CN102364618B - Multilayer film material with vertical magnetic anisotropy - Google Patents
Multilayer film material with vertical magnetic anisotropy Download PDFInfo
- Publication number
- CN102364618B CN102364618B CN 201110354377 CN201110354377A CN102364618B CN 102364618 B CN102364618 B CN 102364618B CN 201110354377 CN201110354377 CN 201110354377 CN 201110354377 A CN201110354377 A CN 201110354377A CN 102364618 B CN102364618 B CN 102364618B
- Authority
- CN
- China
- Prior art keywords
- layer
- film material
- multilayer film
- mgo
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 76
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 44
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 71
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 3
- 229910019236 CoFeB Inorganic materials 0.000 abstract description 37
- 238000000137 annealing Methods 0.000 abstract description 5
- 230000005389 magnetism Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 67
- 230000005415 magnetization Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910052774 Proactinium Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 241001562081 Ikeda Species 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
Images
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
一种具有垂直磁各向异性的多层膜材料,所述多层膜材料由下至上为:基片、核心缓冲层、非晶铁磁层和氧化物势垒层。本发明中的这种“CoFeB/MgO”界面垂直各向异性的多层膜材料,该材料通过将“Ta/CoFeB/MgO”结构中的Ta用Mo或Hf替换,使得体系的垂直磁各向异性能分别增大了大约22%和37%。而且对于“Mo/CoFeB/MgO”体系,热稳定性还大大增强,经过400℃两小时退火后其垂直各向异性能仍然稳定不变,从而应用价值得以提升,使该材料可应用到垂直磁隧道中。
A multi-layer film material with perpendicular magnetic anisotropy. The multi-layer film material includes from bottom to top: substrate, core buffer layer, amorphous ferromagnetic layer and oxide barrier layer. The "CoFeB/MgO" interfacial perpendicular anisotropic multilayer film material in the present invention, the material makes the perpendicular magnetic anisotropy of the system by replacing Ta in the "Ta/CoFeB/MgO" structure with Mo or Hf Anisotropy increases by approximately 22% and 37%, respectively. Moreover, for the "Mo/CoFeB/MgO" system, the thermal stability is greatly enhanced. After annealing at 400°C for two hours, its vertical anisotropy remains stable, thereby improving the application value and making this material applicable to vertical magnetism. in the tunnel.
Description
技术领域 technical field
本发明涉及一种具有增强“CoFeB/MgO”界面垂直各向异性性能的复合材料。 The invention relates to a composite material with enhanced "CoFeB/MgO" interfacial perpendicular anisotropy performance.
背景技术 Background technique
因为具有高的磁电阻率,磁隧道结一直备受关注。通常,磁隧道结的铁磁电极的磁矩平行于膜面,称之为面内磁隧道结。不过,具有垂直磁各向异性铁磁电极的磁隧道(以下简称垂直隧道结)近几年被认为可以用于实现下一代高密度非易失性存储器—磁性随机存储器(MRAM)。这主要是因为相对于面内磁隧道结,垂直隧道结:能克服小尺度下的边缘效应,磁电阻率更大、信噪比更高;各向异性能更大,抗热扰动能力更强、超顺磁极限尺寸更小,因此器件的密度可以做得更高更可靠;临界翻转电流相对来说减少了一项跟静磁能有关的量,因此可以更小。常见的具有垂直磁各向异性的多层膜材料有:过渡-稀土合金(如TbFeCo,GdFeCo等),L10相(Co, Fe)-(Pt, Pd)合金,以及Co/(Pd, Pt,Ni)多层膜。但是这些材料都达不到应用的要求,主要原因有:热稳定性差或制备条件苛刻;垂直各向异性能不够大;晶体结构和势垒层MgO(001)不匹配使得磁电阻值太小;以及磁阻尼系数太大使得临界翻转电流值大。S.Ikeda [S. Ikeda et al, Nature Mater. 9, 721 (2010)]等人提出一种新的具有磁垂直各向异性的多层膜材料Ta/CoFeB/MgO。此体系利用CoFeB/MgO界面处的界面各向异性能克服退磁能的影响,从而使得铁磁层CoFeB的磁矩垂直于膜面;需要强调的是,Ta层被认为有利于CoFeB的垂直各向异性,至今垂直各向异性CoFeB薄膜都离不开Ta近邻层 [D. C. Worledge et al, Appl. Phys. Lett. 98, 022501 (2011)]。相对于以上三种常规的垂直磁各向异性薄膜,Ta/CoFeB/MgO结构方便地应用于MgO磁隧道结中,制备方法简单;而且,此体系经过简单的退火处理之后,铁磁电极CoFeB和势垒层MgO的晶体结构非常匹配(分别为bcc(001)和fcc(100),失配度小于4%),因此利用此体系制备出来的隧道结有很高的磁电阻率;同时CoFeB磁阻尼系数小从而临界翻转电流值小。然而,不足的是该体系的垂直磁各向异性能还是太小,以至于随着 CoFeB的厚度增大到只有大约1.5 nm的时候,它的磁矩就从垂直方向回到了面内。不仅如此,W. G. Wang [W. G. Wang et al, Appl. Phys. Lett. 99, 102502 (2011)]等人发现 Ta/CoFeB/MgO体系在通过300℃以上退火数十秒后垂直磁各向异性能就会迅速下降。这无疑将是致命的,因为为了增大磁隧道结的磁电阻值同时减小结的面电阻率,隧道结通常需要在350度以上的温度下退火来保证势垒层MgO很好的晶化。 