CN102355130A - Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control - Google Patents
Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control Download PDFInfo
- Publication number
- CN102355130A CN102355130A CN2011103022780A CN201110302278A CN102355130A CN 102355130 A CN102355130 A CN 102355130A CN 2011103022780 A CN2011103022780 A CN 2011103022780A CN 201110302278 A CN201110302278 A CN 201110302278A CN 102355130 A CN102355130 A CN 102355130A
- Authority
- CN
- China
- Prior art keywords
- input
- tube buck
- circuit
- boost
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012937 correction Methods 0.000 title description 8
- 238000005070 sampling Methods 0.000 claims abstract description 27
- 239000003990 capacitor Substances 0.000 description 17
- 238000013461 design Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 208000032365 Electromagnetic interference Diseases 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Rectifiers (AREA)
Abstract
本发明公开了一种基于单周期控制的双管Buck-Boost型PFC变换器,桥式整流电路后接BOCBB型双管Buck-Boost变换器连接;PI调节器的输出信号一路送至比较器同相输入端,另一路和输入电流的采样信号进行叠加,再送至可复位积分器,可复位积分器输出端与比较器的反相输入端连接,比较器输出端与RS触发器连接,RS触发器的端与可复位积分器的复位开关连接,RS触发器的Q端输出信号经驱动电路后,同时驱动BOCBB型双管Buck-Boost变换器的二个开关管。本发明既能实现输出电压升降压控制,又能提高网侧功率因数,降低入网电流的畸变因数,并具有结构简洁,控制方便,系统效率高等特点。
The invention discloses a double-tube Buck-Boost type PFC converter based on single-cycle control. The bridge rectifier circuit is connected with a BOCBB type double-tube Buck-Boost converter; the output signal of the PI regulator is sent to the comparator in phase. The input terminal, the other channel and the sampling signal of the input current are superimposed, and then sent to the resettable integrator, the output terminal of the resettable integrator is connected to the inverting input terminal of the comparator, the output terminal of the comparator is connected to the RS flip-flop, and the RS flip-flop The end of the RS flip-flop is connected to the reset switch of the resettable integrator, and the output signal of the Q end of the RS flip-flop drives the two switch tubes of the BOCBB dual-tube Buck-Boost converter at the same time after passing through the driving circuit. The invention can not only realize the step-down control of the output voltage, but also improve the power factor of the network side, reduce the distortion factor of the current entering the network, and has the characteristics of simple structure, convenient control and high system efficiency.
Description
技术领域 technical field
本发明涉及一种PFC变换器,具体涉及一种基于单周期控制的双管Buck-Boost型PFC变换器。 The invention relates to a PFC converter, in particular to a double-tube Buck-Boost type PFC converter based on single-cycle control. the
背景技术 Background technique
近年来电力电子设备应用日益广泛。这些设备绝大多数都要采用直流供电,因此整流装置成为电力电子产品中必不可少的组成部分。最简单的整流装置是由二极管整流桥和很大的滤波电容来实现,其输出是不可调的直流电压。由于整流二极管导通角很小,因此电网仅在每个工频周期的一小部分时间里给负载提供能量,其输入电流波形包含丰富的高次谐波。 In recent years, power electronic devices have been widely used. Most of these devices are powered by DC, so the rectifier has become an indispensable part of power electronic products. The simplest rectification device is realized by a diode rectifier bridge and a large filter capacitor, and its output is a non-adjustable DC voltage. Since the conduction angle of the rectifier diode is very small, the power grid only provides energy to the load in a small part of each power frequency cycle, and its input current waveform contains rich high-order harmonics. the
电流谐波给系统本身和周围的电磁环境带来一系列的危害,特别是对电力系统、通信系统、仪器仪表的危害,这些危害主要表现在以下几个方面: Current harmonics bring a series of hazards to the system itself and the surrounding electromagnetic environment, especially to the power system, communication system, and instrumentation. These hazards are mainly manifested in the following aspects:
(1)谐波成分会影响供电系统的供电质量; (1) Harmonic components will affect the power supply quality of the power supply system;
(2)谐波成分增加了输电、配电和用电系统中的损耗; (2) Harmonic components increase losses in power transmission, power distribution and power consumption systems;
(3)谐波成分影响供电系统的安全; (3) Harmonic components affect the safety of the power supply system;
(4)谐波成分会导致一些重要的控制、保护和测量装置的误动作; (4) Harmonic components can cause malfunctions of some important control, protection and measurement devices;
(5)高次谐波干扰通信系统。 (5) High-order harmonics interfere with the communication system. the
解决用电设备谐波污染的主要途径有两种:一是采用无源滤波或有源滤波,二是对电力电子装置进行无功补偿或或功率因数校正。功率因数校正还可以分为无源功率因数校正(PPFC)和有源功率因数校正(APFC)两类方法。无源型PFC结构简单、成本低、可靠性高、EMI(Electro-Magnetic Interference)小、滤波效果也比较显著等,因而被广泛应用,但也存在尺寸、重量大,难以得到高功率因数(一般可提高到0.9左右),工作性能与频率、负载变化及输入电压变化有关, 电感和电容间有大的充放电电流等缺点。有源型PFC是在整流器和负载之间加入一个DC/DC开关变换器,应用电流反馈技术,使输入端电流波形跟踪交流输入正弦电压波形,可以使输入电流波形近似为正弦,从而使输入端THD小于5%,功率因数可提高到0.99以上,且可在较宽的输入电压范围和宽频带下工作,体积、重量小,输出电压可保持恒定,因此具有广泛的应用前景。 There are two main ways to solve the harmonic pollution of electrical equipment: one is to use passive filtering or active filtering, and the other is to perform reactive power compensation or power factor correction on power electronic devices. Power factor correction can also be divided into two types: passive power factor correction (PPFC) and active power factor correction (APFC). Passive PFC has simple structure, low cost, high reliability, small EMI (Electro-Magnetic Interference), and significant filtering effect, so it is widely used, but it also has large size and weight, and it is difficult to obtain high power factor (generally It can be increased to about 0.9), the working performance is related to the frequency, load change and input voltage change, there are disadvantages such as large charge and discharge current between the inductor and the capacitor. Active PFC is to add a DC/DC switching converter between the rectifier and the load, and apply current feedback technology to make the input current waveform track the AC input sinusoidal voltage waveform, which can make the input current waveform approximately sinusoidal, so that the input terminal The THD is less than 5%, the power factor can be increased to more than 0.99, and it can work in a wide input voltage range and wide frequency band. The volume and weight are small, and the output voltage can be kept constant, so it has wide application prospects. the
