TWI507014B - System for calibrating three dimension perspective image and method thereof - Google Patents

System for calibrating three dimension perspective image and method thereof Download PDF

Info

Publication number
TWI507014B
TWI507014B TW102144127A TW102144127A TWI507014B TW I507014 B TWI507014 B TW I507014B TW 102144127 A TW102144127 A TW 102144127A TW 102144127 A TW102144127 A TW 102144127A TW I507014 B TWI507014 B TW I507014B
Authority
TW
Taiwan
Prior art keywords
coordinates
fluoroscopic image
dimensional fluoroscopic
image
dimensional
Prior art date
Application number
TW102144127A
Other languages
Chinese (zh)
Other versions
TW201524187A (en
Inventor
Fong Ming Shyu
Yu Han Chen
Song Nian Wang
Chin Hao Chang
Original Assignee
Nat Taichung University Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Taichung University Science & Technology filed Critical Nat Taichung University Science & Technology
Priority to TW102144127A priority Critical patent/TWI507014B/en
Publication of TW201524187A publication Critical patent/TW201524187A/en
Application granted granted Critical
Publication of TWI507014B publication Critical patent/TWI507014B/en

Links

Landscapes

  • Processing Or Creating Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

三維透視影像校正方法及其系統 Three-dimensional fluoroscopic image correction method and system thereof

下列敘述是有關於一種在螢幕上顯示影像之校正方法及其系統,特別是,有關於一螢幕能隨一使用者觀看之位置或角度產生變化並呈現一三維透視影像之立體透視感的影像校正方法及其系統。 The following description relates to a method for correcting an image displayed on a screen and a system thereof, and more particularly, to an image correction in which a screen can be changed with a position or angle viewed by a user and a stereoscopic perspective of a three-dimensional perspective image is presented. Method and system.

近年來,隨著業者積極拓展家用三維(3D)顯示介面進入消費市場,人類的視覺經驗從二維(2D)進入3D多媒體世代。而在互動方式上,主要決定於運算技術來做區別,Remote Control與Touch Panel的運算方式為2D(只捕捉目標的空間位置,即X軸與Y軸),而Motion Tracking技術,假使除了捕捉目標的空間位置(X軸和Y軸)和顏色之外,還能捕捉目標的深度(又稱Z軸)、範圍、距離及其周圍環境的話,即被稱為3D運算方式。因此互動的方式從過去的以滑鼠、搖桿的2D運算方式,進展至將更人性化的3D互動運算世代。 In recent years, as operators have actively expanded their home three-dimensional (3D) display interfaces into the consumer market, human visual experience has moved from two-dimensional (2D) to 3D multimedia generations. In terms of interaction, the main decision is based on computing technology. The Remote Control and Touch Panel are calculated in 2D (only capturing the spatial position of the target, ie the X and Y axes), while the Motion Tracking technology, in addition to capturing the target. In addition to the spatial position (X-axis and Y-axis) and color, it can also capture the depth of the target (also known as the Z-axis), range, distance and its surroundings, which is called 3D operation. Therefore, the way of interaction has evolved from the past 2D computing method of mouse and joystick to the more humanized 3D interactive computing generation.

利用紅外線偵測是目前一種創新的3D透視影像技術,在一螢幕上連接一紅外線感應裝置,且在使用者身上配載一紅外線發射裝置,當使用者移動時,紅外線感應裝置即可由紅外線發射裝置得知使用者目前相對於螢幕之位置,利用此位置資訊以變化螢幕中的3D影像至螢幕之2D上,舉例來說,當使用者遠離螢幕時,此3D影像即變小,當使用 者面對螢幕向右移動時,此3D影像即向左偏移且同時縮小,讓使用者在觀看此3D影像時具有一立體透視感。 Infrared detection is an innovative 3D fluoroscopy technology. An infrared sensor is connected to a screen, and an infrared emitting device is mounted on the user. When the user moves, the infrared sensing device can be used by the infrared emitting device. Knowing the position of the user relative to the screen, using the location information to change the 3D image in the screen to the 2D of the screen, for example, when the user is away from the screen, the 3D image becomes smaller when used. When the screen is moved to the right, the 3D image is shifted to the left and zoomed out at the same time, so that the user has a stereoscopic perspective when viewing the 3D image.

然而,在上述的3D透視影像技術中,在畫面產生的同時,畫面上的物體容易受到鏡頭焦段影響而產生如桶形或枕形之變形,若能進一步地解決此變形問題,使用者在觀看螢幕上之3D透視影像時將有更為良好的立體顯示體驗。 However, in the above-mentioned 3D fluoroscopic image technology, while the screen is generated, the object on the screen is easily affected by the focal length of the lens to cause deformation such as a barrel shape or a pincushion shape, and if the deformation problem can be further solved, the user is watching. A 3D perspective image on the screen will have a better stereoscopic display experience.

本發明實施例之態樣係針對一種三維透視影像校正方法及其系統,能夠校正此三維透視影像在螢幕中所造成之變形影像,讓使用者能有良好的立體顯示體驗。 The embodiment of the present invention is directed to a three-dimensional fluoroscopic image correction method and system thereof, which can correct the deformed image caused by the three-dimensional fluoroscopic image in the screen, so that the user can have a good stereoscopic display experience.

本發明實施例之態樣係針對一種三維透視影像校正方法及其系統,除了能夠使三維透視影像隨著使用者在水平方向進行校正,亦能直接套用此方法使三維透視影像隨著使用者在垂直方向進行校正。 The embodiment of the present invention is directed to a three-dimensional fluoroscopic image correction method and system thereof. In addition to enabling the three-dimensional fluoroscopic image to be corrected in the horizontal direction, the method can directly apply the method to make the three-dimensional fluoroscopic image follow the user. Correct in the vertical direction.

