angle, and proceed to step 4); if the image acquisition system does not capture the corresponding coordinate point information, then determine Because the point displayed on the display unit does not belong to the image to be displayed at this viewing angle, return to step 2) cyclically scan and display the next coordinate point;
4)分别记录下捕获的显示点在二维图像显示单元阵列中的坐标点信息(X0,Y0)和在图像采集系统中的坐标点信息(X1,Y1),送入计算机生成相应的映射关系;循环扫描记录坐标点映射信息直至二维显示单元阵列中的显示单元所有显示点扫描结束; 4) Record the coordinate point information (X 0 , Y 0 ) of the captured display point in the two-dimensional image display unit array and the coordinate point information (X 1 , Y 1 ) in the image acquisition system, and send them to the computer to generate Corresponding mapping relationship; cyclically scan and record the coordinate point mapping information until the scanning of all display points of the display units in the two-dimensional display unit array ends;
5)计算机获取所要呈现三维物体相应视角的原始图像,根据映射关系进行从坐标点(X1,Y1)到坐标点(X0,Y0)的变化,得到所要呈现三维物体相应视角在二维显示单元阵列中的图像; 5) The computer obtains the original image of the corresponding viewing angle of the three-dimensional object to be presented, and changes from the coordinate point (X 1 , Y 1 ) to the coordinate point (X 0 , Y 0 ) according to the mapping relationship, and obtains the corresponding viewing angle of the three-dimensional object to be presented in two Dimension display image in cell array;
6)分别向左或向右移动图像采集系统至下一个相邻视角位置,其中,图像采集系统沿精密导轨移动的角度间隔与三维显示系统的视角间隔相匹配,重复步骤1)至步骤5),直至计算机得到所要呈现三维物体所有视角在二维显示单元阵列中的图像; 6) Move the image acquisition system to the left or right to the next adjacent viewing angle position, wherein the angular interval of the image acquisition system moving along the precision guide rail matches the viewing angle interval of the 3D display system, and repeat steps 1) to 5) , until the computer obtains images of all viewing angles of the three-dimensional object to be presented in the two-dimensional display unit array;
7)计算机将所有所要呈现三维物体相应视角在二维显示单元阵列中的图像叠加生成最终二维显示单元阵列显示的图像并送入相应显示单元。 7) The computer superimposes the images in the two-dimensional display unit array of the corresponding viewing angles of all the three-dimensional objects to be presented to generate the final image displayed by the two-dimensional display unit array and sends it to the corresponding display unit.
所述的用于体视三维显示图像生成方法的三维物体原始视角图像为由计算机模拟拍摄虚拟三维模型各视角的图像,或由相机在对应视角实际拍摄三维物体的图像。 The original perspective image of the 3D object used in the stereoscopic 3D display image generation method is the image of each perspective of the virtual 3D model captured by computer simulation, or the image of the 3D object actually captured by the camera at the corresponding perspective.
本发明的主要优点在于提出了一种具备普适性的、可用于多种体视三维显示图像生成系统及方法,它包括具备较高拓展性的投影式三维显示装置及图像采集识别系统,其初衷在于综合了考虑了系统成像像差和装置精度的问题下从图像点实际投影显示的角度出发获得真实条件下显示所需的图像源,可广泛用于基于多投影显示或分时显示拼接原理的体视三维显示装置。 The main advantage of the present invention is that it proposes a system and method for generating a variety of stereoscopic three-dimensional display images with universality, which includes a projection-type three-dimensional display device and an image acquisition and recognition system with high scalability. The original intention is to obtain the image source required for display under real conditions from the perspective of actual projection display of image points, taking into account the problems of system imaging aberration and device accuracy, and can be widely used based on the principle of multi-projection display or time-sharing display stitching Stereoscopic 3D display device.