PFC变换器的基本电路由主电路和控制电路两部分组成。常见的PFC变换器的主电路有Buck、Boost、Buck-Boost、Cuk、flyback等变换器。其中,Boost变换器在实际应用中最为广泛,因为其具有如下独特的优势:具有输入滤波电感,故输入电流可以处于连续状态,纹波较小,降低了对滤波电路的要求;功率开关管的源极(或双极晶体管的射极)电位始终为零(处于地电位),因此对功率管的驱动很容易实现;输出电压和输入电压同极性,便于控制。然而,Boost变换器只能实现升压(220V交流输入时,输出直流电压在380V以上),在实际应用中往往需要在后级级联降压变换器,以匹配后级设备的用电电压(一般较低),使得整个系统的效率有所降低。 The basic circuit of the PFC converter consists of two parts, the main circuit and the control circuit. Common main circuits of PFC converters include converters such as Buck, Boost, Buck-Boost, Cuk, and flyback. Among them, the Boost converter is the most widely used in practical applications, because it has the following unique advantages: it has an input filter inductance, so the input current can be in a continuous state, and the ripple is small, which reduces the requirements for the filter circuit; the power switch tube The potential of the source (or the emitter of the bipolar transistor) is always zero (at the ground potential), so it is easy to drive the power tube; the output voltage and the input voltage have the same polarity, which is easy to control. However, the Boost converter can only achieve step-up (when the AC input is 220V, the output DC voltage is above 380V). generally lower), which reduces the efficiency of the entire system. the
此外,常用的PFC变换器控制策略主要有峰值电流控制、平均电流控制、滞环电流控制等。这些控制方式都能取得很好的控制效果,只是其控制电路都需要乘法器,增加了控制的复杂程度。 In addition, commonly used PFC converter control strategies mainly include peak current control, average current control, and hysteresis current control. These control methods can achieve very good control effects, but their control circuits all need multipliers, which increases the complexity of the control. the
发明内容 Contents of the invention
为了克服上述问题,本发明提供了一种基于单周期控制(One-cycle Control)的双管Buck-Boost型PFC变换器。该PFC变换器能实现输出电压升降压控制,且低电流畸变和高功率因数,而且不采用乘法器,使得整个控制电路的复杂程度降低。 In order to overcome the above problems, the present invention provides a dual-tube Buck-Boost PFC converter based on one-cycle control. The PFC converter can realize output voltage step-down control, has low current distortion and high power factor, and does not use a multiplier, so that the complexity of the entire control circuit is reduced. the
本发明的技术解决方案是: Technical solution of the present invention is:
一种基于单周期控制的双管Buck-Boost型PFC变换器,其特征是:桥式整流电路与高频输入电容连接,高频输入电容与BOCBB型 双管Buck-Boost变换器(Boost级联Buck)连接,BOCBB型双管Buck-Boost变换器后接有输出电压取样电路,输出电压取样电路与PI调节器连接,PI调节器接有基准电压信号,PI调节器的输出端分成两路,一路与比较器的同相输入端连接,另一路与减法器连接,减法器对BOCBB型双管Buck-Boost变换器的输入电流采样信号及PI调节器输出信号运算后输入到可复位积分器,可复位积分器输出端与比较器的反相输入端连接,比较器输出端与RS触发器连接,RS触发器的 端与可复位积分器的复位开关连接,RS触发器的Q端与控制BOCBB型双管Buck-Boost变换器中的二个开关管动作的驱动电路连接。 A kind of double-tube Buck-Boost type PFC converter based on single-cycle control is characterized in that: a bridge rectifier circuit is connected with a high-frequency input capacitor, and the high-frequency input capacitor is connected with a BOCBB type double-tube Buck-Boost converter (Boost cascaded Buck) connection, the BOCBB type double-tube Buck-Boost converter is connected with an output voltage sampling circuit, the output voltage sampling circuit is connected with the PI regulator, the PI regulator is connected with a reference voltage signal, and the output terminal of the PI regulator is divided into two circuits, One path is connected to the non-inverting input terminal of the comparator, and the other path is connected to the subtractor. The subtractor inputs the input current sampling signal of the BOCBB type dual-tube Buck-Boost converter and the output signal of the PI regulator to the resettable integrator after calculation. The output terminal of the reset integrator is connected to the inverting input terminal of the comparator, the output terminal of the comparator is connected to the RS flip-flop, and the RS flip-flop The terminal is connected to the reset switch of the resettable integrator, and the Q terminal of the RS flip-flop is connected to the drive circuit that controls the action of the two switching tubes in the BOCBB dual-tube Buck-Boost converter.
所述输出电压采样电路可以有很多实现形式。例如,采用二个串联电阻组成的分压取样电路,分压取样电路中二个串联电阻之间的取样点与PI调节器连接;或为二个串联电阻组成的分压取样电路,分压取样电路中二个串联电阻之间的取样点与PI调节器连接;或为双管Buck-Boost型PFC变换器输入回路串电阻采样或者输入回路串联直流电流霍尔传感器采样。 The output voltage sampling circuit may have many implementation forms. For example, a voltage-dividing sampling circuit composed of two series resistors is used, and the sampling point between the two series resistors in the voltage-dividing sampling circuit is connected to the PI regulator; or a voltage-dividing sampling circuit composed of two series resistors, the voltage-dividing sampling circuit The sampling point between the two series resistors in the circuit is connected to the PI regulator; or it is used for the sampling of the input circuit series resistance of the dual-tube Buck-Boost type PFC converter or the sampling of the input circuit series DC current Hall sensor. the
本发明将BOCBB型双管Buck-Boost变换器作为PFC变换器的主电路,并采用了Keyue M.Smedley提出的新颖的非线性控制技术——单周期控制技术,通过单级变换器实现了输出电压升降压控制和输入电流波形的校正,且取消了传统控制方法中的乘法器,既降低了电流畸变和提高了功率因数,又降低了主电路和控制电路的复杂程度,提高了系统效率。 The present invention uses the BOCBB type double-tube Buck-Boost converter as the main circuit of the PFC converter, and adopts the novel nonlinear control technology proposed by Keyue M. Voltage-boost control and input current waveform correction, and cancel the multiplier in the traditional control method, which not only reduces the current distortion and improves the power factor, but also reduces the complexity of the main circuit and control circuit, and improves the system efficiency . the
附图说明 Description of drawings
图1是本发明一个实施例的电路结构示意图。 FIG. 1 is a schematic diagram of a circuit structure of an embodiment of the present invention. the
图2是BOCBB型双管Buck-Boost变换器的电路图。 Fig. 2 is the circuit diagram of BOCBB double-tube Buck-Boost converter. the
图3是BOCBB型双管Buck-Boost变换器S1和S2同时导通状态示意图。 Fig. 3 is a schematic diagram of the BOCBB dual-tube Buck-Boost converter S 1 and S 2 being turned on at the same time.