根據本創作之目的,提出一種三維透視影像校正方法,係適用於顯示一三維透視影像隨一使用者觀看之位置或角度產生變化並呈現三維透視影像之立體透視感的一螢幕,三維透視影像校正方法包含:設定使用者位於貫穿螢幕及三維透視影像之一突出軸上之位置為一原點(0,0),並決定突出軸上之螢幕之一螢幕座標(0,z1)及三維透視影像之一原始影像座標(0,z2);當使用者水平移動至複數個移動點座標(xi,0),利用一處理單元計算複數個由原始影像座標(0,z2)至原點(0,0)所形成之邊與由原始影像座標(0,z2)至每一複數個移動點座標(xi,0)所形成之邊所構成之夾角θi,其中i為大於1的一正整數;利用一角度校正單元將 三維透視影像根據每一複數個移動點座標(xi,0)以分別旋轉所對應之複數個夾角θi;利用一移動校正單元將三維透視影像根據每一複數個移動點座標(xi,0)以分別移動至所對應之複數個新座標((xi*z1)/z2,z1);以及利用一尺寸校正單元根據複數個移動點座標(xi,0)求得原始影像座標(0,z2)至每一複數個移動點座標(xi,0)之距離與原始影像座標(0,z2)至原點(0,0)之距離之複數個比例,並針對每一複數個移動點座標(xi,0)及其對應之每一複數個比例以分別縮放在複數個新座標((xi*z1)/z2,z1)之三維透視影像之大小。 According to the purpose of the present invention, a three-dimensional fluoroscopic image correction method is proposed, which is suitable for displaying a three-dimensional fluoroscopic image which changes with a position or angle viewed by a user and presents a stereoscopic perspective of the three-dimensional fluoroscopic image, and the three-dimensional fluoroscopic image correction The method comprises: setting a position of the user on a protruding axis of the screen and the three-dimensional fluoroscopic image as an origin (0, 0), and determining one of the screen coordinates (0, z1) and the three-dimensional fluoroscopic image of the screen on the protruding axis One of the original image coordinates (0, z2); when the user moves horizontally to a plurality of moving point coordinates (xi, 0), a processing unit calculates a plurality of original image coordinates (0, z2) to the origin (0, 0) an angle θ i formed by an edge formed by an original image coordinate (0, z2) to each of a plurality of moving point coordinates (xi, 0), where i is a positive integer greater than one; The three-dimensional fluoroscopic image is rotated by the plurality of moving point coordinates (xi, 0) according to each of the plurality of moving point coordinates (xi, 0) by a plurality of angles θ i; and the three-dimensional fluoroscopic image is used according to each of the plurality of moving points by using a movement correcting unit The coordinates (xi, 0) are Do not move to the corresponding plurality of new coordinates ((xi*z1)/z2, z1); and use a size correction unit to obtain the original image coordinates (0, z2) from the plurality of moving point coordinates (xi, 0) to The ratio of the distance of each of the plurality of moving point coordinates (xi, 0) to the distance between the original image coordinates (0, z2) and the origin (0, 0), and for each of the plurality of moving point coordinates (xi, 0) and each of its corresponding proportions to scale the size of the three-dimensional fluoroscopic image of the plurality of new coordinates ((xi*z1)/z2, z1).

更佳地,處理單元包含一中央處理器或一微處理器。 More preferably, the processing unit comprises a central processing unit or a microprocessor.

更佳地,當每一複數個移動點座標(xi,0)所對應之每一複數個比例大於1時,尺寸校正單元根據一倍率以縮小三維透視影像,當每一複數個移動點座標(xi,0)所對應之每一複數個比例小於1時,尺寸校正單元根據倍率以放大三維透視影像。 More preferably, when each of the plurality of moving point coordinates (xi, 0) corresponds to each of the plurality of ratios greater than 1, the size correcting unit reduces the three-dimensional perspective image according to the multiple magnification, when each of the plurality of moving point coordinates ( When each of the plurality of ratios corresponding to xi, 0) is less than 1, the size correcting unit enlarges the three-dimensional fluoroscopic image according to the magnification.

更佳地,角度校正單元、移動校正單元或尺寸校正單元係包含一軟體應用程式。 More preferably, the angle correction unit, the motion correction unit or the size correction unit comprises a software application.

更佳地,三維透視影像係具有一透視感及一保持物體形狀之特性。 More preferably, the three-dimensional fluoroscopic image has a sense of perspective and a shape that retains the shape of the object.

根據本創作之目的,更提出一種三維透視影像校正系統,係適用於顯示一三維透視影像隨一使用者觀看之位置或角度產生變化並呈現三維透視影像之立體透視感的一螢幕,三維透視影像校正系統包含:一處理單元,設定使用者位於貫穿螢幕及三維透視影像之一突出軸上之位置為一原點(0,0),並決定突出軸上之螢幕之一螢幕座標(0,z1) 及三維透視影像之一原始影像座標(0,z2),當使用者水平移動至複數個移動點座標(xi,0),計算複數個由原始影像座標(0,z2)至原點(0,0)所形成之邊與由原始影像座標(0,z2)至每一複數個移動點座標(xi,0)所形成之邊所構成之夾角θi,其中i為大於1的一正整數;一角度校正單元,將三維透視影像根據每一複數個移動點座標(xi,0)以分別旋轉所對應之複數個夾角θi;一移動校正單元,將三維透視影像根據每一複數個移動點座標(xi,0)以分別移動至所對應之複數個新座標((xi*z1)/z2,z1);以及一尺寸校正單元,根據複數個移動點座標(xi,0)求得原始影像座標(0,z2)至每一複數個移動點座標(xi,0)之距離與原始影像座標(0,z2)至原點(0,0)之距離之複數個比例,並針對每一複數個移動點座標(xi,0)及其對應之每一複數個比例以分別縮放在複數個新座標((xi*z1)/z2,z1)之三維透視影像之大小。 According to the purpose of the present invention, a three-dimensional fluoroscopic image correction system is proposed, which is suitable for displaying a three-dimensional fluoroscopic image that changes with the position or angle of a user's viewing and presents a stereoscopic perspective of the three-dimensional fluoroscopic image. The calibration system includes: a processing unit that sets the position of the user on one of the protruding axes of the screen and the three-dimensional fluoroscopic image as an origin (0, 0), and determines one of the screen coordinates on the highlighted axis (0, z1) And one of the original image coordinates (0, z2) of the three-dimensional fluoroscopic image. When the user moves horizontally to a plurality of moving point coordinates (xi, 0), a plurality of original image coordinates (0, z2) are calculated to the origin (0). , 0) and the angle formed by side to each of the plurality of mobile coordinate points from the original image coordinates (0, z2) (xi, 0) formed by the edge constituted of [theta] i, where i is a positive integer greater than 1, An angle correction unit that rotates the three-dimensional fluoroscopic image according to each of the plurality of moving point coordinates (xi, 0) to respectively rotate the corresponding plurality of angles θ i; a movement correcting unit moves the three-dimensional fluoroscopic image according to each of the plurality of Point coordinates (xi, 0) to separate Move to the corresponding plurality of new coordinates ((xi*z1)/z2, z1); and a size correction unit to obtain the original image coordinates (0, z2) to each according to the plurality of moving point coordinates (xi, 0) The ratio of the distance between a plurality of moving point coordinates (xi, 0) and the distance between the original image coordinates (0, z2) and the origin (0, 0), and for each complex moving point coordinate (xi, 0) And each of its corresponding proportions to scale the size of the three-dimensional fluoroscopic image at a plurality of new coordinates ((xi*z1)/z2, z1).

