CN102400674B - 超临界二氧化碳井筒多相流动模拟试验装置 - Google Patents

超临界二氧化碳井筒多相流动模拟试验装置 Download PDF

Info

Publication number
CN102400674B
CN102400674B CN201110397442.0A CN201110397442A CN102400674B CN 102400674 B CN102400674 B CN 102400674B CN 201110397442 A CN201110397442 A CN 201110397442A CN 102400674 B CN102400674 B CN 102400674B
Authority
CN
China
Prior art keywords
pit shaft
carbon dioxide
supercritical carbon
shaft
visual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110397442.0A
Other languages
English (en)
Other versions
CN102400674A (zh
Inventor
王瑞和
霍洪俊
倪红坚
杜玉昆
雷鹏
宋慧芳
宋维强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201110397442.0A priority Critical patent/CN102400674B/zh
Publication of CN102400674A publication Critical patent/CN102400674A/zh
Application granted granted Critical
Publication of CN102400674B publication Critical patent/CN102400674B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种超临界二氧化碳井筒多相流动模拟试验装置,主要由井筒多相流模拟测试台、二氧化碳储罐、增压泵、加热器、分离器和冷却器等组成主循环回路。本发明中的模拟井筒通过开窗设计实现可视化,通过外设仪器可以对超临界二氧化碳井筒环空多相流的流型、流态进行测试;本发明配合井筒外部的测量仪器可进行压力、温度、流量、固相浓度、超临界二氧化碳环空流速、固相颗粒速度等的实时采集和分析;试验过程中,可以实现超临界二氧化碳的循环使用。本发明用途广泛,除可进行超临界二氧化碳井筒多相流试验外,还可进行多项功能拓展试验。