Magnetic tunnel junctions have attracted much attention because of their high magnetoresistivity. Usually, the magnetic moment of the ferromagnetic electrode of the magnetic tunnel junction is parallel to the film surface, which is called an in-plane magnetic tunnel junction. However, magnetic tunnels with vertical magnetic anisotropy ferromagnetic electrodes (hereinafter referred to as vertical tunnel junctions) have been considered to be used in the realization of next-generation high-density nonvolatile memory—magnetic random access memory (MRAM) in recent years. This is mainly because compared with the in-plane magnetic tunnel junction, the vertical tunnel junction: can overcome the edge effect at a small scale, have larger magnetoresistivity, higher signal-to-noise ratio; larger anisotropy, and stronger thermal disturbance resistance , The superparamagnetic limit size is smaller, so the density of the device can be made higher and more reliable; the critical switching current is relatively reduced by an amount related to the magnetostatic energy, so it can be smaller. Common multilayer film materials with perpendicular magnetic anisotropy include: transition-rare earth alloys (such as TbFeCo, GdFeCo, etc.), L10 phase (Co, Fe)-(Pt, Pd) alloys, and Co/(Pd, Pt, Ni) multilayer film. However, these materials cannot meet the requirements of the application. The main reasons are: poor thermal stability or harsh preparation conditions; the vertical anisotropy is not large enough; the mismatch between the crystal structure and the barrier layer MgO (001) makes the magnetoresistance value too small; And the magnetic damping coefficient is too large so that the critical switching current value is large. S. Ikeda [S. Ikeda et al, Nature Mater. 9, 721 (2010)] et al proposed a new multilayer film material Ta/CoFeB/MgO with magnetic perpendicular anisotropy. This system uses the interfacial anisotropy at the CoFeB/MgO interface to overcome the influence of demagnetization energy, so that the magnetic moment of the ferromagnetic layer CoFeB is perpendicular to the film surface; it should be emphasized that the Ta layer is considered to be beneficial to the vertical isotropy of CoFeB Anisotropy, up to now vertical anisotropic CoFeB films are inseparable from the Ta neighbor layer [D. C. Worledge et al, Appl. Phys. Lett. 98, 022501 (2011)]. Compared with the above three conventional perpendicular magnetic anisotropy films, the Ta/CoFeB/MgO structure is conveniently applied to the MgO magnetic tunnel junction, and the preparation method is simple; moreover, after a simple annealing treatment of this system, the ferromagnetic electrode CoFeB and The crystal structure of the barrier layer MgO is very matched (bcc(001) and fcc(100) respectively, and the mismatch degree is less than 4%), so the tunnel junction prepared by this system has a high magnetoresistance; at the same time, the CoFeB magnetic The damping coefficient is small so that the critical flipping current value is small. However, the disadvantage is that the perpendicular magnetic anisotropy of this system is still too small, so that when the thickness of CoFeB increases to only about 1.5 nm, its magnetic moment returns from the vertical direction to the in-plane. Not only that, W. G. Wang [W. G. Wang et al, Appl. Phys. Lett. 99, 102502 (2011)] et al. found that the Ta/CoFeB/MgO system was vertically The magnetic anisotropy energy will drop rapidly. This will undoubtedly be fatal, because in order to increase the magnetoresistance value of the magnetic tunnel junction and reduce the surface resistivity of the junction, the tunnel junction usually needs to be annealed at a temperature above 350 degrees to ensure a good crystallization of the barrier layer MgO .
发明内容 Contents of the invention
针对现有技术中具有垂直磁各向异性的多层膜材料所存在的问题,本发明公开了一种新型具有垂直磁各向异性的多层膜材料,该材料通过采用Mo或Hf作为核心缓冲层材料,增大了垂直磁各向异性能和热稳定性。 Aiming at the problems existing in the multilayer film material with perpendicular magnetic anisotropy in the prior art, the present invention discloses a novel multilayer film material with perpendicular magnetic anisotropy, which uses Mo or Hf as the core buffer layer material, increasing the perpendicular magnetic anisotropy and thermal stability.
为实现上述目的,本发明的1、一种具有垂直磁各向异性的多层膜材料,其特征在于,所述多层膜材料由下至上为:基片、核心缓冲层、非晶铁磁层和氧化物势垒层。 In order to achieve the above object, 1. A multilayer film material with perpendicular magnetic anisotropy of the present invention is characterized in that the multilayer film material is from bottom to top: substrate, core buffer layer, amorphous ferromagnetic layer and oxide barrier layer.
进一步,所述的基片的材料为硅、玻璃或其它化学性能稳定且表面平整的物质。 Furthermore, the material of the substrate is silicon, glass or other substances with stable chemical properties and smooth surface.
进一步,所述核心缓冲层的材质为Mo或Hf;厚度为0.5-200 nm。 Further, the material of the core buffer layer is Mo or Hf; the thickness is 0.5-200 nm.
进一步,所述非晶铁磁层的材质制备态下为非晶态的Co、Fe、B三元类合金,或其它非晶类铁磁材料。该非晶铁磁层的厚度为0.5-10 nm。 Further, the material of the amorphous ferromagnetic layer is an amorphous Co, Fe, B ternary alloy or other amorphous ferromagnetic materials in the prepared state. The thickness of the amorphous ferromagnetic layer is 0.5-10 nm.
进一步,所述的氧化物势垒层的材质为MgO;该氧化物势垒层的厚度为0.5-10 nm。 Further, the material of the oxide barrier layer is MgO; the thickness of the oxide barrier layer is 0.5-10 nm.
一种具有垂直磁各向异性的多层膜材料,所述多层膜材料由下至上设置有:基片、氧化物势垒非晶铁磁层和核心保护层。 A multi-layer film material with perpendicular magnetic anisotropy. The multi-layer film material is arranged from bottom to top: a substrate, an oxide barrier amorphous ferromagnetic layer and a core protection layer.
进一步,所述的基片的材料为硅、玻璃或其它化学性能稳定且表面平整的物质。 Furthermore, the material of the substrate is silicon, glass or other substances with stable chemical properties and smooth surface.
进一步,所述核心保护层的材质为Mo或Hf;厚度为0.5-200 nm。 Further, the material of the core protection layer is Mo or Hf; the thickness is 0.5-200 nm.
进一步,所述非晶铁磁层的材质制备态下为非晶态的Co、Fe、B三元类合金,或其它非晶类铁磁材料。该非晶铁磁层的厚度为0.5-10 nm。 Further, the material of the amorphous ferromagnetic layer is an amorphous Co, Fe, B ternary alloy or other amorphous ferromagnetic materials in the prepared state. The thickness of the amorphous ferromagnetic layer is 0.5-10 nm.
进一步,所述的氧化物势垒层的材质为MgO;该氧化物势垒层的厚度为0.5-10 nm。 Further, the material of the oxide barrier layer is MgO; the thickness of the oxide barrier layer is 0.5-10 nm.
本发明中的这种“CoFeB/MgO”界面垂直各向异性的多层膜材料,该材料通过将“Ta/CoFeB/MgO”结构中的Ta用Mo或Hf替换,使得体系的垂直磁各向异性能分别增大了大约22%和37%。而且对于“Mo/CoFeB/MgO”体系,热稳定性还大大增强,经过400℃两小时退火后其垂直各向异性能仍然稳定不变,从而应用价值得以提升,使该材料可应用到垂直磁隧道中。 The "CoFeB/MgO" interfacial perpendicular anisotropic multilayer film material in the present invention, the material makes the perpendicular magnetic anisotropy of the system by replacing Ta in the "Ta/CoFeB/MgO" structure with Mo or Hf Anisotropy increases by approximately 22% and 37%, respectively. Moreover, for the "Mo/CoFeB/MgO" system, the thermal stability is greatly enhanced. After annealing at 400°C for two hours, its vertical anisotropy remains stable, thereby improving the application value and making this material applicable to vertical magnetism. in the tunnel.
附图说明 Description of drawings
图1 为运用本发明提供的方法得到的具有磁垂直各向异性多层膜材料的一种结构示意图; Fig. 1 is a kind of structural representation with magnetic perpendicular anisotropy multi-layer film material obtained by using the method provided by the present invention;
图2 为运用本发明提供的方法得到的具有磁垂直各向异性多层膜材料的另一种结构示意图; Fig. 2 is another kind of structure schematic diagram with magnetic perpendicular anisotropy multi-layer film material obtained by using the method provided by the present invention;
图3示出了实施例1中的多层膜材料在垂直于膜面方向的磁化曲线;
Fig. 3 shows the magnetization curve of the multilayer film material in
图4示出了实施例1中的多层膜材料在平行于膜面方向的磁化曲线;
Fig. 4 shows the magnetization curve of the multilayer film material in
图5示出了实施例1中的多层膜材料的Kt随t的变化;
Fig. 5 shows the variation of Kt of the multilayer film material in
图6示出了实施例4样品在垂直于膜面和平行于膜面方向的磁化曲线。 Fig. 6 shows the magnetization curves of the samples of Example 4 in the directions perpendicular to the film plane and parallel to the film plane.
具体实施方式 Detailed ways
实施例1: Example 1:
本实施例是运用本发明提供的方法得到的第一种具有垂直磁各向异性的多层膜材料,如图1所示,它的结构为由下至上顺序设置的:热氧化的硅基片1;Mo核心缓冲层2,其厚度为5nm;Co40Fe40B20非晶铁磁层3,其厚度为0.6 nm-1.8nm;MgO氧化物势垒层4,其厚度为2 nm。
This embodiment is the first multilayer film material with perpendicular magnetic anisotropy obtained by using the method provided by the present invention. As shown in Figure 1, its structure is arranged in order from bottom to top: thermally oxidized
本实施例的垂直各向异性多层膜材料的制备方法为:采用磁控溅射的方法,本底真空优于5×10-5 Pa,用Ar气作为溅射气体,溅射气压为0.5 Pa,在表面氧化的Si片上依次沉积垂直各向异性多层膜材料的各层膜。其中,沉积完成之后,将垂直各向异性多层膜材料在300度下真空退火两个小时。 The preparation method of the vertically anisotropic multilayer film material in this embodiment is as follows: the method of magnetron sputtering is adopted, the background vacuum is better than 5×10 -5 Pa, Ar gas is used as the sputtering gas, and the sputtering pressure is 0.5 Pa, each layer of vertically anisotropic multilayer film material is sequentially deposited on the surface oxidized Si wafer. Wherein, after the deposition is completed, the vertically anisotropic multilayer film material is vacuum annealed at 300 degrees for two hours.
图3和4分别给出了本实施例多层膜材料中部分典型样品在垂直于膜面和平行于膜面方向的磁化曲线。从图中可以看到多层膜材料表现出明显的垂直各向异性,而且随着Co40Fe40B20厚度的降低而增加。当Co40Fe40B20的厚度为1.3 nm时,垂直各向异性能已经足以克服退磁能,从而使得磁矩的易轴垂直于膜面。而采用同样方法制备的“Ta/CoFeB/MgO”多层膜材料,即将本实施例中的“Mo核心缓冲层2”换成Ta,结果Co40Fe40B20只有在厚度小于1.1nm时磁矩才能垂直于膜面。显然,本实施例中提供的多层膜材料要比目前通常采用的“Ta/CoFeB/MgO”体系具有更高的垂直各向异性能。“Mo/CoFeB/MgO”和“Ta/CoFeB/MgO”多层膜材料的垂直各向异性能均来源于“CoFeB/MgO”界面处的界面各向异性能,而此界面各向异性能的大小可以从它们的Kt-t曲线的Y轴截矩得到[M. T. Johnson et al, Rep. Prog. Phys. 59, 1409 (1996)]。这里K为垂直各向异性常数,当Co40Fe40B20磁矩垂直于(平行于)膜面时为正(负),它等于Co40Fe40B20平行于(垂直于)膜面的磁化曲线的饱和场与饱和磁化强度乘积的1/2;t为Co40Fe40B20的厚度。图5给出了以上两多层膜材料的Kt-t曲线。从图中可以得到:用Mo缓冲层替代目前常用的Ta以后,“CoFeB/MgO”界面处的界面各向异性能由1.7erg/cm2增加到了2.08 erg/cm2,增加了22%.
Figures 3 and 4 respectively show the magnetization curves of some typical samples in the multilayer film material of this embodiment in the direction perpendicular to the film surface and parallel to the film surface. It can be seen from the figure that the multilayer film material exhibits obvious vertical anisotropy, and it increases as the thickness of Co 40 Fe 40 B 20 decreases. When the thickness of Co 40 Fe 40 B 20 is 1.3 nm, the perpendicular anisotropy energy is enough to overcome the demagnetization energy, so that the easy axis of the magnetic moment is perpendicular to the film plane. However, the "Ta/CoFeB/MgO" multilayer film material prepared by the same method is to replace the "Mo
还需要说明的是:CoFeB/MgO的界面垂直各向异性还与CoFeB的成分密切相关,因而在采用不同成分的CoFeB研究“Ta/CoFeB/MgO”垂直各向异性的时候,各课题组得到的CoFeB薄膜磁矩能垂起来的极限厚度各不相同:S.Ikeda采用Co20Fe60B20时的极限厚度为1.4 nm[S. Ikeda et al, Nature Mater. 9, 721 (2010]; D. C. Worledge 等人采用Co60Fe20B20时的极限厚度为1 nm[D. C. Worledge et al, Appl. Phys. Lett. 98, 022501 (2011)]; 而我们采用Co40Fe40B20得到的极限厚度则为1.1 nm。但无论如何,原则上Mo层对其它成分的CoFeB薄膜的垂直各向异性应该有相似的增强效应。 It should also be noted that the interfacial vertical anisotropy of CoFeB/MgO is also closely related to the composition of CoFeB. Therefore, when using CoFeB with different components to study the vertical anisotropy of "Ta/CoFeB/MgO", the results obtained by each research group The limit thickness of the CoFeB thin film magnetic moment can be different: when S. Ikeda uses Co 20 Fe 60 B 20 , the limit thickness is 1.4 nm [S. Ikeda et al, Nature Mater. 9, 721 (2010]; D. C. Worledge et al. used Co 60 Fe 20 B 20 to obtain a limiting thickness of 1 nm [D. C. Worledge et al, Appl. Phys. Lett. 98, 022501 (2011)]; while we obtained the limiting thickness using Co 40 Fe 40 B 20 as In any case, in principle, the Mo layer should have a similar enhancement effect on the vertical anisotropy of CoFeB films with other components.
实施例2: Example 2:
本实施例中的多层膜结构与实施例1基本相同,其结构由下至上为:热氧化的硅基片1;Mo核心缓冲层2,其厚度为5nm;Co40Fe40B20非晶铁磁层3,其厚度为0.6nm-1.8nm;MgO氧化物势垒层4,其厚度为2nm.
The structure of the multilayer film in this example is basically the same as that of Example 1, and its structure from bottom to top is: thermally oxidized
本实施例的垂直各向异性多层膜材料的制备方法为:采用磁控溅射的方法,本底真空优于5×10-5Pa,用Ar气作为溅射气体,溅射气压为0.5 Pa,在表面氧化的Si片上依次沉积垂直各向异性多层膜材料的各层膜。沉积完成之后,将垂直各向异性多层膜材料在400度下真空退火两个小时。 The preparation method of the vertically anisotropic multilayer film material in this embodiment is as follows: the method of magnetron sputtering is adopted, the background vacuum is better than 5×10 -5 Pa, Ar gas is used as the sputtering gas, and the sputtering pressure is 0.5 Pa, each layer of vertically anisotropic multilayer film material is sequentially deposited on the surface oxidized Si wafer. After the deposition, the vertically anisotropic multilayer material was annealed in vacuum at 400°C for two hours.
本实施例多层膜材料的磁性能与实施例1的多层膜材料相比基本相同,具体说:Co40Fe40B20磁矩由面内转向垂直方向的厚度仍然为1.3 nm,“CoFeB/MgO”界面处的界面各向异性能仍然为2.1erg/cm2左右。也就是说“Mo/CoFeB/MgO”垂直多层膜材料表现良好的热稳定性,特别是本实施例中的退火温度为400度,已经超出了MgO隧道结所需要的350度。而对于“Ta/CoFeB/MgO”多层膜材料,即将本实施例中的“Mo核心缓冲层2”换成Ta以后,在350下度退火仅半个小时以后,体系的垂直各向异性能就已经迅速下降以至于任何厚度下Co40Fe40B20的磁矩都是平行于膜面的,这个结果与W. G. Wang 等人的结果基本一致[W. G. Wang et al, Appl. Phys. Lett. 99, 102502 (2011)]。
Compared with the multilayer film material of Example 1, the magnetic properties of the multilayer film material in this embodiment are basically the same, specifically: the thickness of the Co 40 Fe 40 B 20 magnetic moment from in-plane to vertical direction is still 1.3 nm, "CoFeB The interfacial anisotropy energy at the /MgO” interface is still around 2.1erg/cm 2 . That is to say, the "Mo/CoFeB/MgO" vertical multilayer film material exhibits good thermal stability, especially the annealing temperature in this embodiment is 400 degrees, which has exceeded the 350 degrees required by the MgO tunnel junction. For the "Ta/CoFeB/MgO" multilayer film material, after replacing the "Mo
实施例3: Example 3:
本实施例中的具有垂直磁各向异性的多层膜材料,其结构与实施例1基本相同,由下至上为:热氧化的硅基片1;Hf核心缓冲层2,其厚度为5nm;Co40Fe40B20非晶铁磁层3,其厚度为0.6nm-1.8nm;MgO氧化物势垒层4,其厚度为2nm。
The multilayer film material with perpendicular magnetic anisotropy in the present embodiment, its structure is basically the same as that of
本实施例的垂直各向异性多层膜材料的制备方法为:采用磁控溅射的方法,本底真空优于5×10-5 Pa,用Ar气作为溅射气体,溅射气压为0.5 Pa,在表面氧化的Si片上依次沉积垂直各向异性多层膜材料的各层膜。沉积完成之后,将垂直各向异性多层膜材料在300度下真空退火两个小时。 The preparation method of the vertically anisotropic multilayer film material in this embodiment is as follows: the method of magnetron sputtering is adopted, the background vacuum is better than 5×10 -5 Pa, Ar gas is used as the sputtering gas, and the sputtering pressure is 0.5 Pa, each layer of vertically anisotropic multilayer film material is sequentially deposited on the surface oxidized Si wafer. After the deposition, the vertically anisotropic multilayer material was annealed in vacuum at 300°C for two hours.
与实施例1类似,将本实施例中的垂直各向异性多层膜材料“Hf/CoFeB/MgO”的结果与通常使用的“Ta/CoFeB/MgO”相比较可知:用Hf缓冲层替代目前常用的Ta以后,“CoFeB/MgO”界面处的界面各向异性能由1.7erg/cm2增加到了2.34 erg/cm2,增加了37%,从而使得Co40Fe40B20磁矩能垂直于膜面的极限厚度由原来的1.1nm 增加到了1.5nm。 Similar to Example 1, comparing the results of the vertically anisotropic multilayer film material "Hf/CoFeB/MgO" in this example with the commonly used "Ta/CoFeB/MgO" shows that the Hf buffer layer is used instead of the current After the commonly used Ta, the interfacial anisotropy at the "CoFeB/MgO" interface increased from 1.7erg/cm2 to 2.34erg/ cm2 , an increase of 37%, so that the Co 40 Fe 40 B 20 magnetic moment can be perpendicular to the film The limit thickness of the surface is increased from 1.1nm to 1.5nm.
实施例4: Example 4:
本实施例为运用本发明提供的方法得到的第二种具有垂直磁各向异性的多层膜材料,如图2所示,其具体结构由下至上为:热氧化的硅基片1;MgO氧化物势垒层4,其厚度为5 nm;Co40Fe40B20非晶铁磁层3,其厚度为1.2 nm;Mo核心保护层5,其厚度为5 nm。
This embodiment is the second multilayer film material with perpendicular magnetic anisotropy obtained by using the method provided by the present invention. As shown in Figure 2, its specific structure is from bottom to top: thermally oxidized
本实施例的垂直各向异性多层膜材料的制备方法为:采用磁控溅射的方法,本底真空优于5×10-5 Pa,用Ar气作为溅射气体,溅射气压为0.5 Pa,在表面氧化的Si片上依次沉积垂直各向异性多层膜材料的各层膜。沉积完成之后,将垂直各向异性多层膜材料在300度下真空退火两个小时。 The preparation method of the vertically anisotropic multilayer film material in this embodiment is as follows: the method of magnetron sputtering is adopted, the background vacuum is better than 5×10 -5 Pa, Ar gas is used as the sputtering gas, and the sputtering pressure is 0.5 Pa, each layer of vertically anisotropic multilayer film material is sequentially deposited on the surface oxidized Si wafer. After the deposition, the vertically anisotropic multilayer material was annealed in vacuum at 300°C for two hours.
图6给出了本实施例垂直各向异性薄膜在垂直于膜面和平行于膜面方向的磁化曲线。从图中可以看到:在垂直于膜面方向的曲线表现出明显的易轴磁化特征--方形的剩磁率基本为1,而平行于膜面方向的曲线则表现出明显的难轴磁化特征--线性的剩磁率基本为零,也就是说多层膜材料的易磁化轴垂直于膜面。 Fig. 6 shows the magnetization curves of the perpendicular anisotropic thin film of this embodiment in the directions perpendicular to the film plane and parallel to the film plane. It can be seen from the figure that the curve perpendicular to the film surface shows obvious easy-axis magnetization characteristics - the remanence rate of the square is basically 1, while the curve parallel to the film surface shows obvious hard-axis magnetization characteristics --The linear remanence rate is basically zero, that is to say, the easy magnetization axis of the multilayer film material is perpendicular to the film surface.
实施例5: Example 5:
本实施例中的具有垂直磁各向异性的多层膜材料与实施例4中的基本相同,具体结构由下至上为:热氧化的硅基片1;MgO氧化物势垒层4,其厚度为5 nm;Co40Fe40B20非晶铁磁层3,其厚度为1.2 nm;Hf核心保护层5,其厚度为5 nm。
The multilayer film material with perpendicular magnetic anisotropy in this embodiment is basically the same as that in
本实施例的垂直各向异性多层膜材料的制备方法为:采用磁控溅射的方法,本底真空优于5×10-5 Pa,用Ar气作为溅射气体,溅射气压为0.5 Pa,在表面氧化的Si片上依次沉积垂直各向异性多层膜材料的各层膜。沉积完成之后,将垂直各向异性多层膜材料在300度下真空退火两个小时。 The preparation method of the vertically anisotropic multilayer film material in this embodiment is as follows: the method of magnetron sputtering is adopted, the background vacuum is better than 5×10 -5 Pa, Ar gas is used as the sputtering gas, and the sputtering pressure is 0.5 Pa, each layer of vertically anisotropic multilayer film material is sequentially deposited on the surface oxidized Si wafer. After the deposition, the vertically anisotropic multilayer material was annealed in vacuum at 300°C for two hours.
与实施例4的结果类似,本实施例提供的多层膜材料具有垂直磁各向异性,其易磁化方向垂直于膜面。 Similar to the results of Example 4, the multilayer film material provided in this example has perpendicular magnetic anisotropy, and its easy magnetization direction is perpendicular to the film surface.
当然,以上所有实施例中所给出的各层厚度以及合金材料的成分仅是作为优选实施方案而给出的例子,根据具体应用,可以适当改变,各层膜的厚度可在下列范围内根据实际情况选择:核心缓冲层/保护层的厚度为0.5-200 nm,非晶铁磁层的厚度为0.5-10 nm,氧化物势垒层的厚度为0.5-10 nm。另外,特别注意的是:正如实施1最后所叙述的一样,虽然以上实施例中的CoFeB的成分均为Co40Fe40B20,但原则上,Mo或Hf层对其它成分的CoFeB薄膜的垂直各向异性应该有相似的增强效应。
Of course, the thickness of each layer and the composition of the alloy material given in all the above examples are only examples given as a preferred embodiment, and can be appropriately changed according to specific applications. The thickness of each layer of film can be in the following range according to The actual situation selection: the thickness of the core buffer layer/protection layer is 0.5-200 nm, the thickness of the amorphous ferromagnetic layer is 0.5-10 nm, and the thickness of the oxide barrier layer is 0.5-10 nm. In addition, pay special attention to: as described at the end of
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110354377 CN102364618B (en) | 2011-11-10 | 2011-11-10 | Multilayer film material with vertical magnetic anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110354377 CN102364618B (en) | 2011-11-10 | 2011-11-10 | Multilayer film material with vertical magnetic anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102364618A CN102364618A (en) | 2012-02-29 |
CN102364618B true CN102364618B (en) | 2013-03-06 |
Family
ID=45691182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110354377 Expired - Fee Related CN102364618B (en) | 2011-11-10 | 2011-11-10 | Multilayer film material with vertical magnetic anisotropy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102364618B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9214624B2 (en) * | 2012-07-27 | 2015-12-15 | Qualcomm Incorporated | Amorphous spacerlattice spacer for perpendicular MTJs |
CN103956249B (en) * | 2014-04-03 | 2017-06-30 | 中国科学院物理研究所 | A kind of artificial antiferromagnetic coupling multi-layer film material of perpendicular magnetic anisotropy |
CN109164145A (en) * | 2018-08-10 | 2019-01-08 | 武汉钢铁有限公司 | The anisotropic evaluation method of silicon steel material and characterizing method |
CN109830597A (en) * | 2019-01-11 | 2019-05-31 | 中国科学院物理研究所 | A kind of vertical magnetism tunnel knot multi-layer film structure and preparation method thereof, storage unit |
CN110927636A (en) * | 2019-11-27 | 2020-03-27 | 北京航空航天大学青岛研究院 | Sensor for measuring vertical magnetic field and method thereof |
CN115094380B (en) * | 2022-06-02 | 2023-06-02 | 山东麦格智芯机电科技有限公司 | FeCoCr magnetic material and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121250A (en) * | 1994-07-01 | 1996-04-24 | 日本电气株式会社 | Magnetoresistance material |
CN1941450A (en) * | 2005-09-27 | 2007-04-04 | 佳能安内华股份有限公司 | Magnetoresistive effect device |
CN101150169A (en) * | 2006-09-21 | 2008-03-26 | 阿尔卑斯电气株式会社 | Tunnel magnetoresistive sensor in which at least part of pinned layer is composed of CoFeB layer and method for manufacturing the tunnel magnetoresistive sensor |
CN101478028A (en) * | 2008-01-03 | 2009-07-08 | Tdk株式会社 | CPP-type magneto resistive effect element having a pair of magnetic layers |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7598579B2 (en) * | 2007-01-30 | 2009-10-06 | Magic Technologies, Inc. | Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current |
-
2011
- 2011-11-10 CN CN 201110354377 patent/CN102364618B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121250A (en) * | 1994-07-01 | 1996-04-24 | 日本电气株式会社 | Magnetoresistance material |
CN1941450A (en) * | 2005-09-27 | 2007-04-04 | 佳能安内华股份有限公司 | Magnetoresistive effect device |
CN101150169A (en) * | 2006-09-21 | 2008-03-26 | 阿尔卑斯电气株式会社 | Tunnel magnetoresistive sensor in which at least part of pinned layer is composed of CoFeB layer and method for manufacturing the tunnel magnetoresistive sensor |
CN101478028A (en) * | 2008-01-03 | 2009-07-08 | Tdk株式会社 | CPP-type magneto resistive effect element having a pair of magnetic layers |
Non-Patent Citations (1)
Title |
---|
W.X.Wang et al.The perpendicular anisotropy of Co40Fe40B20 sandwiched between Ta and MgO layers and its application in CoFeB/MgO/CoFeB tunnel junction.《Applied Physics Letters》.2011,第99卷第012502-1至012502-3页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102364618A (en) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11930717B2 (en) | Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM | |
US11563170B2 (en) | Fully compensated synthetic ferromagnet for spintronics applications | |
US8987847B2 (en) | Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications | |
US9082960B2 (en) | Fully compensated synthetic antiferromagnet for spintronics applications | |
US9391265B2 (en) | Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications | |
CN103956249B (en) | A kind of artificial antiferromagnetic coupling multi-layer film material of perpendicular magnetic anisotropy | |
US9705075B2 (en) | Cobalt (Co) and platinum (Pt)-based multilayer thin film having inverted structure and method for manufacturing same | |
CN102364618B (en) | Multilayer film material with vertical magnetic anisotropy | |
CN105283974B (en) | Seed Layers for Perpendicular Magnetic Anisotropic Thin Films | |
CN110098318B (en) | Multi-film layer structure with interface perpendicular magnetic anisotropy and magnetic random access memory | |
CN105977375B (en) | Heusler alloy is the vertical magnetic tunnel-junction of MnGa base and preparation method of intercalation | |
US20230039108A1 (en) | Perpendicular mtj element having a soft-magnetic adjacent layer and methods of making the same | |
CN102709467A (en) | High-sensitivity CoFeB based magnetic tunnel junction | |
Lee et al. | The effects of deposition rate and annealing on CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions | |
CN110165045A (en) | W-B alloy material and spin electric device based on spin-orbit torque | |
CN109830597A (en) | A kind of vertical magnetism tunnel knot multi-layer film structure and preparation method thereof, storage unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130306 Termination date: 20141110 |
|
EXPY | Termination of patent right or utility model |