更佳地,處理單元包含一中央處理器或一微處理器。 More preferably, the processing unit comprises a central processing unit or a microprocessor.

更佳地,當每一複數個移動點座標(xi,0)所對應之每一複數個比例大於1時,尺寸校正單元根據一倍率以縮小三維透視影像,當每一複數個移動點座標(xi,0)所對應之每一複數個比例小於1時,尺寸校正單元根據倍率以放大三維透視影像。 More preferably, when each of the plurality of moving point coordinates (xi, 0) corresponds to each of the plurality of ratios greater than 1, the size correcting unit reduces the three-dimensional perspective image according to the multiple magnification, when each of the plurality of moving point coordinates ( When each of the plurality of ratios corresponding to xi, 0) is less than 1, the size correcting unit enlarges the three-dimensional fluoroscopic image according to the magnification.

更佳地,角度校正單元、移動校正單元或尺寸校正單元係包含一軟體應用程式。 More preferably, the angle correction unit, the motion correction unit or the size correction unit comprises a software application.

更佳地,三維透視影像係具有一透視感及一保持物體形狀之特性。 More preferably, the three-dimensional fluoroscopic image has a sense of perspective and a shape that retains the shape of the object.

100‧‧‧三維透視影像校正系統 100‧‧‧3D Vision Image Correction System

10‧‧‧處理單元 10‧‧‧Processing unit

204‧‧‧原點位置 204‧‧‧ Origin position

111‧‧‧原點 111‧‧‧ origin

112‧‧‧螢幕座標 112‧‧‧Screen coordinates

113‧‧‧原始影像座標 113‧‧‧ original image coordinates

114‧‧‧移動點座標 114‧‧‧Mobile point coordinates

20‧‧‧角度校正單元 20‧‧‧Angle correction unit

30‧‧‧移動校正單元 30‧‧‧Moving correction unit

40‧‧‧尺寸校正單元 40‧‧‧Dimensional correction unit

S1~S5‧‧‧步驟流程 S1~S5‧‧‧Step process

202‧‧‧三維透視影像中心 202‧‧‧3D Perspective Image Center

200‧‧‧三維透視影像 200‧‧‧3D fluoroscopic image

201‧‧‧第一影像 201‧‧‧ first image

203‧‧‧第二影像 203‧‧‧Second image

205‧‧‧移動點 205‧‧‧Mobile Point

206‧‧‧螢幕垂直位置 206‧‧‧Screen vertical position

207‧‧‧第三距離 207‧‧‧ third distance

208‧‧‧第一距離 208‧‧‧first distance

209‧‧‧新中心座標 209‧‧‧New Center coordinates

210‧‧‧第二距離 210‧‧‧Second distance

211‧‧‧第三影像 211‧‧‧ Third image

212‧‧‧具桶狀之影像 212‧‧‧With barrel image

213‧‧‧具原始物體形狀之影像 213‧‧‧Image with the shape of the original object

214‧‧‧螢幕 214‧‧‧ screen

215‧‧‧貫穿軸 215‧‧‧through shaft

216‧‧‧使用者 216‧‧‧Users

本發明之上述及其他特徵及優勢將藉由參照附圖詳細說明其例示性實施例而變得更顯而易知,其中:第1圖係為根據本發明實施例之三維透視影像校正系統之方塊圖;第2圖係為根據本發明之另一實施例之三維透視影像校正系統之第一示意;第3圖係為根據本發明之另一實施例之三維透視影像校正系統之第二示意圖;第4圖係為根據本發明之另一實施例之三維透視影像校正系統之第三示意圖;第5圖係為根據本發明之第二實施例之三維透視影像校正系統之第一示意圖;第6圖係為根據本發明之第二實施例之三維透視影像校正系統之第二示意圖;以及第7圖係為根據本發明之第三實施例之三維透視影像校正方法之步驟流程圖。 The above and other features and advantages of the present invention will become more apparent from the detailed description of the exemplary embodiments illustrated in the accompanying drawings in which: FIG. 1 is a three-dimensional fluoroscopic image correction system according to an embodiment of the present invention. FIG. 2 is a first schematic diagram of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention; and FIG. 3 is a second schematic diagram of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention; Figure 4 is a third schematic view of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention; and Figure 5 is a first schematic view of a three-dimensional fluoroscopic image correction system according to a second embodiment of the present invention; 6 is a second schematic diagram of a three-dimensional fluoroscopic image correction system according to a second embodiment of the present invention; and FIG. 7 is a flow chart showing the steps of the three-dimensional fluoroscopic image correction method according to the third embodiment of the present invention.

於此使用,詞彙“與/或”包含一或多個相關條列項目之任何或所有組合。當“至少其一”之敘述前綴於一元件清單前時,係修飾整個清單元件而非修飾清單中之個別元件。 As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. When the phrase "at least one of" is preceded by a list of elements, the entire list of elements is modified instead of the individual elements in the list.