Description

超临界二氧化碳井筒多相流动模拟试验装置
技术领域
本发明涉及石油、天然气钻完井及油气井洗井冲砂技术领域,具体地说,涉及一种超临界二氧化碳井筒多相流动模拟试验装置。
背景技术
    在当前能源紧张的形势下,为保证我国的能源安全,必须形成新的方法、发展新的技术,有效提高油气资源的勘探开发效率。超临界二氧化碳流体既具有气体的低粘度和易扩散性,也具有液体的高密度和溶解性好的特点,是极具油气资源勘探开发应用潜力的钻完井及洗井冲砂流体介质。但目前对超临界二氧化碳钻完井技术及洗井冲砂技术的研究还刚刚起步,需要开展大量基础理论研究,首要的是要开展超临界二氧化碳井筒多相流动规律的研究,该研究对于超临界二氧化碳钻井及洗井冲砂过程中温度、压力预测,井筒压力控制具有重要的意义。然而现有的常规流体钻完井及洗井冲砂试验装置存在如下不足:工作压力或工作温度太低,无法满足超临界二氧化碳的调制和工作时所需的基本条件;井筒内部压力、温度等参数不能精确控制,无法模拟实际钻完井及洗井冲砂过程中超临界二氧化碳流体状态的精确转换;测量设备针对性差,无法实时准确地反映出超临界二氧化碳沿井筒环空流动过程中的参数变化;涉及井筒环空多相流动时,无法及时准确测量环空固相含量、固相运移速度等参数。因此建立一套超临界二氧化碳井筒多相流动模拟试验装置,是目前进行超临界二氧化碳钻完井技术及洗井冲砂技术研究的一个必要途径。
发明内容
本发明所要解决的技术问题是:为开展基础研究提供一套超临界二氧化碳井筒多相流动模拟试验装置,使其可以更加客观真实地模拟超临界二氧化碳沿井筒多相流动规律,准确测量超临界二氧化碳沿井筒环空多相流动时各项物理参数,流型流态变化,携岩效果,环空固相浓度分布等。 
为解决上述技术问题,本发明的技术方案是:超临界二氧化碳井筒多相流动模拟试验装置,包括主循环回路,所述主循环回路由二氧化碳储罐、增压泵、加热器、井筒多相流模拟测试台、分离器和冷却器通过管线依次连接而成;所述井筒多相流模拟测试台包括支架,设置在所述支架上的可视化井筒,所述可视化井筒的底部分别设有加砂器接口和模拟地层流体侵入设备接口,所述可视化井筒上部的侧壁上设有井筒出口,加砂器,通过所述加砂器接口与所述可视化井筒连接,用于向所述可视化井筒内加入砂子,模拟地层流体侵入设备,通过所述模拟地层流体侵入设备接口与所述可视化井筒连接,用于向所述可视化井筒内注入模拟地层流体,模拟钻柱,设置在所述可视化井筒内,与所述可视化井筒的内壁之间形成环形空腔,所述环形空腔与所述井筒出口连通,所述模拟钻柱具有中空的供超临界二氧化碳流体流过的钻柱通道,所述模拟钻柱的底端安装有供超临界二氧化碳流体喷出的喷嘴,所述井筒多相流模拟测试台与水平面之间的夹角为0°~90°。
作为优选,所述可视化井筒沿其轴向设有多个开窗处,每个开窗处沿所述可视化井筒的周向开有多个可视窗口。
作为进一步优选,所述可视化井筒沿其轴向设有四个开窗处,每个开窗处沿所述可视化井筒的周向开有六个可视窗口。
作为进一步优选,所述可视窗口上安装有石英玻璃,所述石英玻璃的耐压值为20Mpa以上。
作为进一步优选,在所述可视化井筒的外部对应于所述可视窗口的位置,设有用于测量所述环形空腔内流体流动速度和固相浓度的测量仪器。
作为进一步优选,在所述主循环回路上、所述井筒多相流模拟测试台的可视化井筒上分别设有若干压力传感器接口、温度传感器接口和流量计接口。
作为进一步优选,在所述可视化井筒的外部还设有用于控制井筒内部压力及温度的压力控制器和温度控制器。
作为进一步优选,所述模拟地层流体侵入设备接口包括多个沿所述可视化井筒的径向设置的接口。
作为进一步优选,所述的模拟试验装置还包括调压支路,所述调压支路与所述主循环回路连通,所述调压支路上设有溢流阀。
作为进一步优选,所述支架上设有滑轮。
由于采用了上述技术方案,本发明的有益效果是:由于本发明的超临界二氧化碳井筒多相流动模拟试验装置的井筒多相流模拟测试台包括设置在支架上的可视化井筒,可视化井筒的底部分别与加砂器和模拟地层流体侵入设备连接,可视化井筒内设有模拟钻柱,模拟钻柱具有中空的钻柱通道,模拟钻柱的底端安装有供超临界二氧化碳流体喷出的喷嘴。本模拟试验装置在使用时,调节主循环回路使其中的二氧化碳达到超临界状态,并形成稳定循环,由加砂器向可视化井筒的底部加入砂子,由模拟地层流体侵入设备向可视化井筒的底部注入模拟地层流体,开始试验测试,超临界二氧化碳流体从可视化井筒的入口进入模拟钻柱的钻柱通道,最后经喷嘴喷出,喷出后的二氧化碳携带砂子与模拟地层流体沿环形空腔上返,经井筒出口流出至分离器,进行固相和液相杂质分离,分离后的二氧化碳流体经冷却器制冷后又回到二氧化碳储罐以便循环利用,之后即可对分离后的固相进行分析。
本发明的可视化井筒由于沿其轴向设有多个开窗处,每个开窗处沿井筒的周向开有多个可视窗口,在可视化井筒的外部对应于可视窗口的位置,设有用于测量环形空腔内流体流动速度和固相浓度的测量仪器,可实时测量井筒环空中流体的速度、固相浓度、固相的运移速度,同时可方便地观测超临界二氧化碳多相流流型变化情况,解决了传统多相流试验系统无法准确实时测量井筒环空内流体速度、固相含量、固相速度的问题。
通过本发明的可视化井筒上设置的压力传感器接口、温度传感器接口和流量计接口,可以在井筒内布置压力传感器和温度传感器以测得井筒内压力场和温度场,配合设置在可视化井筒外部的压力控制器和温度控制器可进行沿程压力、温度和流量的实时采集和分析,通过数据采集分析系统及时有效评价试验效果。
