CN102377380A - 电动车辆交流永磁同步电机控制系统 - Google Patents

电动车辆交流永磁同步电机控制系统 Download PDF

Info

Publication number
CN102377380A
CN102377380A CN2010102493772A CN201010249377A CN102377380A CN 102377380 A CN102377380 A CN 102377380A CN 2010102493772 A CN2010102493772 A CN 2010102493772A CN 201010249377 A CN201010249377 A CN 201010249377A CN 102377380 A CN102377380 A CN 102377380A
Authority
CN
China
Prior art keywords
permanent magnet
magnet synchronous
inverter
synchronous motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102493772A
Other languages
English (en)
Inventor
程基江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010102493772A priority Critical patent/CN102377380A/zh
Publication of CN102377380A publication Critical patent/CN102377380A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种电动车辆交流永磁同步电机控制系统,包括交流永磁同步电机、功率变换器、控制器和检测器,所述控制器为一DSP微处理器,所述检测器包括位置检测器和电流检测器,所述位置检测器和电流检测器将其各自检测到的交流永磁同步电机的转子位置/速度信号和电流信号分别输入DSP微处理器,所述DSP微处理器根据输入的转子位置/速度信号计算出电流的给定值,再与输入的电流检测值相比较得出相应的控制信号,并经功率变换器驱动交流永磁同步电机;所述功率变换器采用由MOSFET逆变器和IGBT逆变器构成的三相双逆变桥式结构。本发明具有结构紧凑牢固、电路简单、性能可靠、运行稳定以及控制效率和控制精度都比较高等优点。