請參閱第1圖,係根據本發明實施例之三維透視影像校正系統之方塊圖。如第1圖所示,本創作係適用於顯示一三維透視影像200(未顯示於圖中)隨一使用者216觀看之位置或角度產生變化並呈現三維透視 影像200之立體透視感的一螢幕214,此三維透視影像校正系統100包含一處理單元10、一角度校正單元20、一移動校正單元30及一尺寸校正單元40,其中角度校正單元20、移動校正單元30或尺寸校正單元40係包含一軟體應用程式,處理單元10包含一中央處理器或一微處理器。 Please refer to FIG. 1 , which is a block diagram of a three-dimensional fluoroscopic image correction system according to an embodiment of the present invention. As shown in FIG. 1, the creation is suitable for displaying a three-dimensional fluoroscopic image 200 (not shown) that changes with the position or angle viewed by a user 216 and presents a three-dimensional perspective. A screen 214 of the stereoscopic perspective of the image 200, the three-dimensional fluoroscopic image correction system 100 includes a processing unit 10, an angle correction unit 20, a movement correction unit 30, and a size correction unit 40, wherein the angle correction unit 20 and the motion correction Unit 30 or size correction unit 40 includes a software application, and processing unit 10 includes a central processing unit or a microprocessor.

處理單元10包含一原點111、一螢幕座標112、一原始影像座標113及複數個移動點座標114,其中原點111係指使用者216位於貫穿螢幕214及三維透視影像200之一貫穿軸215上之一位置,螢幕座標112係指在此貫穿軸215上之螢幕214之座標,原始影像座標113係指在此貫穿軸215之三維透視影像200之一座標。 The processing unit 10 includes an origin 111, a screen coordinate 112, an original image coordinate 113, and a plurality of moving point coordinates 114. The origin 111 means that the user 216 is located at one of the through-screen 215 and the three-dimensional fluoroscopic image 200. In one of the upper positions, the screen coordinates 112 refer to the coordinates of the screen 214 on the through-shaft 215, and the original image coordinates 113 refer to a coordinate of the three-dimensional fluoroscopic image 200 passing through the axis 215.

當使用者216水平移動至複數個移動點座標114時,處理單元10係計算複數個由原始影像座標113至原點111所形成之邊與由原始影像座標113至每一複數個移動點座標114所形成之邊所構成之夾角θi,其中i為大於1的一正整數。 When the user 216 moves horizontally to the plurality of moving point coordinates 114, the processing unit 10 calculates a plurality of edges formed by the original image coordinates 113 to the origin 111 and from the original image coordinates 113 to each of the plurality of moving point coordinates 114. The included angle θi, where i is a positive integer greater than one.

接著,三維透視影像校正系統100利用一角度校正單元20將三維透視影像200根據每一複數個移動點座標114以分別旋轉所對應之複數個夾角θi;再利用一移動校正單元30將三維透視影像200根據每一複數個移動點座標114以分別移動至所對應之複數個新座標;最後利用一尺寸校正單元40根據複數個移動點座標114求得原始影像座標113至每一複數個移動點座標114之距離與原始影像座標113至原點111之距離之複數個比例,並針對每一複數個移動點座標114及其對應之每一複數個比例以分別縮放在複數個新座標之三維透視影像200之大小。 Then, the three-dimensional fluoroscopic image correction system 100 uses the angle correction unit 20 to rotate the three-dimensional fluoroscopic image 200 according to each of the plurality of moving point coordinates 114 to respectively rotate the corresponding plurality of angles θi; and then use the motion correction unit 30 to perform the three-dimensional fluoroscopic image. 200 according to each of the plurality of moving point coordinates 114 to respectively move to the corresponding plurality of new coordinates; finally, using a size correcting unit 40 to obtain the original image coordinates 113 to each of the plurality of moving point coordinates according to the plurality of moving point coordinates 114 a plurality of ratios of the distance of 114 from the original image coordinate 113 to the origin 111, and respectively scaling the three-dimensional fluoroscopic image of the plurality of new coordinates for each of the plurality of moving point coordinates 114 and each of the corresponding plurality of ratios 200 size.

請參閱第2圖,係根據本發明之另一實施例之三維透視影像校正系統之第一示意圖。如第2圖所示,當使用者216位於貫穿螢幕214及三維透視影像200之一貫穿軸215上之一原點位置204,處理單元10係設定原點位置204之座標為(0,0),三維透視影像中心202座標為(0,Z2),當使用者216水平移動至複數個移動點205的其中之一移動點205時,處理單元10可利用紅外線偵測求得移動點205之座標為(X1,0),並決定由原點位置204至三維透視影像中心202之邊與由原點位置204至移動點205之邊所形成之一夾角θ,此時角度校正單元20即根據此一夾角θ將三維透視影像200順時針或逆時針旋轉θ角度以成為一第一影像201。 Please refer to FIG. 2, which is a first schematic diagram of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention. As shown in FIG. 2, when the user 216 is located at an origin position 204 on the through-axis 215 of one of the screen 214 and the three-dimensional fluoroscopic image 200, the processing unit 10 sets the coordinates of the origin position 204 to (0, 0). The coordinates of the center of the three-dimensional fluoroscopic image are (0, Z2). When the user 216 moves horizontally to one of the plurality of moving points 205, the processing unit 10 can determine the coordinates of the moving point 205 by using infrared detection. Is (X1, 0), and determines an angle θ formed from the origin position 204 to the side of the three-dimensional fluoroscopic image center 202 and the edge from the origin position 204 to the moving point 205, at which time the angle correcting unit 20 is An angle θ rotates the three-dimensional fluoroscopic image 200 clockwise or counterclockwise to form a first image 201.