采用本发明的超临界二氧化碳井筒多相流动模拟试验装置,可以更加客观真实地模拟超临界二氧化碳沿井筒多相流动规律,准确测量超临界二氧化碳沿井筒环空多相流动时各项物理参数,流型流态变化,携岩效果,环空固相浓度分布等。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明实施例的试验流程图;
图2是本发明实施例中井筒多相流模拟测试台的结构剖视示意图;
图中:1-二氧化碳储罐;2-增压泵;3-加热器;4-溢流阀;5-井筒多相流模拟测试台;6-分离器;7-冷却器;8-模拟钻柱;9-井筒出口;10-钻柱通道;11-可视化井筒;12-可视窗口;13-温度及压力传感器接口;14-环形空腔;15-喷嘴;16-加砂器;16a-加砂器接口;17-模拟地层流体侵入设备接口;18-支架;19-滑轮。
具体实施方式
如图1所示,超临界二氧化碳井筒多相流动模拟试验装置,包括主循环回路,所述主循环回路由二氧化碳储罐1、增压泵2、加热器3、井筒多相流模拟测试台5、分离器6和冷却器7通过管线依次连接而成。其中,所述二氧化碳储罐1上还设有防爆控制阀,所述增压泵2上还设有温度控制器。本试验装置还设有与所述主循环回路连通的调压支路,所述调压支路上设有溢流阀4。
如图2所示,其中所述井筒多相流模拟测试台包括:支架18,设置在所述支架18上的可视化井筒11,所述可视化井筒11的底部分别设有加砂器接口16a和模拟地层流体侵入设备接口17。加砂器16通过所述加砂器接口16a与所述可视化井筒11连接,用于向所述可视化井筒11内加入砂子,以模拟钻井过程产生的岩屑,所述加砂器16的加砂速度可调。模拟地层流体侵入设备(图中未示出)通过所述模拟地层流体侵入设备接口17与所述可视化井筒11连接,用于向所述可视化井筒11内注入模拟地层流体,以模拟钻井过程中地层流体的侵入,所述模拟地层流体侵入设备的流体侵入速度、侵入量均可调节。模拟钻柱8从所述可视化井筒11的上部伸入井筒内,与所述可视化井筒11的内壁之间形成环形空腔14,所述可视化井筒11上部的侧壁上设有井筒出口9,所述环形空腔14与所述井筒出口9连通。所述模拟钻柱8具有中空的供超临界二氧化碳流体流过的钻柱通道10,所述模拟钻柱8的底端安装有供超临界二氧化碳流体喷出的喷嘴15。所述支架18上安装有滑轮19,通过与现有技术中的起升设备(图中未标出)配合,可使可视化井筒11的角度在0~90°之间调节。
其中,所述可视化井筒11沿其轴向设有多个开窗处,每个开窗处沿所述可视化井筒的周向开有多个可视窗口12,便于多方位观测井筒内超临界二氧化碳多相流流型变化情况。本实施例中,所述可视化井筒11沿其轴向设有四个开窗处,每个开窗处沿可视化井筒11的周向开有六个可视窗口12。在每个可视窗口12上安装有耐高压的石英玻璃,所述石英玻璃的耐压值为20MPa。
其中,在所述可视化井筒11的外部对应于所述可视窗口12的位置,设有用于测量所述环形空腔14内流体流动速度和固相浓度的测量仪器(图中未示出)。
其中,在所述主循环回路上、所述井筒多相流模拟测试台5的可视化井筒11上分别设有若干压力及温度传感器接口13和流量计接口(图中未示出)。
其中,在所述可视化井筒11的外部还设有压力控制器和温度控制器(图中未示出),通过与设置在井筒内的压力传感器和温度传感器配合来控制井筒内部的压力和温度。
其中,所述模拟地层流体侵入设备接口17包括多个沿所述可视化井筒11的径向延伸的接口。上述多个接口在可视化井筒11的外部汇集成一个总接口后再与模拟地层流体侵入设备连接,这样便于模拟地层流体侵入设备沿可视化井筒11的外周均匀地向可视化井筒11内注入模拟地层流体。本实施例中,设有12个沿所述可视化井筒11的径向延伸的接口。当然,根据实际需要,还可以设置更多个。
工作原理:当采用本发明的模拟试验装置开展超临界二氧化碳井筒多相流动模拟试验时,首先在加砂器16中加入砂子,将模拟地层流体侵入设备与模拟地层流体侵入设备接口17连接,调节用来测量环形空腔14内流体流动速度、固相浓度等参数的测量仪器的角度;其次开启温度调控元件,即加热器3、冷却器7以及可视化井筒11外部的温度控制器和增压泵2上的温度控制器,将主循环回路上的阀门依次打开,放出二氧化碳储罐1中的液态二氧化碳使其充满主循环回路,启动并调节增压泵2、加热器3,调制二氧化碳的流量、压力和温度,使其达到超临界状态,通过调压支路上的溢流阀4控制主循环回路的压力,使主循环回路的流体形成稳定循环,当流体达到试验要求条件时,根据试验要求,开启加砂器16,启动模拟地层流体侵入设备,所述加砂器16及模拟地层流体侵入设备可同时开启,也可单独开启其中一套,进行不同的测试。试验测试时,超临界二氧化碳流体通过模拟钻柱8的钻柱通道10向下流动,最后经喷嘴15喷出,喷出后的二氧化碳携带模拟钻井产生岩屑的砂子及模拟地层侵入的流体沿环形空腔14上返,上返过程中,通过设在可视窗口12外部的测量仪器即可方便地测量环形空腔中流体的速度、固相速度、固相含量等参数。上返流体经井筒出口9流出至分离器6,进行固相和液相的分离,分离后的流体经冷却器7制冷后回到二氧化碳储罐1,实现二氧化碳的循环利用。
本发明的超临界二氧化碳井筒多相流动模拟试验装置,能够更加客观真实地模拟超临界二氧化碳沿井筒多相流动规律,准确测量超临界二氧化碳沿井筒环空多相流动时各项物理参数,流型流态变化,携岩效果,环空固相浓度分布等。本发明用途广泛,除可进行超临界二氧化碳井筒多相流试验外,还可进行多项功能拓展试验。
以上所述仅是本发明最佳实施方式的举例,其中未详细述及的部分均为本领域普通技术人员的公知常识。本发明的保护范围以权利要求的内容为准,任何基于本发明的技术启示而进行的等效变换,也在本发明的保护范围之内。

Claims (6)

1.超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:包括主循环回路,所述主循环回路由二氧化碳储罐、增压泵、加热器、井筒多相流模拟测试台、分离器和冷却器通过管线依次连接而成;
所述井筒多相流模拟测试台包括
支架,
设置在所述支架上的可视化井筒,所述可视化井筒的底部分别设有加砂器接口和模拟地层流体侵入设备接口,所述模拟地层流体侵入设备接口包括多个沿所述可视化井筒的径向延伸的接口,所述可视化井筒上部的侧壁上设有井筒出口,所述可视化井筒沿其轴向设有四个开窗处,每个开窗处沿所述可视化井筒的周向开有六个可视窗口,所述可视窗口上安装有石英玻璃,所述石英玻璃的耐压值为20Mpa以上,
加砂器,通过所述加砂器接口与所述可视化井筒连接,用于向所述可视化井筒内加入砂子,
模拟地层流体侵入设备,通过所述模拟地层流体侵入设备接口与所述可视化井筒连接,用于向所述可视化井筒内注入模拟地层流体,
模拟钻柱,设置在所述可视化井筒内,与所述可视化井筒的内壁之间形成环形空腔,所述环形空腔与所述井筒出口连通,所述模拟钻柱具有中空的供超临界二氧化碳流体流过的钻柱通道,所述模拟钻柱的底端安装有供超临界二氧化碳流体喷出的喷嘴,
所述井筒多相流模拟测试台与水平面之间的夹角为0°~90°。
2.如权利要求1所述的超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:在所述可视化井筒的外部对应于所述可视窗口的位置,设有用于测量所述环形空腔内流体流动速度和固相浓度的测量仪器。
3.如权利要求1所述的超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:在所述主循环回路上、所述井筒多相流模拟测试台的可视化井筒上分别设有若干压力传感器接口、温度传感器接口和流量计接口。
4.如权利要求1所述的超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:在所述可视化井筒的外部还设有用于控制井筒内部压力及温度的压力控制器和温度控制器。
5.如权利要求1所述的超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:所述的模拟试验装置还包括调压支路,所述调压支路与所述主循环回路连通,所述调压支路上设有溢流阀。
6.如权利要求1至5任一项所述的超临界二氧化碳井筒多相流动模拟试验装置,其特征在于:所述支架上设有滑轮。
CN201110397442.0A 2011-12-02 2011-12-02 超临界二氧化碳井筒多相流动模拟试验装置 Expired - Fee Related CN102400674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110397442.0A CN102400674B (zh) 2011-12-02 2011-12-02 超临界二氧化碳井筒多相流动模拟试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110397442.0A CN102400674B (zh) 2011-12-02 2011-12-02 超临界二氧化碳井筒多相流动模拟试验装置

Publications (2)

Publication Number Publication Date
CN102400674A CN102400674A (zh) 2012-04-04
CN102400674B true CN102400674B (zh) 2014-10-15

Family

ID=45883277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110397442.0A Expired - Fee Related CN102400674B (zh) 2011-12-02 2011-12-02 超临界二氧化碳井筒多相流动模拟试验装置

Country Status (1)

Country Link
CN (1) CN102400674B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373105A (zh) * 2013-08-14 2015-02-25 中国石油大学(北京) 模拟井筒多功能流动测试系统
CN103867166B (zh) * 2014-04-01 2015-03-11 中国石油大学(华东) 一种超临界二氧化碳高压射流解堵增渗的方法
CN105003254B (zh) * 2015-08-05 2017-06-06 中国海洋石油总公司 高温高压井筒环空密闭空间温压变化模拟实验装置
CN105401934B (zh) * 2015-11-25 2018-06-01 中国石油天然气股份有限公司 一种可视模拟井筒实验装置
CN107676081B (zh) * 2016-08-02 2023-09-08 中石化石油工程技术服务有限公司 一种随钻声波测井仪器测试装置
CN106401580B (zh) * 2016-11-28 2023-07-18 中国石油大学(北京) 复杂内边界多热源举升井筒多相流动实验装置
CN106978994B (zh) * 2017-04-27 2020-06-09 中国石油天然气股份有限公司 一种泡排剂检查系统
CN109441435A (zh) * 2018-10-24 2019-03-08 西南石油大学 一种监测水平井气液两相流井筒温度变化的室内实验装置及方法
CN109611074B (zh) * 2018-11-01 2022-08-02 中国石油天然气集团有限公司 一种可替换岩石的可视化模拟井筒试验装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705815A (zh) * 2009-12-04 2010-05-12 中国石油大学(华东) 超临界二氧化碳钻井液模拟实验装置
CN101936158A (zh) * 2010-08-14 2011-01-05 中国石油大学(华东) 超临界条件下井筒多相流动实验方法
CN202348259U (zh) * 2011-12-02 2012-07-25 中国石油大学(华东) 超临界二氧化碳井筒多相流动模拟试验装置

Also Published As

Publication number Publication date
CN102400674A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
CN102400674B (zh) 超临界二氧化碳井筒多相流动模拟试验装置
WO2016078165A1 (zh) 天然气水合物地层钻井模拟装置
CN106640061B (zh) 一种井筒与地层裂缝耦合流动模拟实验装置及方法
CN102562040B (zh) 高温高压钻井液漏失动态评价仪
CN108868740A (zh) 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验方法
CN101709639B (zh) 模拟深水油气开采的井筒多相流动装置
CN105735981B (zh) 裂缝性地层复杂工况模拟实验装置
CN104373105A (zh) 模拟井筒多功能流动测试系统
CN103032057A (zh) 稠油水平井蒸汽驱三维物理模拟系统
CN202348259U (zh) 超临界二氧化碳井筒多相流动模拟试验装置
CN109826612A (zh) 天然气水合物储层径向水平井钻采模拟装置及方法
CN112627733A (zh) 深水控压钻井水力参数实时优化方法及设备
CN1332195C (zh) 高温高压岩心动态损害评价试验仪
CN105822264B (zh) 天然气水合物层钻井井筒水合物动态分解位置检测方法
CN206205885U (zh) 复杂内边界多热源举升井筒多相流动实验装置
CN104948149A (zh) 一种适用于矿场复杂油层的多介质分注系统
Wu et al. Experimental investigation on improved vertical sweep efficiency by steam-air injection for heavy oil reservoirs
CN201924919U (zh) 超临界流体钻完井模拟试验装置
Zhou et al. Analysis of gas migration in Sustained-Casing-Pressure annulus by employing improved numerical model
CN110929447B (zh) 一种稠化酸酸化过程中井筒温度场数值计算方法
CN106401580B (zh) 复杂内边界多热源举升井筒多相流动实验装置
Cheng et al. A new technology of 3D scaled physical simulation for high-pressure and high-temperature steam injection recovery
CN102086764A (zh) 超临界流体钻完井模拟试验装置
CN206144553U (zh) 一种模拟井下示踪剂注入实验装置
CN206329294U (zh) 一种模拟氮气钻水平井地层出水实验装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141015

Termination date: 20151202

EXPY Termination of patent right or utility model