Description

电动车辆交流永磁同步电机控制系统
技术领域:
本发明涉及永磁同步电机控制领域,特别是一种电动车辆交流永磁同步电机控制系统。
背景技术:
电机控制系统是电动车辆至关重要的组成部分,决定着电动车辆驱动性能的优良与否。近十年来,主要发展交流异步电机控制器和无刷永磁电机控制器。与原有的直流牵引电机控制器相比,具有明显优势,其突出优点是效率高、基本免维护、调速范围广。其研究开发现状和发展趋势如下。
1.异步电机控制器
异步电机控制器的特点是坚固耐用、运行可靠,可实现控制电机低转矩脉动,低噪声,不需要位置传感器,转速极限高。异步电机控制器的矢量控制调速技术比较成熟,因此被较早应用于电动汽车,目前仍然是电动汽车控制器的主流产品(尤其在美国),但已被其它新型无刷永磁牵引电机控制器逐步取代。最大缺点是控制器电路复杂,控制效率不高,不利于实现产业化。
2.无刷永磁同步电机控制器
无刷永磁同步电机控制器具有较高的功率密度和效率以及宽广的调速范围,发展前景十分广阔,在电动车辆牵引电机控制器中是强有力的竞争者,已在国内外多种电动车辆中获得应用。最大的缺点是控制精度不高,因此通常应用在一些对精度要求较低的场合。
发明内容:
本发明的目的在于克服上述现有技术的不足,提供一种结构紧凑牢固、电路简单、性能可靠以及在宽广的转速范围内控制效率和控制精度都比较高的电动车辆交流永磁同步电机控制系统。
为了实现上述发明目的,本发明采用了如下技术方案:
一种电动车辆交流永磁同步电机控制系统,包括交流永磁同步电机、功率变换器、控制器和检测器,所述控制器为一DSP微处理器,所述检测器包括位置检测器和电流检测器,所述位置检测器和电流检测器将其各自检测到的交流永磁同步电机的转子位置/速度信号和电流信号分别输入DSP微处理器,所述DSP微处理器根据输入的转子位置/速度信号计算出电流的给定值,再与输入的电流检测值相比较得出相应的控制信号,并经功率变换器驱动交流永磁同步电机;所述功率变换器采用由MOSFET逆变器和IGBT逆变器构成的三相双逆变桥式结构,当直流母线电压低于200V时,所述MOSFET逆变器为主逆变器,所述IGBT逆变器为附属逆变器,当直流母线电压高于200V时,所述IGBT逆变器为主逆变器,所述MOSFET逆变器为附属逆变器。
所述交流永磁同步电机低速运行时由主逆变器驱动,附属逆变器仅用于构成绕组回路;所述交流永磁同步电机高速运行时,由主逆变器和附属逆变器同时驱动。
所述位置检测器的电路中设有功角闭环控制器。
所述位置检测器采用增量式光电编码器,其输出3对差分信号:A+、A-,B+、B-,Z+、Z-;其中A相和B相信号正交,Z相信号是零位信号,增量式光电编码器每旋转一圈经过零位输出一个脉冲。
所述电流检测器包括霍尔传感器、运算放大器A、运算放大器B和运算放大器C,所述交流永磁同步电机的相电流由霍尔传感器检测,检测信号经运算放大器A进行电流/电压转换后输出负电压,随后加到运算放大器B的输入端,对该负电压进行反向和比例放大,最后经过运算放大器C进行电平偏移。
所述DSP微处理器的输出端设有一主要由集成电压比较器LM393构成的过流保护电路,所述集成电压比较器LM393的正输入端与交流永磁同步电机连接,所述集成电压比较器LM393的输出端与DSP微处理器的输出端连接。
所述功率变换器中设置具有滤波功能和回馈能量存储功能的电容。
本发明相对于现有技术具有如下优点:
1,通过选用运算速度快的DSP微处理器以及快恢复、快响应的三双逆变桥式结构,提高了交流永磁同步电机的低速转矩,使其无异步电机起动时所出现的电流冲击现象。
2,提高了位置及电流检测器对信号采样的精确度,从而对电机速度进行准确的控制。
3,在永磁同步电机常用的转速和电流双闭环的基础上,增加了功角闭环控制。对于使用低成本、低分辨率的位置编码器的情况,负载突变时,防止功角瞬间失控,而且低速时,转子位置插值不准确,采用功角闭环控制可以消除转矩不稳定,响应差的问题,大大提高了控制器的位置传感器精度可选择范围。
4,对于不同的电池电压,灵活采用不同的主电路功率原件,即双逆变器控制方式,减少了控制器的发热,并且在高速运行时电机的功率因素较低时,利用抵消电机端压的无功分量,保证电机在高速时的转矩和功率。提高了控制器的运行效率,增加了车辆的续航里程。
5,控制系统稳定,主电路以数字电路为主,结构简单,便于维护。
6,能实现电能回馈功能。刹车、减速或下坡滑行时将电机产生的能量反馈给电池,起到反充电的效果,从而对电池进行维护,延长了电池的使用寿命。
附图说明:
图1为本发明的控制原理图。
图2为本发明中三相双逆变桥式结构示意图。
图3为本发明中增量式光电编码器的连接线路图,图中仅示出了A相的电路连接。
图4为本发明中过电流保护电路的结构示意图。
图5为本发明中电流检测电路的结构示意图。
具体实施方式:
参见图1,按照本发明提供的电动车辆交流永磁同步电机控制系统,包括DSP微处理器(型号:TMS320F243)、功率变换器、交流永磁同步电机及位置检测器和电流检测器,位置检测器和电流检测器用于分别检测交流永磁同步电机的转子位置、转子速度和相电流,工作时,位置检测器将其检测到的转子位置信号和转子速度信号由DSP微处理器的QEP单元输入,电流检测器将其检测到的电流信号由DSP微处理器的A/D转换接口输入,DSP微处理器根据输入的转子位置信号和转子速度信号计算出电流的给定值,再与输入的电流检测值相比较,得出相应的控制信号控制输出PWM脉冲的宽度,PWM信号经功率变换器驱动交流永磁同步电机,从而保证电机转速的稳定。
如图2所示,所述功率变换器采用由MOSFET逆变器和IGBT逆变器构成的三相双逆变桥式结构,属于能量回收型,其间的电容具有滤波功能和回馈能量的存储功能,从而提高了系统的运行效率。当直流母线电压低于200V时,MOSFET逆变器为主逆变器,IGBT逆变器为附属逆变器,当直流母线电压高于200V时,IGBT逆变器为主逆变器,MOSFET逆变器为附属逆变器,以此提高逆变器的工作效率。当交流永磁同步电机低速运行时,由主逆变器驱动,附属逆变器仅用于构成绕组回路;当交流永磁同步电机高速运行时,由主逆变器和附属逆变器同时驱动,利用附属逆变器来抵消电机端压的无功分量以维持转矩恒定和功率的增大需求,从而不需要通过额外的DC/DC电路来提高直流母线电压,降低了对电动汽车电池电压的要求。
所述位置检测器采用增量式光电编码器,其输出3对差分信号:A+、A-,B+、B-,Z+、Z-。其中A相和B相信号正交,判断两个信号相位差即可判断交流永磁同步电机的旋转方向,Z相信号是零位信号,增量式光电编码器每旋转一圈经过零位输出一个脉冲。图3为A相电路连接图,A+、A-差分信号经过运算放大器反相加强后,分别输入电压比较器的反相、同相输入端,经过电压比较后,输出端得到A相有效电平,该信号直接输入DSP微处理器。B相和Z相的处理方法与A相相同,在这里就不重复说明。获得准确的A、B、Z输入信号后,DSP就可以进行转向判断、位置和转速计算。
所述位置检测器的电路中设有功角闭环控制器(图中为示)。采用功角闭环控制,能提高电机转矩的稳定性,尤其是低速时,适应路况引起的负载波动,通过这个方法,可以采用低成本的光电编码器,从而大大提高了控制器的位置传感精度可选择范围。同时考虑电机的过载倍数,将电机的功角控制在极限功角以内,保证电机在稳定状态下运行,大大提高路况变化引起电机负载突变时的系统稳定性和快速响应性。
所述电流检测器包括霍尔传感器、运算放大器A、运算放大器B和运算放大器C。电流检测电路如图5所示,交流永磁同步电机的相电流由霍尔传感器检测,检测信号Ju经运算放大器A进行电流/电压转换后输出,根据运算放大器的工作原理可知输出为负电压。随后,电压加到运算放大器B的输入端,对该负电压进行反向和比例放大。由于微处理器TMS320F243的A/D输入电压范围是0~3V,所以运算放大器B输出的电压不能直接输入DSP,还需要经过运算放大器C进行电平偏移,如图3所示,在运算放大器C的同相输入端叠加了1.5V的偏压,使得输出电压范围调成0~3V。
相电流过流是电机运行时常遇到的问题,它不但影响到电机的正常运行,高负荷、长时间的过流还可能烧坏功率变换器,对操作人员的人身安全构成严重威胁,因此,本发明在功率变换器的电路中设有过流保护电路。如图1和图4所示,过流保护电路主要通过一集成电压比较器LM393来实现,集成电压比较器LM393的正输入端I1+与交流永磁同步电机连接,集成电压比较器LM393的输出端O1与DSP微处理器的输出端连接。当电机正常工作时,FAULT端高阻,集成电压比较器LM393的正输入端I1+电压为+15V,负输入端I1-为+7.5V,正输入端电压高于负输入端电压,输出端O1输出高电平,DSP微处理器的PWM输出端正常将控制信号传输至功率变换器;当电机工作于过流状态时,FAULT端输出低电平,使得集成电压比较器LM393的正输入端I1+钳位在低电平,而负输入端I1-仍然为+7.5V,正输入端电压低于负输入端,输出端O1电压反转,触发DSP微处理器的PWM输出端处于高阻状态,功率变换器停止工作。
所述DSP微处理器主要由CPU、片内554字RAM与8K字Flash EPROM、事件管理器和片内外设接口组成。如图1所示,该控制器还包括有PC上位机、键盘和LED显示,DSP微处理器用SCI接口完成与PC上位机的串行通讯功能,通过PC上位机可以设定参考给定位置、速度、电流,也可将位置、速度、电流反馈检测量实时传送到PC上位机显示,也可以通过数字I/O扩展的键盘设定给定量,由SPI接口完成串行驱动LED数码管显示功能。
上述实施例仅供说明本发明之用,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由各权利要求限定。