請參閱第3圖,係根據本發明之另一實施例之三維透視影像校正系統之第二示意圖。如第3圖所示,在貫穿螢幕214及三維透視影像200之一貫穿軸215上,原點位置204至螢幕垂直位置206之距離係等於一第一距離208,原點位置204至移動點205之距離係等於一第二距離210,原點位置204至三維透視影像中心202係等於一第三距離207,此時利用移動校正單元30以求得此第一影像201之一新中心座標209之位置為((X1*Z1)/Z2,Z1),讓使用者216觀看此第一影像201時能感覺到此原始之三維透視影像200彷彿跟隨著使用者216移動。 Please refer to FIG. 3, which is a second schematic diagram of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention. As shown in FIG. 3, on the through-axis 215 of the screen 214 and the three-dimensional fluoroscopic image 200, the distance from the origin position 204 to the vertical position 206 of the screen is equal to a first distance 208, the origin position 204 to the moving point 205. The distance is equal to a second distance 210, and the origin position 204 to the three-dimensional perspective image center 202 is equal to a third distance 207. At this time, the movement correction unit 30 is used to obtain a new center coordinate 209 of the first image 201. The position is ((X1*Z1)/Z2, Z1), and the user 216 can feel the original three-dimensional fluoroscopic image 200 as if it is following the user 216 when viewing the first image 201.

請參閱第4圖,係根據本發明之另一實施例之三維透視影像校正系統之第三示意圖。如第4圖所示,一尺寸校正單元40係根據移動點205求得三維透視影像200之座標(0,Z2)至移動點205之座標(X1,0)之距離與三維透視影像200之座標(0,Z2)至原點位置204之座標(0,0)之距離之一比例,並針對此比例以縮放在座標位置((X1*Z1)/Z2,Z1)上之第一 影像201成第二影像203,讓使用者216觀看此第二影像203時能感覺到此原始之三維透視影像200不僅跟隨著使用者216移動,同時更具有一立體感。舉例來說,當此比例大於1時,表示此三維透視影像200應遠離使用者216,此時可以以一倍率以縮小此三維透視影像200,相反地,當比例小於1時,表示此三維透視影像200應靠近使用者216,此時可以以一倍率以放大此三維透視影像200。 Please refer to FIG. 4, which is a third schematic diagram of a three-dimensional fluoroscopic image correction system according to another embodiment of the present invention. As shown in FIG. 4, a size correcting unit 40 determines the coordinates of the coordinates (0, Z2) of the three-dimensional fluoroscopic image 200 from the coordinates (X1, 0) of the moving point 205 and the coordinates of the three-dimensional fluoroscopic image 200 according to the moving point 205. The ratio of (0, Z2) to the distance of the coordinates (0, 0) of the origin position 204, and for this ratio is scaled to the first position on the coordinate position ((X1*Z1)/Z2, Z1) The image 201 is a second image 203. When the user 216 views the second image 203, the original three-dimensional fluoroscopic image 200 can be sensed not only to move along with the user 216 but also to have a three-dimensional effect. For example, when the ratio is greater than 1, it indicates that the three-dimensional fluoroscopic image 200 should be away from the user 216, and the three-dimensional fluoroscopic image 200 can be reduced at a multiple rate. Conversely, when the ratio is less than 1, the three-dimensional fluoroscopic representation is used. The image 200 should be close to the user 216, and the three-dimensional fluoroscopic image 200 can be enlarged at a magnification.

請參閱第5圖及第6圖,係根據本發明之第二實施例之三維透視影像校正系統之第一示意圖及第二示意圖。如第5圖所示,在未透過本創作之三維透視影像校正系統100觀看一三維透視影像200時,此時此三維透視影像200之邊緣係由於鏡頭焦段之影響,當一影像愈往右邊移動時,其影像即逐漸產生變形,當移動至最右邊時,此時看起來便像是包含一具桶狀之影像212,而透過本創作之三維透視影像校正系統100校正此三維透視影像200後,此時此三維透視影像200之邊緣或其他位置均可包含一具原始物體形狀之影像213,如第6圖所示,故可知透過本三維透視影像校正系統100產生之三維透視影像200係具有一透視感及一保持物體形狀之特性。 Please refer to FIG. 5 and FIG. 6 , which are a first schematic diagram and a second schematic diagram of a three-dimensional fluoroscopic image correction system according to a second embodiment of the present invention. As shown in FIG. 5, when a three-dimensional fluoroscopic image 200 is not viewed through the three-dimensional fluoroscopic image correction system 100 of the present invention, the edge of the three-dimensional fluoroscopic image 200 is moved to the right side of the image due to the focal length of the lens. When the image is gradually deformed, when moving to the rightmost side, it appears to contain a barrel-shaped image 212, and the three-dimensional fluoroscopic image 200 is corrected by the created three-dimensional fluoroscopic image correction system 100. At this time, the edge or other position of the three-dimensional fluoroscopic image 200 may include an image 213 of the original object shape. As shown in FIG. 6, it is known that the three-dimensional fluoroscopic image 200 generated by the three-dimensional fluoroscopic image correction system 100 has A sense of perspective and a characteristic of maintaining the shape of the object.