图4是BOCBB型双管Buck-Boost变换器S1和S2同时关断状态示意图。 Fig. 4 is a schematic diagram of the BOCBB dual-tube Buck-Boost converter S 1 and S 2 being turned off at the same time.
图5是下降沿调制工作过程理论分析波形图。 Figure 5 is a theoretical analysis waveform diagram of the falling edge modulation working process. the
图6是单周期控制双管Buck-Boost型PFC变换器仿真电路图。 Figure 6 is a simulation circuit diagram of a single-cycle control dual-tube Buck-Boost PFC converter. the
图7是满载时输入电压和输入电流仿真波形。 Figure 7 is the input voltage and input current simulation waveforms at full load. the
图8是输入电压突增时的输入电压、输出电压和输入电感电流仿真波形。 Figure 8 is the simulation waveform of the input voltage, output voltage and input inductor current when the input voltage suddenly increases. the
图9是负载突变时输入电压、输入电感电流和输出电压的仿真波形。 Figure 9 is the simulation waveform of the input voltage, input inductor current and output voltage when the load changes suddenly. the
图10是轻载时输入电压、输出电压和输入电感电流的仿真波形。 Figure 10 is the simulation waveform of input voltage, output voltage and input inductor current at light load. the
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with drawings and embodiments. the
图1所示为一种基于单周期控制的双管Buck-Boost型PFC变换器。图中,桥式整流电路与双管Buck-Boost型变换器连接之间并联高频输入电容Cin,双管Buck-Boost型PFC变换器后接有输出电压取样电路,输出电压取样电路与PI调节器连接,PI调节器接有基准电压信号,PI调节器的输出端分成两路,一路与比较器的同相输入端连接,另一路与减法器连接,减法器对双管Buck-Boost型变换器的输入电流采样信号及PI调节器输出信号运算后输入到可复位积分器,可复位积分器与比较器的反相输入端连接,比较器与RS触发器连接,RS触发器的 端与可复位积分器的复位开关S连接,RS触发器的Q端与控制双管Buck-Boost型变换器中的二个开关管S1、S2动作的驱动电路连接。 Figure 1 shows a dual-tube Buck-Boost PFC converter based on single-cycle control. In the figure, the high-frequency input capacitor C in is connected in parallel between the bridge rectifier circuit and the dual-tube Buck-Boost converter, and the output voltage sampling circuit is connected after the dual-tube Buck-Boost PFC converter, and the output voltage sampling circuit is connected to the PI The regulator is connected, the PI regulator is connected to the reference voltage signal, the output of the PI regulator is divided into two circuits, one is connected to the non-inverting input of the comparator, and the other is connected to the subtractor, and the subtractor converts the dual-tube Buck-Boost The input current sampling signal of the device and the output signal of the PI regulator are input to the resettable integrator after operation, the resettable integrator is connected to the inverting input terminal of the comparator, the comparator is connected to the RS flip-flop, and the RS flip-flop The terminal is connected to the reset switch S of the resettable integrator, and the Q terminal of the RS flip-flop is connected to the driving circuit that controls the action of the two switching tubes S1 and S2 in the dual-tube Buck-Boost converter.
所述输出电压采样电路为二个串联电阻R1、R2组成的分压取样电路,分压取样电路中二个串联电阻之间的取样点与PI调节器连接。双管Buck-Boost型变换器的输入电流通过电阻Rs进行采样。 The output voltage sampling circuit is a voltage-dividing sampling circuit composed of two series resistors R1 and R2, and the sampling point between the two series resistors in the voltage-dividing sampling circuit is connected to the PI regulator. The input current of the dual-tube Buck-Boost converter is sampled through the resistor R s .
图1中还有:电感L1、L2、电容C1、C2、二极管D1、D2、电 阻Rs、时钟(CLK)单周期控制电路中的电容、电阻等。 Also in Fig. 1: inductance L1, L2, capacitance C1, C2, diode D1, D2, resistance Rs, the capacitance in the clock (CLK) single-cycle control circuit, resistance etc. the
1、主电路分析(如图2所示) 1. Main circuit analysis (as shown in Figure 2)
为了简化分析,特作如下假设: In order to simplify the analysis, the following assumptions are specially made:
①S1和S2同时开通或者关断; ①S 1 and S 2 are turned on or off at the same time;
②忽略器件的导通压降和开关损耗,不考虑能量损耗; ② Ignore the conduction voltage drop and switching loss of the device, and do not consider the energy loss;
(1)S1和S2同时导通(如图3所示) (1) S 1 and S 2 are turned on at the same time (as shown in Figure 3)
当S1和S2同时导通时,D1和D2不导通,电源Vg向L1充电,电容C1向L2充电。此时,各器件两端承受的压降如下: When S1 and S2 are turned on at the same time, D1 and D2 are not turned on, the power supply V g charges to L1 , and the capacitor C1 charges to L2 . At this time, the voltage drop across each device is as follows:
vL1=vg;vL2=vC1-Vo; v L1 =v g ; v L2 =v C1 -V o ;
vD1=vC1;vD2=vC1。 v D1 =v C1 ; v D2 =v C1 .
(2)S1和S2同时关断(如图4所示) (2) S 1 and S 2 are turned off at the same time (as shown in Figure 4)
当S1和S2同时关断时,D1和D2均导通,L1、L2释放能量。此时,各器件两端承受的压降如下: When S 1 and S 2 are turned off at the same time, both D 1 and D 2 are turned on, and L 1 and L 2 release energy. At this time, the voltage drop across each device is as follows:
vL1=vg-vC1;
vS1=vC1;vS2=vC1。 v S1 =v C1 ; v S2 =v C1 .