Claims (7)

1.一种电动车辆交流永磁同步电机控制系统,包括交流永磁同步电机、功率变换器、控制器和检测器,其特征在于:所述控制器为一DSP微处理器,所述检测器包括位置检测器和电流检测器,所述位置检测器和电流检测器将其各自检测到的交流永磁同步电机的转子位置/速度信号和电流信号分别输入DSP微处理器,所述DSP微处理器根据输入的转子位置/速度信号计算出电流的给定值,再与输入的电流检测值相比较得出相应的控制信号,并经功率变换器驱动交流永磁同步电机;所述功率变换器采用由MOSFET逆变器和IGBT逆变器构成的三相双逆变桥式结构,当直流母线电压低于200V时,所述MOSFET逆变器为主逆变器,所述IGBT逆变器为附属逆变器,当直流母线电压高于200V时,所述IGBT逆变器为主逆变器,所述MOSFET逆变器为附属逆变器。
2.如权利要求1所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述交流永磁同步电机低速运行时由主逆变器驱动,附属逆变器仅用于构成绕组回路;所述交流永磁同步电机高速运行时,由主逆变器和附属逆变器同时驱动。
3.如权利要求1或2所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述位置检测器的电路中设有功角闭环控制器。
4.如权利要求3所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述位置检测器采用增量式光电编码器,其输出3对差分信号:A+、A-,B+、B-,Z+、Z-;其中A相和B相信号正交,Z相信号是零位信号,增量式光电编码器每旋转一圈经过零位输出一个脉冲。
5.如权利要求3所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述电流检测器包括霍尔传感器、运算放大器A、运算放大器B和运算放大器C,所述交流永磁同步电机的相电流由霍尔传感器检测,检测信号经运算放大器A进行电流/电压转换后输出负电压,随后加到运算放大器B的输入端,对该负电压进行反向和比例放大,最后经过运算放大器C进行电平偏移。
6.如权利要求3所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述DSP微处理器的输出端设有一主要由集成电压比较器LM393构成的过流保护电路,所述集成电压比较器LM393的正输入端(I1+)与交流永磁同步电机连接,所述集成电压比较器LM393的输出端(O1)与DSP微处理器的输出端连接。
7.如权利要求1或2所述的电动车辆交流永磁同步电机控制系统,其特征在于:所述功率变换器中设置具有滤波功能和回馈能量存储功能的电容。
CN2010102493772A 2010-08-10 2010-08-10 电动车辆交流永磁同步电机控制系统 Pending CN102377380A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102493772A CN102377380A (zh) 2010-08-10 2010-08-10 电动车辆交流永磁同步电机控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102493772A CN102377380A (zh) 2010-08-10 2010-08-10 电动车辆交流永磁同步电机控制系统

Publications (1)

Publication Number Publication Date
CN102377380A true CN102377380A (zh) 2012-03-14

Family

ID=45795488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102493772A Pending CN102377380A (zh) 2010-08-10 2010-08-10 电动车辆交流永磁同步电机控制系统

Country Status (1)

Country Link
CN (1) CN102377380A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616572A (zh) * 2013-12-09 2014-03-05 安徽江淮汽车股份有限公司 一种电动汽车pmsm驱动系统缺相故障的诊断方法
CN104579035A (zh) * 2013-10-29 2015-04-29 北京精密机电控制设备研究所 一种基于mosfet的5kw级永磁同步电机驱动电路
CN105182855A (zh) * 2015-09-23 2015-12-23 上海大学 Dsp芯片出现失效时保护的汽车控制器及其控制方法
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置
CN106788116A (zh) * 2017-01-25 2017-05-31 维尔纳(福建)电机有限公司 一种电动车载永磁电机的控制系统
CN107769628A (zh) * 2017-12-05 2018-03-06 北京信息科技大学 一种永磁无刷直流电机转矩脉动抑制方法及装置
CN107994814A (zh) * 2015-12-02 2018-05-04 刘振韬 多相无刷直流电机及其驱动方法
CN113491064A (zh) * 2019-02-25 2021-10-08 三菱电机株式会社 电动机驱动装置和制冷循环装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725626A (zh) * 2004-07-12 2006-01-25 株式会社日立制作所 车辆用驱动发电系统
CN1974261A (zh) * 2005-11-30 2007-06-06 株式会社日立制作所 电动机驱动装置以及使用了该电动机驱动装置的汽车
CN101232269A (zh) * 2007-01-25 2008-07-30 株式会社东芝 用于铁道车辆的电机驱动系统
CN101359879A (zh) * 2007-07-30 2009-02-04 通用汽车环球科技运作公司 用于双端逆变器系统的不连续脉宽调制
CN101357596A (zh) * 2007-07-30 2009-02-04 通用汽车环球科技运作公司 使用带有双端逆变器系统的多相电机的系统
CN101409498A (zh) * 2007-07-30 2009-04-15 通用汽车环球科技运作公司 双端逆变器系统的高效工作点
CN201781456U (zh) * 2010-08-10 2011-03-30 程基江 一种电动车辆交流永磁同步电机控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725626A (zh) * 2004-07-12 2006-01-25 株式会社日立制作所 车辆用驱动发电系统
CN1974261A (zh) * 2005-11-30 2007-06-06 株式会社日立制作所 电动机驱动装置以及使用了该电动机驱动装置的汽车
CN101232269A (zh) * 2007-01-25 2008-07-30 株式会社东芝 用于铁道车辆的电机驱动系统
CN101359879A (zh) * 2007-07-30 2009-02-04 通用汽车环球科技运作公司 用于双端逆变器系统的不连续脉宽调制
CN101357596A (zh) * 2007-07-30 2009-02-04 通用汽车环球科技运作公司 使用带有双端逆变器系统的多相电机的系统
CN101409498A (zh) * 2007-07-30 2009-04-15 通用汽车环球科技运作公司 双端逆变器系统的高效工作点
CN201781456U (zh) * 2010-08-10 2011-03-30 程基江 一种电动车辆交流永磁同步电机控制系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579035A (zh) * 2013-10-29 2015-04-29 北京精密机电控制设备研究所 一种基于mosfet的5kw级永磁同步电机驱动电路
CN103616572A (zh) * 2013-12-09 2014-03-05 安徽江淮汽车股份有限公司 一种电动汽车pmsm驱动系统缺相故障的诊断方法
CN103616572B (zh) * 2013-12-09 2015-12-30 安徽江淮汽车股份有限公司 一种电动汽车pmsm驱动系统缺相故障的诊断方法
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置
CN105182855A (zh) * 2015-09-23 2015-12-23 上海大学 Dsp芯片出现失效时保护的汽车控制器及其控制方法
CN105182855B (zh) * 2015-09-23 2018-04-06 上海大学 Dsp芯片出现失效时保护的汽车控制器及其控制方法
CN107994814A (zh) * 2015-12-02 2018-05-04 刘振韬 多相无刷直流电机及其驱动方法
CN106788116A (zh) * 2017-01-25 2017-05-31 维尔纳(福建)电机有限公司 一种电动车载永磁电机的控制系统
CN106788116B (zh) * 2017-01-25 2023-08-18 维尔纳集电电子科技(福建)有限公司 一种电动车载永磁电机的控制系统
CN107769628A (zh) * 2017-12-05 2018-03-06 北京信息科技大学 一种永磁无刷直流电机转矩脉动抑制方法及装置
CN107769628B (zh) * 2017-12-05 2019-10-11 北京信息科技大学 一种永磁无刷直流电机转矩脉动抑制方法及装置
CN113491064A (zh) * 2019-02-25 2021-10-08 三菱电机株式会社 电动机驱动装置和制冷循环装置

Similar Documents

Publication Publication Date Title
CN102377380A (zh) 电动车辆交流永磁同步电机控制系统
CN102064753A (zh) 交流永磁同步电机控制器
CN103018541B (zh) 无刷直流电机反电势过零检测电路及检测方法
CN201072858Y (zh) 感应电动机控制系统和感应电动机系统
CN201781456U (zh) 一种电动车辆交流永磁同步电机控制系统
CN111830435B (zh) 一种六相永磁容错电机系统功率管开路故障诊断方法
CN103731076B (zh) 一种基于永磁无刷直流电机的电动自行车控制方法
CN1767353A (zh) 自动推进系统的位置传感器容错控制
CN203278723U (zh) 一种无刷直流电机控制器
CN205304653U (zh) 一种基于无刷直流电机的双面式通风机控制系统
CN103532449B (zh) 级联式多电平变换器的永磁同步电机驱动控制系统及其控制方法
CN203675020U (zh) 干手器用无位置传感器无刷电机控制器
CN103501146A (zh) 无刷直流电机驱动系统的换相转矩脉动抑制方法及系统
CN201869153U (zh) 电动汽车用永磁同步电动机驱动控制器
CN103560725A (zh) 一种独立于转速的无刷直流电机位置检测方法
CN101876239A (zh) 一种抽油机系统及其省电控制方法
CN115465785A (zh) 一种塔机运行智能调速系统
CN201754551U (zh) 直流无刷电机及其控制系统
CN108282114A (zh) 永磁同步电机的控制方法及系统
CN204392118U (zh) 一种基于矩阵变换器的三极磁轴承运行控制装置
CN201601648U (zh) 一种电动车大功率无传感器矢量控制器
CN103490680B (zh) 无霍尔元件直流无刷马达驱动系统与驱动方法
CN102255587B (zh) 一种直流无刷电机纯硬件模拟控制器
CN206640529U (zh) 一种电动汽车用开关磁阻电机控制装置
CN103441713A (zh) 一种调节开关磁阻电机开通角和关断角的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120314