請參閱第7圖,係根據本發明之第三實施例之三維透視影像校正方法之步驟流程圖。如第7圖所示,步驟S1係設定使用者216位於貫穿螢幕214及三維透視影像之一貫穿軸215上之位置為一原點(0,0),並決定貫穿軸215上之螢幕214之一螢幕座標112(0,z1)及三維透視影像之一原始影像座標(0,z2),如第2圖中之原點位置204,螢幕座標則位於原點位置204至三維透視影像中心202之貫穿軸215上且距離原點位置204為 Z1個單位長度,步驟S2係當使用者水平移動至複數個移動點座標(xi,0),利用一處理單元計算複數個由原始影像座標(0,z2)至原點(0,0)所形成之邊與由原始影像座標(0,z2)至每一複數個移動點座標(xi,0)所形成之邊所構成之夾角θi,步驟S3係利用一角度校正單元將三維透視影像根據每一複數個移動點座標(xi,0)以分別旋轉所對應之複數個夾角θi,如第2圖中旋轉θ角度後之第一影像201,步驟S4係利用一移動校正單元將三維透視影像根據每一複數個移動點座標(xi,0)以分別移動至所對應之複數個新座標((xi*z1)/z2,z1),如第3圖中產生之第二影像203,步驟S5係利用一尺寸校正單元根據複數個移動點座標(xi,0)求得原始影像座標(0,z2)至每一複數個移動點座標(xi,0)之距離與原始影像座標(0,z2)至原點(0,0)之距離之複數個比例,並針對每一複數個移動點座標(xi,0)及其對應之每一複數個比例以分別縮放在複數個新座標((xi*z1)/z2,z1)之三維透視影像之大小,如第4圖中所產生之第三影像211。 Please refer to FIG. 7, which is a flow chart of the steps of the three-dimensional fluoroscopic image correction method according to the third embodiment of the present invention. As shown in FIG. 7, step S1 sets the position of the user 216 on the through-axis 215 of the screen 214 and the three-dimensional fluoroscopic image as an origin (0, 0), and determines the screen 214 on the through-axis 215. A screen coordinate 112 (0, z1) and one of the original image coordinates (0, z2) of the three-dimensional fluoroscopic image, such as the origin position 204 in FIG. 2, the screen coordinates are located at the origin position 204 to the center of the three-dimensional fluoroscopic image 202 Through the shaft 215 and from the origin position 204 is Z1 unit length, step S2 is when the user moves horizontally to a plurality of moving point coordinates (xi, 0), and a processing unit calculates a plurality of original image coordinates (0, Z2) an angle θ i formed by the edge formed by the origin (0, 0) and the edge formed by the original image coordinate (0, z2) to each of the plurality of moving point coordinates (xi, 0), step S3 The angle-correcting unit is configured to rotate the three-dimensional fluoroscopic image according to each of the plurality of moving point coordinates (xi, 0) to respectively rotate the corresponding plurality of angles θ i , such as the first image 201 after the rotation of the θ angle in FIG. 2 , Step S4 uses a motion correction unit to view the three-dimensional perspective image according to each of the plurality of moving point coordinates (xi, 0). Do not move to the corresponding plurality of new coordinates ((xi * z1) / z2, z1), such as the second image 203 generated in Figure 3, step S5 uses a size correction unit according to a plurality of moving point coordinates (xi , 0) Find the distance between the original image coordinates (0, z2) to the distance of each of the plurality of moving point coordinates (xi, 0) and the distance between the original image coordinates (0, z2) and the origin (0, 0) Proportion, and for each complex moving point coordinate (xi, 0) and its corresponding multiple ratios to scale the size of the three-dimensional fluoroscopic image in a plurality of new coordinates ((xi * z1) / z2, z1) , the third image 211 generated as shown in FIG.

由以上可知,透過本創作可以使三維透視影像在螢幕產生畫面時,防止畫面上的物體受到鏡頭焦段影響而產生如桶形或枕形之變形,本創作之方法除了可在水平方向上校正此三維透視影像,亦可直接用於在垂直方向上以校正此三維透視影像,讓使用者在觀看螢幕上之三維透視影像時,無論是水平移動或是垂直移動均能有良好的立體顯示體驗。 It can be seen from the above that through the creation, the three-dimensional fluoroscopic image can prevent the object on the screen from being affected by the focal length of the lens and generate deformation such as a barrel shape or a pincushion shape when the screen is generated on the screen. The method of the present invention can correct the horizontal direction. The three-dimensional fluoroscopic image can also be directly used to correct the three-dimensional fluoroscopic image in the vertical direction, so that the user can have a good stereoscopic display experience when viewing the three-dimensional fluoroscopic image on the screen, whether moving horizontally or vertically.

雖然本發明已參照其例示性實施例而特別地顯示及描述,將為所屬技術領域具通常知識者所理解的是,於不脫離以下申請專利範圍及其等效物所定義之本發明之精神與範疇下可對其進行形式與細節上 之各種變更。本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。 The present invention has been particularly shown and described with reference to the exemplary embodiments thereof, and it is understood by those of ordinary skill in the art And the scope can be used in form and detail Various changes. The advantages and features of the present invention, as well as the technical methods of the present invention, are described in more detail with reference to the exemplary embodiments and the accompanying drawings. The embodiments of the present invention are to be construed as being limited by the scope of the present invention, and the invention The scope of the patent application is defined.

100‧‧‧三維透視影像校正系統 100‧‧‧3D Vision Image Correction System

10‧‧‧處理單元 10‧‧‧Processing unit

111‧‧‧原點 111‧‧‧ origin

112‧‧‧螢幕座標 112‧‧‧Screen coordinates

113‧‧‧原始影像座標 113‧‧‧ original image coordinates

114‧‧‧移動點座標 114‧‧‧Mobile point coordinates

20‧‧‧角度校正單元 20‧‧‧Angle correction unit

30‧‧‧移動校正單元 30‧‧‧Moving correction unit

40‧‧‧尺寸校正單元 40‧‧‧Dimensional correction unit

Claims (10)