对于电感L1、L2,由“伏秒平衡”,得: For inductance L 1 and L 2 , from "volt-second balance", we get:
vgdTs+(vg-vC1)(1-d)Ts=0 (1) v g dT s +(v g -v C1 )(1-d)T s =0 (1)
(vg-Vo)dTs+(-Vo)(1-d)Ts=0 (2) (v g -V o )dT s +(-V o )(1-d)T s =0 (2)
由式(1)和(2)得到输出电压Vo与输入电压vg之间的关系为: The relationship between the output voltage V o and the input voltage v g is obtained from formulas (1) and (2):
2、主电路参数设计 2. Main circuit parameter design
设计指标如下: The design indicators are as follows:
输入电压Vin(RSM)为90~270V; The input voltage Vin (RSM) is 90~270V;
额定输出电压Vo=56V; Rated output voltage V o =56V;
最大输出功率Po=150W; Maximum output power P o = 150W;
功率因数PF≥0.99; Power factor PF≥0.99;
效率η>0.9; Efficiency η>0.9;
开关频率fs=50kHz。 The switching frequency f s =50 kHz.
(1)电感量设计: (1) Inductance design:
电感在线路中起着能量的传递、储存和滤波等作用,并决定了输入端的高频纹波电流总量,因此按照限制电流脉动最小的原则来确定电感值。考虑最差的情况:输出功率最大,输入电压最低。此时,输入电流最大,纹波也最大,为了保证在这种情况下输入电流的纹波仍然满足要求,电感的设计应该在输入电压最低的点进行计算。 The inductance plays the role of energy transmission, storage and filtering in the circuit, and determines the total amount of high-frequency ripple current at the input end. Therefore, the inductance value is determined according to the principle of minimizing the current ripple. Consider the worst case: maximum output power, minimum input voltage. At this time, the input current is the largest, and the ripple is also the largest. In order to ensure that the ripple of the input current still meets the requirements in this case, the design of the inductor should be calculated at the point of the lowest input voltage. the
输入电压的峰值: The peak value of the input voltage:
此时的占空比为: The duty cycle at this time is:
输入电流的有效值为: The effective value of the input current is:
输入电流的峰值为: The peak value of the input current is:
纹波峰峰值为:电感中纹波电流的峰峰值一般为最大峰值输入电流的20% The peak-to-peak value of the ripple is: the peak-to-peak value of the ripple current in the inductor is generally 20% of the maximum peak input current
即: Right now:
ΔIL=0.2×Iin(PK)=0.2×2.645=0.529A (8) ΔI L =0.2×I in(PK) =0.2×2.645=0.529A (8)
电感值: Inductance value:
取L1=1.5mH。 Take L 1 =1.5mH.
(2)高频输入电容的选取 (2) Selection of high frequency input capacitor
输入端的高频电容主要用来滤除输入的高频噪音和改善输入纹波,电容的计算公式如下: The high-frequency capacitor at the input end is mainly used to filter the input high-frequency noise and improve the input ripple. The calculation formula of the capacitor is as follows:
式中, 是电流纹波系数,一般取10%-30%,(在这个设计中取20%),r是最大的高频电压纹波系数(ΔVin/Vin),一般取3%-9%,这里取3%。 In the formula, is the current ripple coefficient, generally 10%-30%, (20% in this design), r is the maximum high-frequency voltage ripple coefficient (ΔV in /V in ), generally 3%-9%, Take 3% here.
选取Cin=470nF。 Choose C in =470nF.
(3)输出电容参数的确定 (3) Determination of output capacitor parameters
选择输出电容时要考虑到的因素主要有:开关频率纹波电流、二次谐波纹波电流、直流输出电压、输出电压纹波、维持时间。流过输出电容器的总电流是开关频率纹波电流的有效值和线路电流的二次谐波:通常选择长寿命、低漏阻、能耐较大纹波电流,工作范围较宽的电解电容,并且耐压的选择应留有充分的余量,以避免超负荷工作。 The main factors to be considered when selecting the output capacitor are: switching frequency ripple current, second harmonic ripple current, DC output voltage, output voltage ripple, and hold time. The total current flowing through the output capacitor is the effective value of the switching frequency ripple current and the second harmonic of the line current: usually choose an electrolytic capacitor with long life, low leakage resistance, ability to withstand large ripple current, and wide operating range, and There should be sufficient margin in the choice of withstand voltage to avoid overloading. the
经验设计中,输出电容C2的典型值取为每瓦特1μF到2μF。该变换器的最大功率为150W,所以取:C2=470μF。 In an empirical design, the typical value of the output capacitor C2 is taken as 1μF to 2μF per watt. The maximum power of the converter is 150W, so take: C 2 =470μF.
3、控制电路工作原理 3. Working principle of the control circuit
为了进行稳态特性分析,简化推导过程,特作如下假定: In order to analyze the steady-state characteristics and simplify the derivation process, the following assumptions are specially made:
①电感电流的纹波可以忽略,电路运行在CCM模式; ①The ripple of the inductor current can be ignored, and the circuit runs in CCM mode;
②开关频率远大于电源电压频率,输入电压、电流在几个连续的开关周期内可以近似认为是恒值,电路运行在准稳态; ②The switching frequency is much higher than the frequency of the power supply voltage, the input voltage and current can be considered to be approximately constant in several consecutive switching cycles, and the circuit operates in a quasi-steady state;
③推导过程中忽略开关器件的导通压降和开关损耗,忽略分布参数的影响,不考虑能量损耗。 ③ During the derivation process, the conduction voltage drop and switching loss of switching devices are ignored, the influence of distribution parameters is ignored, and energy loss is not considered. the
在以下的理论推导与分析过程中,如无特殊说明,大写字母如“V”代表稳态量,小写字母如“v”代表时间变量,字母上加一横线如“ ”代表平均量。 In the following theoretical derivation and analysis process, unless otherwise specified, a capital letter such as "V" represents a steady-state quantity, a small letter such as "v" represents a time variable, and a horizontal line is added to the letter such as " " represents the average amount.
单相PFC整流器的控制目标为:控制合适的变量,使输入电流与输入电压都为全波整流波形且相位相同,输入阻抗为一个纯电阻,用数学式表示为: The control goal of the single-phase PFC rectifier is: to control the appropriate variables, so that the input current and the input voltage are both full-wave rectified waveforms with the same phase, and the input impedance is a pure resistance, which is expressed mathematically as:
式中,Re-单相PFC整流器的等效输入阻抗,vg-单相PFC整流器的输入电压。 In the formula, Re - the equivalent input impedance of the single-phase PFC rectifier, v g - the input voltage of the single-phase PFC rectifier.
稳态状态时,单相PFC整流器的输出电压Vo与输入电压vg的关系为: In the steady state, the relationship between the output voltage V o of the single-phase PFC rectifier and the input voltage v g is:
式中M(d)——DC/DC变换器的电压转换率(即占空比d的关系式)。 In the formula, M(d)—the voltage conversion rate of the DC/DC converter (that is, the relational expression of the duty cycle d). the
将式(12)代入式(11)中有: Substituting formula (12) into formula (11):
将式(13)两边同乘以常数RS,RS表示等效电流检测电阻,可以得到: Multiply both sides of formula (13) by the constant R S , where R S represents the equivalent current detection resistor, we can get:
如果令: If order:
则式(14)可以化简为: Then formula (14) can be simplified as:
式中,vm是积分器的输入信号,称为调制电压。 In the formula, v m is the input signal of the integrator, which is called the modulation voltage.
将式(15)重新写为: Rewrite formula (15) as:
稳态时,输出电压Vo保持不变,通过改变调制电压vm可改变等效电阻Re,从而实现对输入功率的控制。根据上述关系,调制电压vm自PI调节器输出。当负载和输入电压恒定时,调制电压vm恒定,调制器输出占空比按控制方程(16)确定的规律变化。 In the steady state, the output voltage V o remains unchanged, and the equivalent resistance Re can be changed by changing the modulation voltage v m , so as to realize the control of the input power. According to the above relationship, the modulation voltage v m is output from the PI regulator. When the load and input voltage are constant, the modulation voltage v m is constant, and the modulator output duty cycle changes according to the law determined by the control equation (16).
对于BOCBB型双管Buck-Boost变换器,有 For the BOCBB double-tube Buck-Boost converter, there are
代入式(16)后,整理得: After substituting into formula (16), we can get:
根据以上控制方程,设计单周期控制的双管Buck-Boost型PFC变换器,如图1所示。双管Buck-Boost型PFC变换器的输出电压采样值与基准电压进行比较,经PI调节器输出,即为调制电压vm。vm再与双管Buck-Boost型变换器的输入电流采样信号 进行叠加,输入到可复位积分器。可复位积分器的输出即为式(19)等号的右边 和 分别输入到比较器的同相输入端和反相输入端,比较器输出端与RS触发器连接,RS触发器的 端与可复位积分器的复位开关S连接,RS触发器的Q端与控制双管Buck-Boost型变换器中的二个开关管S1、S2动作的驱动电路连接。 According to the above control equations, a dual-tube Buck-Boost PFC converter with single-cycle control is designed, as shown in Figure 1. The sampled value of the output voltage of the dual-tube Buck-Boost PFC converter is compared with the reference voltage, and is output by the PI regulator, which is the modulation voltage v m . v m and the input current sampling signal of the dual-tube Buck-Boost converter are superimposed and input to a resettable integrator. The output of the resettable integrator is the right side of the equation (19) and Input to the non-inverting input terminal and inverting input terminal of the comparator respectively, the output terminal of the comparator is connected to the RS flip-flop, and the RS flip-flop The terminal is connected to the reset switch S of the resettable integrator, and the Q terminal of the RS flip-flop is connected to the driving circuit that controls the action of the two switching tubes S1 and S2 in the dual-tube Buck-Boost converter.
图5给出了下降沿调制工作过程理论分析波形。假设输出电压已经稳定,则vm不变。一个周期开始时,Q=1, ,开关管开通,积分器开始工作, 开始线性上升,电感电流线性上升;当v-≥v+时,比较器输出低电平使RS触发器清零, 开关管关断,同时积分器复位,此时,v-<v+,RS触发器清零端置高,输出Q=0,直到下一个时钟脉冲的上升沿到来开始重复上一周期的工作。 Figure 5 shows the theoretical analysis waveform of the falling edge modulation working process. Assuming that the output voltage has been stabilized, v m does not change. At the beginning of a cycle, Q=1, , the switch tube is turned on, the integrator starts to work, It starts to rise linearly, and the inductor current rises linearly; when v-≥v+, the comparator outputs a low level to clear the RS flip-flop, The switch tube is turned off, and the integrator is reset at the same time. At this time, v - <v + , the reset terminal of the RS flip-flop is set high, and the output Q=0, until the rising edge of the next clock pulse arrives to repeat the work of the previous cycle.
4、控制电路设计 4. Control circuit design
(1)积分电路设计 (1) Integral circuit design
积分复位电路采用反向积分电路和模拟开关来实现,当开关断开时积分器对输入信号进行积分,当复位开关控制端收到复位信号时开关闭合,电容被开关短路,运放反相端和同相端虚短,电容C相当于短路接地,积分器复位。 The integral reset circuit is realized by a reverse integral circuit and an analog switch. When the switch is turned off, the integrator integrates the input signal. When the reset switch control terminal receives the reset signal, the switch closes, the capacitor is short-circuited by the switch, and the inverting terminal of the op amp and the non-inverting terminal are virtual short, the capacitor C is equivalent to a short circuit to ground, and the integrator is reset. the
积分器电路参数主要就是时间常数τ=RC中电阻R和电容C的选择。根据前面的分析,选择积分器的时间常数等于开关周期,则有: The integrator circuit parameter is mainly the selection of the resistor R and the capacitor C in the time constant τ=RC. According to the previous analysis, if the time constant of the integrator is selected to be equal to the switching period, then:
τ=RC=Ts=20us τ = RC = T s = 20us
(20) (20)
根据以上等式,可选择电阻、电容参数如下: According to the above equation, the resistance and capacitance parameters can be selected as follows:
R=20KΩ,C=1nF R=20KΩ, C=1nF
考虑电路工作时的实际情况,R或C还需稍作调整。但RC值与Ts相差不大。 Considering the actual situation when the circuit works, R or C needs to be adjusted slightly. But the RC value is not much different from T s .
(2)电流检测电阻设计 (2) Current detection resistor design
若电路进入稳态,则 If the circuit enters a steady state, then
积分器的输入需满足 The input of the integrator needs to satisfy
则Rs≤4Ω,取Rs=2Ω。 Then R s ≤ 4Ω, R s = 2Ω.
5、仿真验证 5. Simulation verification
对基于单周期控制的双管Buck-Boost型PFC变换器用Saber进行仿真,仿真电路如图6所示。电路仿真参数如下:输入电压:220V; 输出电压:56V;开关频率:50kHz;输出电容:470uF;输入电感:2mH;负载电阻:20Ω。 Saber is used to simulate the dual-tube Buck-Boost PFC converter based on single-cycle control. The simulation circuit is shown in Figure 6. The circuit simulation parameters are as follows: input voltage: 220V; output voltage: 56V; switching frequency: 50kHz; output capacitance: 470uF; input inductance: 2mH; load resistance: 20Ω. the
(1)额定输入电压且满载 (1) Rated input voltage and full load
额定输入电压且满载时PFC变换器输入电压和输入电感电流波形如图7所示。电感电流的波形为正弦波,且与输入电压波形保持同相位变化,达到了输入电流跟踪输入电压的目的。因此,基于单周期控制的双管Buck-Boost型PFC变换器能有效减少输入电感电流的高次谐波,大大提高了系统网侧功率因数。 Figure 7 shows the input voltage and input inductor current waveforms of the PFC converter at rated input voltage and full load. The waveform of the inductor current is a sine wave, and it keeps changing in phase with the waveform of the input voltage, so that the purpose of the input current tracking the input voltage is achieved. Therefore, the dual-tube Buck-Boost PFC converter based on single-cycle control can effectively reduce the high-order harmonics of the input inductor current and greatly improve the power factor of the system grid side. the
(2)输入电压突变且满载 (2) The input voltage changes suddenly and is fully loaded
输入电压突然增大20%且满载时PFC变换器的输入电压、输出电压和输入电感电流的波形如图8所示。从图中可以看出,当输入电压突然增大后,输入电流突然减小,而输出电压突然增大,但是过了8个周波,输出电压又恢复至原值。可见单周期控制技术能够快速抑制输入电压扰动,得到较为稳定的输出电压。 The waveforms of the input voltage, output voltage and input inductor current of the PFC converter are shown in Figure 8 when the input voltage suddenly increases by 20% and is fully loaded. It can be seen from the figure that when the input voltage suddenly increases, the input current decreases suddenly, while the output voltage suddenly increases, but after 8 cycles, the output voltage returns to the original value. It can be seen that the single-cycle control technology can quickly suppress the input voltage disturbance and obtain a relatively stable output voltage. the
(3)额定输入电压且负载突变 (3) Rated input voltage and sudden change in load
负载由20Ω突变到40Ω时PFC变换器的输入电压、输入电感电流和输出电压的波形如图9所示。可以看出,当负载电阻突然增大后,输入电流突然减小,而输出电压突然增大,经过10个周波后,输出电压恢复至原值。可见,单周期控制技术也能够有效抑制负载扰动。因此,单周期控制具有动态响应快、鲁棒性强的优点。 The waveforms of the input voltage, input inductor current and output voltage of the PFC converter when the load changes from 20Ω to 40Ω are shown in Figure 9. It can be seen that when the load resistance increases suddenly, the input current decreases suddenly, while the output voltage increases suddenly. After 10 cycles, the output voltage returns to the original value. It can be seen that the single-cycle control technology can also effectively suppress the load disturbance. Therefore, single-cycle control has the advantages of fast dynamic response and strong robustness. the
(4)额定输入电压且轻载 (4) Rated input voltage and light load
图10为50%负载时PFC变换器的输入电压、输出电压和输入电感电流波形。可以看出,电感电流的波形仍然与输入电压波形基本保持同相位变化,而且电感电流正弦度很高。因此该变换器能在整个负载范围内都实现功率因数校正。 Figure 10 shows the input voltage, output voltage and input inductor current waveforms of the PFC converter at 50% load. It can be seen that the waveform of the inductor current is still basically in phase with the input voltage waveform, and the sine degree of the inductor current is very high. Therefore, the converter can realize power factor correction in the whole load range. the
由以上各仿真实验结果可知,单周期控制的双管Buck-Boost型PFC变换器能够实现输出降压并有效地实现功率因数校正,且对输入 电压扰动、负载扰动都有很好的抑制作用。 From the results of the above simulation experiments, it can be seen that the single-cycle controlled dual-tube Buck-Boost PFC converter can realize output step-down and effectively realize power factor correction, and has a good suppression effect on input voltage disturbance and load disturbance. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103022780A CN102355130A (en) | 2011-10-09 | 2011-10-09 | Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103022780A CN102355130A (en) | 2011-10-09 | 2011-10-09 | Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102355130A true CN102355130A (en) | 2012-02-15 |
Family
ID=45578650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103022780A Pending CN102355130A (en) | 2011-10-09 | 2011-10-09 | Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102355130A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102624255A (en) * | 2012-04-01 | 2012-08-01 | 武汉永力电源技术有限公司 | A single-cycle PWM modulation method and modulator for power factor correction |
CN102629828A (en) * | 2012-03-29 | 2012-08-08 | 武汉市康达电气有限公司 | Voltage-linearly rising high-voltage power supply |
CN102945655A (en) * | 2012-11-29 | 2013-02-27 | 深圳市华星光电技术有限公司 | Light emitting diode voltage adjusting device and driving system with same |
CN103051170A (en) * | 2012-12-28 | 2013-04-17 | 上海贝岭股份有限公司 | Audio-frequency noise eliminating circuit |
CN103384075A (en) * | 2013-07-03 | 2013-11-06 | 武汉鑫双易科技开发有限公司 | Low-ripple-wave lithium battery charging and discharging achieving method |
CN103401403A (en) * | 2013-07-03 | 2013-11-20 | 武汉鑫双易科技开发有限公司 | Inductance charging charge control method and application of control method in switching power supply |
CN103595240A (en) * | 2013-11-20 | 2014-02-19 | 天津大学 | Device and method for reducing boosting amplitude of Boost type PFC converter |
CN103683989A (en) * | 2014-01-02 | 2014-03-26 | 东南大学 | Wide-input AC-DC (alternating current-direct current) converter for high-speed low-voltage power generator and control method for wide-input AC-DC converter |
CN104022646A (en) * | 2014-06-18 | 2014-09-03 | 东南大学 | Control system for Cuk-type switching power supply |
CN104143934A (en) * | 2014-08-19 | 2014-11-12 | 武汉华工激光工程有限责任公司 | Laser welding pulse power supply and control method thereof |
CN104247241A (en) * | 2012-03-06 | 2014-12-24 | 松下电器产业株式会社 | Direct current power supply device |
CN104753335A (en) * | 2014-07-10 | 2015-07-01 | 西南交通大学 | Quadratic form Buck power factor correction converter |
CN104917357A (en) * | 2014-03-10 | 2015-09-16 | 美格纳半导体有限公司 | Switch control circuit, switch control method and converter using the same |
CN105024549A (en) * | 2014-04-15 | 2015-11-04 | 美格纳半导体有限公司 | Switch control circuit and converter using the same |
CN105553267A (en) * | 2016-01-29 | 2016-05-04 | 株洲南车时代电气股份有限公司 | Multiphase interleaving parallel DC-DC converter and control method thereof |
CN105637747A (en) * | 2013-10-11 | 2016-06-01 | 罗伯特·博世有限公司 | Method for operating a load connected to a motor vehicle electrical system |
CN106887951A (en) * | 2015-12-16 | 2017-06-23 | 南京理工大学 | The Buck converters and its control method of voltage injection one circle control |
CN107342687A (en) * | 2017-08-16 | 2017-11-10 | 深圳市菊水皇家科技有限公司 | A kind of two-way Buck Boosts circuit and its control method |
CN108683335A (en) * | 2018-03-16 | 2018-10-19 | 福州大学 | A kind of staggeredly Buck and the full-bridge circuit of one circle control strategy |
CN108847685A (en) * | 2018-07-03 | 2018-11-20 | 华南理工大学 | The control system and control method of gird-connected inverter |
CN110048397A (en) * | 2019-03-18 | 2019-07-23 | 南京理工大学 | One proton exchanging film fuel battery mixed power supply system |
CN111106745A (en) * | 2018-10-25 | 2020-05-05 | 中车株洲电力机车研究所有限公司 | Variable frequency control circuit for power conversion circuit and power generation system of magnetic-levitation train |
CN111342657A (en) * | 2020-03-20 | 2020-06-26 | 珠海格力电器股份有限公司 | Voltage stabilizer for wide voltage range power supply |
CN112152454A (en) * | 2020-09-23 | 2020-12-29 | 南京信息工程大学 | A Boost PFC converter with integrated buck-boost output and its control method |
CN113433839A (en) * | 2021-06-28 | 2021-09-24 | 杭州电子科技大学 | Synchronous rectification Boost converter simulation circuit based on virtual inductor and virtual capacitor |
CN119210134A (en) * | 2024-11-25 | 2024-12-27 | 西华大学 | Buck-Boost PFC converter and electrical equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278490A (en) * | 1990-09-04 | 1994-01-11 | California Institute Of Technology | One-cycle controlled switching circuit |
US20100014329A1 (en) * | 2008-07-18 | 2010-01-21 | Yong Zhang | Enhanced one cycle control for power factor correction |
-
2011
- 2011-10-09 CN CN2011103022780A patent/CN102355130A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278490A (en) * | 1990-09-04 | 1994-01-11 | California Institute Of Technology | One-cycle controlled switching circuit |
US20100014329A1 (en) * | 2008-07-18 | 2010-01-21 | Yong Zhang | Enhanced one cycle control for power factor correction |
Non-Patent Citations (2)
Title |
---|
《河北工业大学学报》 20090815 林慧聪等 "新型空调电动机系统功率因数校正电路的设计分析" 49-51页,图7 1-3 第38卷, 第4期 * |
林慧聪等: ""新型空调电动机系统功率因数校正电路的设计分析"", 《河北工业大学学报》, vol. 38, no. 4, 15 August 2009 (2009-08-15) * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104247241B (en) * | 2012-03-06 | 2017-03-01 | 松下电器产业株式会社 | Continuous-current plant |
CN104247241A (en) * | 2012-03-06 | 2014-12-24 | 松下电器产业株式会社 | Direct current power supply device |
CN102629828A (en) * | 2012-03-29 | 2012-08-08 | 武汉市康达电气有限公司 | Voltage-linearly rising high-voltage power supply |
CN102624255B (en) * | 2012-04-01 | 2014-10-29 | 武汉永力电源技术有限公司 | Monocycle pulse width modulation (PWM) method and modulator for power factor correction |
CN102624255A (en) * | 2012-04-01 | 2012-08-01 | 武汉永力电源技术有限公司 | A single-cycle PWM modulation method and modulator for power factor correction |
CN102945655B (en) * | 2012-11-29 | 2015-04-01 | 深圳市华星光电技术有限公司 | Light emitting diode voltage adjusting device and driving system with same |
CN102945655A (en) * | 2012-11-29 | 2013-02-27 | 深圳市华星光电技术有限公司 | Light emitting diode voltage adjusting device and driving system with same |
CN103051170B (en) * | 2012-12-28 | 2015-06-03 | 上海贝岭股份有限公司 | Audio-frequency noise eliminating circuit |
CN103051170A (en) * | 2012-12-28 | 2013-04-17 | 上海贝岭股份有限公司 | Audio-frequency noise eliminating circuit |
CN103401403A (en) * | 2013-07-03 | 2013-11-20 | 武汉鑫双易科技开发有限公司 | Inductance charging charge control method and application of control method in switching power supply |
CN103384075B (en) * | 2013-07-03 | 2016-02-17 | 武汉鑫双易科技开发有限公司 | Low ripple charging and discharging lithium battery implementation method |
CN103384075A (en) * | 2013-07-03 | 2013-11-06 | 武汉鑫双易科技开发有限公司 | Low-ripple-wave lithium battery charging and discharging achieving method |
CN105637747B (en) * | 2013-10-11 | 2019-01-04 | 罗伯特·博世有限公司 | Method for the operation load at motor vehicle power grid |
CN105637747A (en) * | 2013-10-11 | 2016-06-01 | 罗伯特·博世有限公司 | Method for operating a load connected to a motor vehicle electrical system |
CN103595240A (en) * | 2013-11-20 | 2014-02-19 | 天津大学 | Device and method for reducing boosting amplitude of Boost type PFC converter |
CN103683989A (en) * | 2014-01-02 | 2014-03-26 | 东南大学 | Wide-input AC-DC (alternating current-direct current) converter for high-speed low-voltage power generator and control method for wide-input AC-DC converter |
CN104917357B (en) * | 2014-03-10 | 2020-09-01 | 美格纳半导体有限公司 | Switch control circuit, switch control method, and converter using the same |
CN104917357A (en) * | 2014-03-10 | 2015-09-16 | 美格纳半导体有限公司 | Switch control circuit, switch control method and converter using the same |
CN105024549A (en) * | 2014-04-15 | 2015-11-04 | 美格纳半导体有限公司 | Switch control circuit and converter using the same |
CN105024549B (en) * | 2014-04-15 | 2019-04-05 | 美格纳半导体有限公司 | ON-OFF control circuit and the converter for using it |
CN104022646A (en) * | 2014-06-18 | 2014-09-03 | 东南大学 | Control system for Cuk-type switching power supply |
CN104753335A (en) * | 2014-07-10 | 2015-07-01 | 西南交通大学 | Quadratic form Buck power factor correction converter |
CN104143934A (en) * | 2014-08-19 | 2014-11-12 | 武汉华工激光工程有限责任公司 | Laser welding pulse power supply and control method thereof |
CN106887951A (en) * | 2015-12-16 | 2017-06-23 | 南京理工大学 | The Buck converters and its control method of voltage injection one circle control |
CN105553267A (en) * | 2016-01-29 | 2016-05-04 | 株洲南车时代电气股份有限公司 | Multiphase interleaving parallel DC-DC converter and control method thereof |
CN107342687A (en) * | 2017-08-16 | 2017-11-10 | 深圳市菊水皇家科技有限公司 | A kind of two-way Buck Boosts circuit and its control method |
CN108683335A (en) * | 2018-03-16 | 2018-10-19 | 福州大学 | A kind of staggeredly Buck and the full-bridge circuit of one circle control strategy |
CN108683335B (en) * | 2018-03-16 | 2020-04-10 | 福州大学 | Staggered Buck and full-bridge circuit of single-cycle control strategy |
CN108847685A (en) * | 2018-07-03 | 2018-11-20 | 华南理工大学 | The control system and control method of gird-connected inverter |
CN111106745A (en) * | 2018-10-25 | 2020-05-05 | 中车株洲电力机车研究所有限公司 | Variable frequency control circuit for power conversion circuit and power generation system of magnetic-levitation train |
CN111106745B (en) * | 2018-10-25 | 2022-03-04 | 中车株洲电力机车研究所有限公司 | Variable frequency control circuit for power conversion circuit and power generation system of magnetic-levitation train |
CN110048397A (en) * | 2019-03-18 | 2019-07-23 | 南京理工大学 | One proton exchanging film fuel battery mixed power supply system |
CN111342657A (en) * | 2020-03-20 | 2020-06-26 | 珠海格力电器股份有限公司 | Voltage stabilizer for wide voltage range power supply |
CN112152454A (en) * | 2020-09-23 | 2020-12-29 | 南京信息工程大学 | A Boost PFC converter with integrated buck-boost output and its control method |
CN113433839A (en) * | 2021-06-28 | 2021-09-24 | 杭州电子科技大学 | Synchronous rectification Boost converter simulation circuit based on virtual inductor and virtual capacitor |
CN113433839B (en) * | 2021-06-28 | 2022-07-01 | 杭州电子科技大学 | Synchronous rectification Boost converter simulation circuit based on virtual inductor and virtual capacitor |
CN119210134A (en) * | 2024-11-25 | 2024-12-27 | 西华大学 | Buck-Boost PFC converter and electrical equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102355130A (en) | Double-tube Buck-Boost type PFC (Power Factor Correction) converter based on one-cycle control | |
CN101764528B (en) | High power factor DCM Boost PFC converter | |
CN104242692B (en) | CRM Boost PFC Converter with Optimal Frequency Variation Range | |
CN101986542B (en) | PFC (power factor correction) control method with high input power factor and control circuit thereof | |
CN102882378B (en) | Control method and device for unit power factor flyback converter in critical continuous mode | |
CN207869008U (en) | Interleaved parallel PFC power supply | |
CN104967323B (en) | Low Output Voltage Ripple Discontinuous Mode Flyback Power Factor Correction Converter | |
CN103346684B (en) | Alternating current/direct current (AC/DC) converter adopting active energy-storage capacitance converter | |
CN103414334B (en) | PF is the long-life DCM Boost pfc converter of 1 | |
CN105226931B (en) | Improve the control device of DCM Buck pfc converter PF values | |
CN111541386B (en) | High PF (positive-frequency) fixed switching frequency boost converter of parallel active filter | |
CN111865064B (en) | CRM (customer relationship management) buck-boost converter controlled by segmented fixed conduction time | |
CN104883046A (en) | High-power factor critical continuous mode buck-boost power factor correction converter | |
CN104638900A (en) | One-cycle control method applied to bridgeless SEPIC-PFC (single-ended primary-inductor converter-power factor correction) circuit | |
CN102545565A (en) | Single-stage high power factor correction conversion method and device for low output power frequency ripples | |
CN103066844A (en) | Control method for average current on input side of buck converter | |
CN112003485A (en) | Current continuous control method based on bridgeless SEPIC-PFC circuit | |
CN104702108A (en) | Critical continuous boost converter employing constant-frequency control | |
CN104702131A (en) | CRM Buck PFC convertor with optimal frequency variation range | |
CN107659138B (en) | A series-type power decoupling non-electrolytic capacitor PFC circuit and decoupling control method | |
CN104836426B (en) | A kind of second harmonic current compensator and its control method | |
CN103475209A (en) | Non-electrolytic-capacitor high-power-factor correction device and method | |
CN109309447B (en) | Constant switching frequency controlled CRM buck PFC converter | |
CN107370361B (en) | Sawtooth Wave Generation Circuit and Flyback, SEPIC and Buck-Boost Power Factor Correction Converters | |
CN203039585U (en) | Critical continuous mode unity power factor flyback converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120215 |