附图说明 Description of drawings
下面结合附图和实施例对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是用于体视三维显示的图像显示方法的装置基本结构示意图; 1 is a schematic diagram of the basic structure of a device for an image display method for stereoscopic three-dimensional display;
图2是用于体视三维显示的图像生成方法流程及示意图; Fig. 2 is a flow chart and a schematic diagram of an image generation method for stereoscopic three-dimensional display;
图3是横向15个视角三维显示装置显示单元基本结构示意图; 3 is a schematic diagram of the basic structure of a display unit of a three-dimensional display device with 15 horizontal viewing angles;
图4、图5是横向15个视角三维显示装置对应的图像定标方法示意图; Fig. 4 and Fig. 5 are schematic diagrams of the image calibration method corresponding to the three-dimensional display device with 15 horizontal viewing angles;
图中,二维图像显示单元阵列1、透镜阵列2、孔阑阵列3、定向散射屏4、精密导轨5、图像采集系统6、计算机7。
In the figure, a two-dimensional image
具体实施方式 Detailed ways
如图1所示,用于体视三维显示图像生成系统包括依次设置的二维显示单元阵列1、透镜阵列2、孔阑阵列3、定向散射屏4和精密导轨5,其中,定向散射屏4和精密导轨5呈同心布置,在精密导轨5上设有图像采集系统6,二维显示单元阵列1中所有显示单元显示的图像通过对应的透镜阵列2、孔阑阵列3投影到定向散射屏4另一侧成像,计算机7分别与图像采集系统6和二维显示单元阵列1相连接。
As shown in Figure 1, the image generation system for stereoscopic three-dimensional display includes a two-dimensional
二维显示单元阵列1、透镜阵列2和孔阑阵列3为横向视差的N*1阵列,或为横向和纵向视差的N*M阵列。二维显示单元阵列1为单个二维显示器或多个二维显示器组成的阵列,其中,二维显示器为LCD、LCOS、PDP、LED、CRT、OLED或投影机。图像采集系统6为CCD或CMOS拍摄器件。
The two-dimensional
如图2所示,用于体视三维显示图像生成方法的步骤如下: As shown in Figure 2, the steps of the method for generating stereoscopic 3D display images are as follows:
1)图像采集系统6首先设置于系统对称中心线上,并对准系统成像中心拍摄; 1) The image acquisition system 6 is first set on the symmetrical center line of the system, and is aligned with the imaging center of the system to shoot;
2)二维显示单元阵列1中的显示单元显示一个坐标点(X0,Y0);
2) The display unit in the two-dimensional
3)若图像采集系统6捕获到相应坐标点信息,则判定为显示单元上显示的点属于该视角所需显示的图像,进行步骤4);若图像采集系统6未捕获到相应坐标点信息,则判定为显示单元上显示的点不属于该视角所需显示的图像,返回步骤2)循环扫描显示下一个坐标点; 3) If the image acquisition system 6 captures the corresponding coordinate point information, it is determined that the point displayed on the display unit belongs to the image to be displayed at the viewing angle, and proceed to step 4); if the image acquisition system 6 does not capture the corresponding coordinate point information, Then it is judged that the point displayed on the display unit does not belong to the image to be displayed at this viewing angle, and returns to step 2) cyclically scans and displays the next coordinate point;
4)分别记录下捕获的显示点在二维图像显示单元阵列1中的坐标点信息(X0,Y0)和在图像采集系统6中的坐标点信息(X1,Y1),送入计算机7生成相应的映射关系;循环扫描记录坐标点映射信息直至二维显示单元阵列1中的显示单元所有显示点扫描结束;
4) Record the coordinate point information (X 0 , Y 0 ) of the captured display point in the two-dimensional image
5)计算机7获取所要呈现三维物体相应视角的原始图像,根据映射关系进行从坐标点(X1,Y1)到坐标点(X0,Y0)的变化,得到所要呈现三维物体相应视角在二维显示单元阵列1中的图像;
5) The computer 7 obtains the original image of the corresponding viewing angle of the three-dimensional object to be presented, and changes from the coordinate point (X 1 , Y 1 ) to the coordinate point (X 0 , Y 0 ) according to the mapping relationship, and obtains the corresponding viewing angle of the three-dimensional object to be presented at Two-dimensionally display the images in the
6)分别向左或向右移动图像采集系统6至下一个相邻视角位置,其中,图像采集系统6沿精密导轨5移动的角度间隔与三维显示系统的视角间隔相匹配,重复步骤1)至步骤5),直至计算机7得到所要呈现三维物体所有视角在二维显示单元阵列1中的图像;
6) Move the image acquisition system 6 to the left or right to the next adjacent viewing angle position, wherein the angular interval of the image acquisition system 6 moving along the precision guide rail 5 matches the viewing angle interval of the three-dimensional display system, and repeat steps 1) to Step 5), until the computer 7 obtains the images of all viewing angles of the three-dimensional object to be presented in the two-dimensional
7)计算机7将所有所要呈现三维物体相应视角在二维显示单元阵列1中的图像叠加生成最终二维显示单元阵列1显示的图像并送入相应显示单元。
7) The computer 7 superimposes the images in the two-dimensional
用于体视三维显示图像生成方法的三维物体原始视角图像为由计算机模拟拍摄虚拟三维模型各视角的图像,或由相机在对应视角实际拍摄三维物体的图像。 The original perspective image of the three-dimensional object used in the stereoscopic three-dimensional display image generation method is the image of each perspective of the virtual three-dimensional model captured by computer simulation, or the image of the three-dimensional object actually captured by the camera at the corresponding perspective.
以一个包含15个横向拼接图像的视场拼接三维显示装置生成一个视角的图像为示例,其余的视角均可类推得到。系统结构如图1所示,图像显示阵列1包括错位排布的15个投影机,如图3所示,所谓投影机由图像显示阵列1的一部分、一个透镜和一个孔阑组成,孔阑紧贴在透镜前方;定向散射屏2为弧形,以系统中心O点为圆心,在纵向散射光线,横向不散射光线。15个投影机在水平方向上对准设定的系统中心O,垂直方向上对准散射屏2上的同一高度。则15个投影机的图像均经过纵向散射屏2在纵向展开,从而在另一侧看到长条形图像,15幅图像正好拼接成一整幅完整图像。
Taking an example of an image generated by a field-of-view stitching 3D display device including 15 horizontally stitched images to generate an image of one viewing angle, other viewing angles can be derived by analogy. The system structure is shown in Figure 1. The
生成图像之前首先需要进行一次图像定标。先将图像采集系统6置于中间视角位置,如图1中实线表示的采集系统位置。然后在图像显示阵列1上显示一个白点,坐标为(X0,Y0),从显示阵列的左上角开始将白点逐行扫描,如图4所示;图像采集系统6在白点每移动一个像素就捕获一幅视角图像,分析获得的图像中白点有没有出现;如果有,说明此位置的白点是属于该视角的,将其在获取的视角图像中的坐标(X1,Y1)记录下来,如图5所示,并与图像显示阵列中白点的坐标(X0,Y0)建立映射关系。这样当图像显示阵列1上所有的像素点都被扫描过后,图像采集系统6捕获的区域内的所有出现过的白点的(X1,Y1)坐标都映射到图像显示阵列1上相应的(X0,Y0),并且呈现一个分布区域,如图5的虚线框所示,这个区域就是系统可以显示的图像范围。这样一个视角就定标完成了。
Before generating an image, an image calibration is first required. Firstly, the image acquisition system 6 is placed at the position of the middle viewing angle, such as the position of the acquisition system indicated by the solid line in FIG. 1 . Then, a white point is displayed on the
完成一个视角的图像定标后,将属于该视角的所有(X0,Y0)设置成白色,其余设置成黑色,此时图像采集系统6应当采集到由15条白色竖条拼接成的一片白色区域;图像采集系统6沿着精密导轨5往右移动,直到某一个竖条图像完全变成黑色,则认为图像采集系统6已经到了下一个视角,转过的角度即为相邻视角的间隔。在下一个视角重复前文图像定标部分,直到所有视角都定标完成,最后可以得到所有视角上(X1,Y1)与相应(X0,Y0)的映射关系。 After completing the image calibration of a viewing angle, set all (X 0 , Y 0 ) belonging to the viewing angle to white, and set the rest to black. At this time, the image acquisition system 6 should collect a piece of 15 white vertical bars. White area; the image acquisition system 6 moves to the right along the precision guide rail 5 until a certain vertical bar image completely turns black, then it is considered that the image acquisition system 6 has reached the next viewing angle, and the angle turned is the interval between adjacent viewing angles . Repeat the previous image calibration part for the next viewing angle until all viewing angles are calibrated, and finally the mapping relationship between (X 1 , Y 1 ) and corresponding (X 0 , Y 0 ) on all viewing angles can be obtained.
定标完成之后,在系统参数不改变的情况下即可根据已经获得的映射关系生成图像而无需再次定标。将最终要显示的三维模型或场景按照定标部分的视角间隔获取二维视角图像。将视角图像缩放至系统可以显示的图像范围大小,并将视角图像的像素点与相应视角上的(X1,Y1)一一对应,根据映射关系分配到(X0,Y0)上,则该视角的所有像素(X0,Y0)均由该视角的视角图像映射得到。其余视角操作由此类推,最终可以得到整个图像显示阵列1需要显示的图像。只要在图像显示阵列1上显示最终生成的图像,在观察区域就可以看到三维模型或场景。
After the calibration is completed, the image can be generated according to the obtained mapping relationship without changing the system parameters without re-calibration. The final 3D model or scene to be displayed is obtained according to the viewing angle interval of the calibration part to obtain 2D viewing angle images. Scale the perspective image to the size of the image range that the system can display, and correspond the pixels of the perspective image with (X 1 , Y 1 ) on the corresponding perspective, and assign them to (X 0 , Y 0 ) according to the mapping relationship. Then all the pixels (X 0 , Y 0 ) of the viewing angle are obtained by mapping the viewing angle image of the viewing angle. The rest of the viewing angle operations can be deduced by analogy, and finally the image to be displayed by the entire
虽然这里是通过示意和举例的方式对本发明进行进一步描述的,但应该认识到,本发明并不局限于上述实施方式和实施例,前文的描述只被认为是说明性的,而非限制性的,本领域技术人员可以做出多种变换或修改,只要没有离开所附权利要求中所确立的范围和精神实质,均视为在本发明的保护范围之内。 Although the present invention is further described here by way of illustration and example, it should be recognized that the present invention is not limited to the above-mentioned embodiments and examples, and the foregoing descriptions are only considered as illustrative rather than restrictive , those skilled in the art can make various changes or modifications, as long as they do not depart from the scope and spirit established in the appended claims, they are all deemed to be within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110372986.1A CN102404598B (en) | 2011-11-22 | 2011-11-22 | Image generation system and method for stereoscopic 3D display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110372986.1A CN102404598B (en) | 2011-11-22 | 2011-11-22 | Image generation system and method for stereoscopic 3D display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102404598A CN102404598A (en) | 2012-04-04 |
CN102404598B true CN102404598B (en) | 2013-12-25 |
Family
ID=45886306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110372986.1A Expired - Fee Related CN102404598B (en) | 2011-11-22 | 2011-11-22 | Image generation system and method for stereoscopic 3D display |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102404598B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102692805B (en) * | 2012-05-31 | 2015-01-21 | 浙江大学 | Multilayer liquid crystal-based projection type three-dimensional display device and method |
TWI507014B (en) * | 2013-12-02 | 2015-11-01 | Nat Taichung University Science & Technology | System for calibrating three dimension perspective image and method thereof |
CN105739106B (en) * | 2015-06-12 | 2019-07-09 | 南京航空航天大学 | A kind of true three-dimensional display apparatus of body-sensing multiple views large scale light field and method |
CN105549183B (en) * | 2016-01-05 | 2018-01-16 | 中国航空工业集团公司洛阳电光设备研究所 | Wide-angle image device based on concentric spherical object lens |
CN106980181B (en) * | 2017-05-16 | 2018-04-03 | 西安科技大学 | A kind of holographic 3D 3 d display devices and method |
CN107580207A (en) * | 2017-10-31 | 2018-01-12 | 武汉华星光电技术有限公司 | The generation method and generating means of light field 3D display cell picture |
CN109151447A (en) * | 2018-08-22 | 2019-01-04 | 陈宇拓 | A kind of novel naked eye three-dimensional optical field imaging system |
CN113421344B (en) * | 2021-05-28 | 2023-03-28 | 互动视创科技(武汉)有限责任公司 | Immersive film watching device and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866482B (en) * | 2010-06-21 | 2012-02-15 | 清华大学 | Panorama splicing method based on camera self-calibration technology, and device thereof |
CN102238411B (en) * | 2011-06-29 | 2013-01-02 | 浙江大学 | Image display method for reflecting three-dimensional display |
CN102231044A (en) * | 2011-06-29 | 2011-11-02 | 浙江大学 | Stereoscopic three-dimensional display based on multi-screen splicing |
-
2011
- 2011-11-22 CN CN201110372986.1A patent/CN102404598B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102404598A (en) | 2012-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102404598B (en) | Image generation system and method for stereoscopic 3D display | |
TWI555378B (en) | An image calibration, composing and depth rebuilding method of a panoramic fish-eye camera and a system thereof | |
JP5456020B2 (en) | Information processing apparatus and method | |
WO2018235163A1 (en) | Calibration device, calibration chart, chart pattern generation device, and calibration method | |
CN101729920B (en) | Method for displaying stereoscopic video with free visual angles | |
JP4928476B2 (en) | Stereoscopic image generating apparatus, method thereof and program thereof | |
CN102098524A (en) | Tracking type stereo display device and method | |
TW201717613A (en) | An image calibrating, composing and depth rebuilding method of a panoramic fish-eye camera and a system thereof | |
CN105160680A (en) | Design method of camera with no interference depth based on structured light | |
WO2018028152A1 (en) | Image acquisition device and virtual reality device | |
KR102049456B1 (en) | Method and apparatus for formating light field image | |
CN102572486A (en) | Acquisition system and method for stereoscopic video | |
CN102595178B (en) | Field stitching three dimensional rendered images corrective system and bearing calibration | |
CN111009030A (en) | A multi-view high-resolution texture image and binocular 3D point cloud mapping method | |
WO2018032841A1 (en) | Method, device and system for drawing three-dimensional image | |
CN107358577A (en) | A kind of quick joining method of cubic panorama | |
CN114359406A (en) | Calibration of auto-focusing binocular camera, 3D vision and depth point cloud calculation method | |
CN106154567B (en) | A kind of imaging method and device of 3 d light fields display system | |
CN102566251A (en) | Space three-dimensional display device and correction method based on modularization splicing | |
JP2009212728A (en) | Stereoscopic video processor and stereoscopic video processing method | |
CN102238411A (en) | Image display method for reflecting three-dimensional display | |
CN108198132A (en) | The method of integration imaging image reconstruction based on Block- matching | |
CN114967170B (en) | Display processing method and device thereof based on flexible naked-eye three-dimensional display device | |
CN103796002B (en) | One-dimensional integrated imaging 3D shooting method based on orthogonal projection | |
Gurrieri et al. | Stereoscopic cameras for the real-time acquisition of panoramic 3D images and videos |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131225 Termination date: 20211122 |
|
CF01 | Termination of patent right due to non-payment of annual fee |