一種三維透視影像校正方法,係適用於顯示一三維透視影像隨一使用者觀看之位置或角度產生變化並呈現該三維透視影像之立體透視感的一螢幕,該三維透視影像校正方法包含:設定該使用者位於貫穿該螢幕及該三維透視影像之一突出軸上之位置為一原點(0,0),並決定該突出軸上之該螢幕之一螢幕座標(0,z1)及該三維透視影像之一原始影像座標(0,z2);當該使用者水平移動至複數個移動點座標(xi,0),利用一處理單元計算複數個由該原始影像座標(0,z2)至該原點(0,0)所形成之邊與由該原始影像座標(0,z2)至每一該複數個移動點座標(xi,0)所形成之邊所構成之夾角θi,其中i為大於1的一正整數;利用一角度校正單元將該三維透視影像根據每一該複數個移動點座標(xi,0)以分別旋轉所對應之該複數個夾角θi;利用一移動校正單元將該三維透視影像根據每一該複數個移動點座標(xi,0)以分別移動至所對應之複數個新座標((xi*z1)/z2,z1);以及利用一尺寸校正單元根據該複數個移動點座標(xi,0)求得該原始影像座標(0,z2)至每一該複數個移動點座標(xi,0)之距離與該原始影像座標(0,z2)至該原點(0,0)之距離之複數個比例,並針對每一該複數個移動點座標(xi,0)及其對應之每一該複數個比例以分別縮放在該複數個新座標((xi*z1)/z2,z1)之該三維透視影像之大小。 A three-dimensional fluoroscopic image correction method is suitable for displaying a three-dimensional fluoroscopic image that changes with a position or angle viewed by a user and presents a stereoscopic perspective of the three-dimensional fluoroscopic image. The three-dimensional fluoroscopic image correction method includes: setting the The position of the user on the protruding axis of the screen and one of the three-dimensional fluoroscopic images is an origin (0, 0), and determines a screen coordinate (0, z1) of the screen on the protruding axis and the three-dimensional perspective One of the original image coordinates (0, z2); when the user moves horizontally to a plurality of moving point coordinates (xi, 0), a processing unit calculates a plurality of original image coordinates (0, z2) to the original edge angle [theta] i (0,0) and formed to each of the plurality of coordinates of the moving point in the original image coordinates (0, z2) (xi, 0) formed by the edges of the formed, wherein i is greater than a positive integer of 1; using an angle correction unit to rotate the three-dimensional perspective image according to each of the plurality of moving point coordinates (xi, 0) to respectively correspond to the plurality of angles θ i; using a motion correction unit The three-dimensional perspective image is moved according to each of the plurality of The point coordinates (xi, 0) are respectively moved to the corresponding plurality of new coordinates ((xi*z1)/z2, z1); and are obtained by using a size correcting unit according to the plurality of moving point coordinates (xi, 0) a plurality of ratios of the distance between the original image coordinates (0, z2) to each of the plurality of moving point coordinates (xi, 0) and the distance between the original image coordinates (0, z2) and the origin (0, 0) And for each of the plurality of moving point coordinates (xi, 0) and each of the corresponding plurality of ratios to respectively scale the three-dimensional perspective of the plurality of new coordinates ((xi*z1)/z2, z1) The size of the image. 如申請專利範圍第1項所述之三維透視影像校正方法,其中該處理單元包含一中央處理器或一微處理器。 The method of three-dimensional fluoroscopic image correction according to claim 1, wherein the processing unit comprises a central processing unit or a microprocessor. 如申請專利範圍第1項所述之三維透視影像校正方法,其中當每一該複數個移動點座標(xi,0)所對應之每一該複數個比例大於1時,該尺寸校正單元根據一倍率以縮小該三維透視影像,當每一該複數個移動點座標(xi,0)所對應之每一該複數個比例小於1時,該尺寸校正單元根據該倍率以放大該三維透視影像。 The three-dimensional fluoroscopic image correction method of claim 1, wherein the size correcting unit is based on each of the plurality of moving point coordinates (xi, 0) corresponding to each of the plurality of ratios greater than one The magnification is used to reduce the three-dimensional fluoroscopic image. When each of the plurality of moving point coordinates (xi, 0) corresponds to each of the plurality of ratios being less than 1, the size correcting unit enlarges the three-dimensional fluoroscopic image according to the magnification. 如申請專利範圍第1項所述之三維透視影像校正方法,其中該角度校正單元、該移動校正單元或該尺寸校正單元係包含一軟體應用程式。 The three-dimensional fluoroscopic image correction method according to claim 1, wherein the angle correction unit, the movement correction unit or the size correction unit comprises a software application. 如申請專利範圍第1項所述之三維透視影像校正方法,其中該三維透視影像係具有一透視感及一保持物體形狀之特性。 The three-dimensional fluoroscopic image correction method according to claim 1, wherein the three-dimensional fluoroscopic image has a fluoroscopic feeling and a shape for maintaining an object shape. 一種三維透視影像校正系統,係適用於顯示一三維透視影像隨一使用者觀看之位置或角度產生變化並呈現該三維透視影像之立體透視感的一螢幕,該三維透視影像校正系統包含:一處理單元,設定該使用者位於貫穿該螢幕及該三維透視影像之一突出軸上之位置為一原點(0,0),並決定該突出軸上之該螢幕之一螢幕座標(0,z1)及該三維透視影像之一原始影像座標(0,z2),當該使用者水平移動至複數個移動點座標(xi,0),計算複數個由該原始影像座標(0,z2)至該原點(0,0)所形成之邊與由該原始影像座標(0,z2)至每一該複數個移動點座標(xi,0)所形成之邊所構成之夾角θi,其中i為大於1的一正整數; 一角度校正單元,將該三維透視影像根據每一該複數個移動點座標(xi,0)以分別旋轉所對應之該複數個夾角θi;一移動校正單元,將該三維透視影像根據每一該複數個移動點座標(xi,0)以分別移動至所對應之複數個新座標((xi*z1)/z2,z1);以及一尺寸校正單元,根據該複數個移動點座標(xi,0)求得該原始影像座標(0,z2)至每一該複數個移動點座標(xi,0)之距離與該原始影像座標(0,z2)至該原點(0,0)之距離之複數個比例,並針對每一該複數個移動點座標(xi,0)及其對應之每一該複數個比例以分別縮放在該複數個新座標((xi*z1)/z2,z1)之該三維透視影像之大小。 A three-dimensional fluoroscopic image correction system is adapted to display a three-dimensional fluoroscopic image that changes with a position or angle viewed by a user and presents a stereoscopic perspective of the three-dimensional fluoroscopic image, the three-dimensional fluoroscopic image correction system comprising: a process a unit that sets the position of the user on the highlighted axis of the screen and the three-dimensional fluoroscopic image as an origin (0, 0), and determines a screen coordinate (0, z1) of the screen on the protruding axis And an original image coordinate (0, z2) of the three-dimensional fluoroscopic image, when the user moves horizontally to a plurality of moving point coordinates (xi, 0), and calculates a plurality of original image coordinates (0, z2) to the original edge angle [theta] i (0,0) and formed to each of the plurality of coordinates of the moving point in the original image coordinates (0, z2) (xi, 0) formed by the edges of the formed, wherein i is greater than a positive integer of 1; an angle correcting unit, respectively rotating the three-dimensional fluoroscopic image according to each of the plurality of moving point coordinates (xi, 0) corresponding to the plurality of angles θ i; a movement correcting unit, The three-dimensional perspective image is based on each of the plurality of moving point seats (xi, 0) to respectively move to the corresponding plurality of new coordinates ((xi * z1) / z2, z1); and a size correcting unit, and obtain the original according to the plurality of moving point coordinates (xi, 0) a ratio of the distance between the image coordinates (0, z2) to each of the plurality of moving point coordinates (xi, 0) and the distance between the original image coordinates (0, z2) and the origin (0, 0), and And for each of the plurality of moving point coordinates (xi, 0) and each of the corresponding plurality of ratios to respectively scale the three-dimensional fluoroscopic image of the plurality of new coordinates ((xi*z1)/z2, z1) size. 如申請專利範圍第6項所述之三維透視影像校正系統,其中該處理單元包含一中央處理器或一微處理器。 The three-dimensional fluoroscopic image correction system of claim 6, wherein the processing unit comprises a central processing unit or a microprocessor. 如申請專利範圍第6項所述之三維透視影像校正系統,其中當每一該複數個移動點座標(xi,0)所對應之每一該複數個比例大於1時,該尺寸校正單元根據一倍率以縮小該三維透視影像,當每一該複數個移動點座標(xi,0)所對應之每一該複數個比例小於1時,該尺寸校正單元根據該倍率以放大該三維透視影像。 The three-dimensional fluoroscopic image correction system of claim 6, wherein when each of the plurality of moving point coordinates (xi, 0) corresponds to each of the plurality of ratios greater than 1, the size correcting unit is The magnification is used to reduce the three-dimensional fluoroscopic image. When each of the plurality of moving point coordinates (xi, 0) corresponds to each of the plurality of ratios being less than 1, the size correcting unit enlarges the three-dimensional fluoroscopic image according to the magnification. 如申請專利範圍第6項所述之三維透視影像校正系統,其中該角度校正單元、該移動校正單元或該尺寸校正單元係包含一軟體應用程式。 The three-dimensional fluoroscopic image correction system of claim 6, wherein the angle correction unit, the movement correction unit or the size correction unit comprises a software application. 如申請專利範圍第6項所述之三維透視影像校正系統,其中該三維透視影像係具有一透視感及一保持物體形狀之特性。 The three-dimensional fluoroscopic image correction system of claim 6, wherein the three-dimensional fluoroscopic image has a sense of perspective and a shape that maintains the shape of the object.
TW102144127A 2013-12-02 2013-12-02 System for calibrating three dimension perspective image and method thereof TWI507014B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102144127A TWI507014B (en) 2013-12-02 2013-12-02 System for calibrating three dimension perspective image and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102144127A TWI507014B (en) 2013-12-02 2013-12-02 System for calibrating three dimension perspective image and method thereof

Publications (2)

Publication Number Publication Date
TW201524187A TW201524187A (en) 2015-06-16
TWI507014B true TWI507014B (en) 2015-11-01

Family

ID=53935881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102144127A TWI507014B (en) 2013-12-02 2013-12-02 System for calibrating three dimension perspective image and method thereof

Country Status (1)

Country Link
TW (1) TWI507014B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247340B2 (en) 2018-12-19 2022-02-15 Industrial Technology Research Institute Method and apparatus of non-contact tool center point calibration for a mechanical arm, and a mechanical arm system with said calibration function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114359299B (en) * 2022-03-18 2022-09-30 天津九安医疗电子股份有限公司 Diet segmentation method and diet nutrition management method for chronic disease patients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163331A (en) * 2010-02-12 2011-08-24 王炳立 Image-assisting system using calibration method
CN102404598A (en) * 2011-11-22 2012-04-04 浙江大学 Image generation system and method for stereoscopic 3D display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163331A (en) * 2010-02-12 2011-08-24 王炳立 Image-assisting system using calibration method
CN102404598A (en) * 2011-11-22 2012-04-04 浙江大学 Image generation system and method for stereoscopic 3D display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247340B2 (en) 2018-12-19 2022-02-15 Industrial Technology Research Institute Method and apparatus of non-contact tool center point calibration for a mechanical arm, and a mechanical arm system with said calibration function

Also Published As

Publication number Publication date
TW201524187A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
US11307666B2 (en) Systems and methods of direct pointing detection for interaction with a digital device
JP5167439B1 (en) Stereoscopic image display apparatus and stereoscopic image display method
CN106951074B (en) method and system for realizing virtual touch calibration
CN105825544A (en) Image processing method and mobile terminal
US20170078570A1 (en) Image processing device, image processing method, and image processing program
US20130222363A1 (en) Stereoscopic imaging system and method thereof
US11050997B2 (en) Dynamic display system capable of generating images corresponding to positions of users
US20160334884A1 (en) Remote Sensitivity Adjustment in an Interactive Display System
US11477432B2 (en) Information processing apparatus, information processing method and storage medium
CN105741341A (en) Three-dimensional space environment imaging system and method
US10080956B2 (en) Detecting the changing position of a face to move and rotate a game object in a virtual environment
US9025007B1 (en) Configuring stereo cameras
KR20160014601A (en) Method and apparatus for rendering object for multiple 3d displays
WO2018179176A1 (en) Display control device, display control method, and program
US9122346B2 (en) Methods for input-output calibration and image rendering
TWI507014B (en) System for calibrating three dimension perspective image and method thereof
CN114385015A (en) Control method of virtual object and electronic equipment
TWI846808B (en) Image signal representing a scene
CN110060349B (en) Method for expanding field angle of augmented reality head-mounted display equipment
CN113168228A (en) Systems and/or methods for parallax correction in large area transparent touch interfaces
US9492122B2 (en) Medical image processing apparatus
KR20120080554A (en) The apparatus of augmented reality using fisheye lens and the method of the same
WO2013121468A1 (en) 3d image display device and 3d image display method
JP2012191380A (en) Camera, image conversion apparatus, and image conversion method
CN111050145B (en) Multi-screen fusion imaging method, intelligent device and system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees