CN102350421B - Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis - Google Patents
Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis Download PDFInfo
- Publication number
- CN102350421B CN102350421B CN2011101992744A CN201110199274A CN102350421B CN 102350421 B CN102350421 B CN 102350421B CN 2011101992744 A CN2011101992744 A CN 2011101992744A CN 201110199274 A CN201110199274 A CN 201110199274A CN 102350421 B CN102350421 B CN 102350421B
- Authority
- CN
- China
- Prior art keywords
- bowl
- charcoal
- carbon
- carbon block
- cutter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 229
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 227
- 238000004140 cleaning Methods 0.000 title claims abstract description 64
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 19
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 18
- 239000003610 charcoal Substances 0.000 claims abstract description 132
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000000007 visual effect Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 8
- 230000005693 optoelectronics Effects 0.000 claims 2
- 238000001514 detection method Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000010998 test method Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Images
Landscapes
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Abstract
本发明公开了一种实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统,包括五台自带绝对编码器的伺服驱动电机、两个压力传感器、一个扭矩传感器,还包括可编程控制器,所述可编程控制器通过现场总线与五台伺服驱动电机通信、并通过I/O端口与所述压力传感器和扭矩传感器相连;还包括安装在炭块的起始位置和终点位置用于对炭块进行定位的光电开关;还包括对炭块的炭碗中心和斜槽角度定位的视觉系统;所述可编程控制器根据视觉系统获得的位置信息,将清理刀具定位至炭块的炭碗和斜槽,并控制刀具对炭碗和斜槽同时进行清理。能够实现阳极炭块定位、阳极炭块测高、炭碗和斜槽的定位、炭碗和斜槽清理的全自动力位置伺服控制。
The invention discloses a force position servo control system for automatic cleaning of anode carbon block and carbon bowls for aluminum electrolysis, including five servo drive motors with absolute encoders, two pressure sensors, a torque sensor, and a programmable A controller, the programmable controller communicates with five servo drive motors through the field bus, and is connected with the pressure sensor and the torque sensor through the I/O port; It is a photoelectric switch for positioning the carbon block; it also includes a vision system for positioning the center of the carbon bowl and the angle of the chute of the carbon block; the programmable controller positions the cleaning tool to the center of the carbon block according to the position information obtained by the vision system. Charcoal bowl and chute, and control the cutter to clean the charcoal bowl and chute at the same time. It can realize the automatic force position servo control of anode carbon block positioning, anode carbon block height measurement, carbon bowl and chute positioning, and carbon bowl and chute cleaning.
Description
技术领域 technical field
本发明涉及一种工业伺服控制系统,尤其涉及一种实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统。The invention relates to an industrial servo control system, in particular to a force position servo control system for realizing automatic cleaning of anode carbon block carbon bowls for aluminum electrolysis.
背景技术 Background technique
国内的电解铝厂铝电解阳极炭块以石油焦为原料,经过高温煅烧、混捏、成型、焙烧等工序,得到焙烧阳极块,将炭块与导电钢爪连接后挂接在电解槽中通电,炭块作为阳极通过电解可置换出铝金属。阳极炭块如附图4所示,炭块上表面有四个盲孔,直径170mm左右,孔内壁有升角为75°的螺旋槽,这些盲孔俗称炭碗。将导电钢爪插入炭碗并浇铸牢固,即可送往电解槽使用。炭碗内壁螺旋斜槽的作用是为防止炭块与导电钢爪连接松动。Domestic aluminum electrolytic aluminum electrolytic anode carbon blocks use petroleum coke as raw material, and undergo high-temperature calcination, kneading, molding, roasting and other processes to obtain roasted anode blocks. The carbon block is used as an anode to replace aluminum metal through electrolysis. The anode carbon block is shown in Figure 4. There are four blind holes on the upper surface of the carbon block with a diameter of about 170mm. The inner wall of the hole has a spiral groove with a rise angle of 75°. These blind holes are commonly called carbon bowls. Insert the conductive steel claw into the charcoal bowl and cast it firmly, then it can be sent to the electrolytic cell for use. The role of the spiral chute on the inner wall of the carbon bowl is to prevent the loose connection between the carbon block and the conductive steel claw.
阳极炭块在焙烧过程中,为了避免氧化,在阳极炭块周围铺设大量炭粒进行保护。焙烧完成后,在阳极炭块表面和炭碗中会粘结大量的炭粒并且有一定的粘接强度,这些炭粒在使用前需要进行清理。目前采用的炭块的清理方法是,用特制铁铲将炭块表面及炭碗内的炭粒铲掉,再用压缩空气吹走,人工清理炭块一般要清理2-3次才能达到合格要求,并且压缩空气会使炭粉弥漫在空气中,使得炭块清理工作环境恶劣、工作量大,人员流动性较大,存在安全隐患。During the roasting process of the anode carbon block, in order to avoid oxidation, a large number of carbon particles are laid around the anode carbon block for protection. After the roasting is completed, a large number of carbon particles will be bonded on the surface of the anode carbon block and in the carbon bowl and have a certain bonding strength. These carbon particles need to be cleaned before use. The current cleaning method for carbon blocks is to use a special shovel to shovel off the carbon particles on the surface of the carbon block and in the carbon bowl, and then blow them away with compressed air. Manual cleaning of the carbon blocks generally takes 2-3 times to meet the qualified requirements. , and the compressed air will make the carbon powder diffuse in the air, which makes the working environment of the carbon block cleaning harsh, the workload is large, the personnel mobility is large, and there are potential safety hazards.
发明内容 Contents of the invention
本发明的目的是提供一种实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统。The purpose of the present invention is to provide a force position servo control system for automatic cleaning of anode carbon block carbon bowls for aluminum electrolysis.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明的实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统,包括五台自带绝对编码器的伺服驱动电机、两个压力传感器、一个扭矩传感器和视觉识别软硬件系统,所述五台自带绝对编码器的伺服驱动电机分别为主轴伺服电机、斜槽伺服电机、X轴伺服电机、Y轴伺服电机、Z轴伺服电机;The force position servo control system for automatic cleaning of anode carbon blocks and carbon bowls for aluminum electrolysis of the present invention includes five servo drive motors with absolute encoders, two pressure sensors, a torque sensor and a visual recognition software and hardware system. The five servo drive motors with their own absolute encoders are respectively spindle servo motors, chute servo motors, X-axis servo motors, Y-axis servo motors, and Z-axis servo motors;
还包括可编程控制器,所述可编程控制器通过现场总线与五台伺服驱动电机通信、并通过I/O端口与所述压力传感器和扭矩传感器相连;五台伺服电机中的三台构成三自由度直角坐标机器人系统,用于携带清理刀具并实现定位,其余两台对清理刀具上的两种刀具运动进行分别控制;It also includes a programmable controller, the programmable controller communicates with the five servo drive motors through the field bus, and is connected with the pressure sensor and the torque sensor through the I/O port; three of the five servo motors form three The degree of freedom Cartesian coordinate robot system is used to carry the cleaning tool and realize positioning, and the other two control the two kinds of tool movements on the cleaning tool separately;
还包括安装在炭块的起始位置和终点位置用于对炭块进行定位的光电开关;It also includes a photoelectric switch installed at the starting position and end position of the carbon block for positioning the carbon block;
还包括对炭块的炭碗中心和斜槽角度定位的视觉系统;Also included is a vision system for positioning the center of the charcoal bowl and the angle of the chute for the charcoal block;
通过力位置混合控制方法能够控制刀具对炭碗和斜槽同时进行清理。The cutting tool can be controlled to clean the charcoal bowl and the chute at the same time through the force-position mixing control method.
安装在炭块终点位置的光电开关有两个,用于检测炭块到位和炭块离开,实现与原生产线工作方式的配合。There are two photoelectric switches installed at the end position of the carbon block, which are used to detect the arrival and departure of the carbon block, so as to realize the cooperation with the working mode of the original production line.
炭碗中心和斜槽角度位置的确定是采用视觉系统和图像识别软件获取坐标,然后用PLC控制所述三自由度直角坐标机器人的电机进行对刀搜索实现。The determination of the center of the charcoal bowl and the angular position of the chute is to use the vision system and image recognition software to obtain the coordinates, and then use the PLC to control the motor of the three-degree-of-freedom rectangular coordinate robot to search for the tool.
视觉系统获取炭碗坐标时对单个炭碗分别拍照,获取炭碗的相对坐标,然后以伺服电机编码器数值为参考计算出绝对坐标。When the vision system obtains the coordinates of the charcoal bowl, it takes pictures of a single charcoal bowl separately, obtains the relative coordinates of the charcoal bowl, and then calculates the absolute coordinates with reference to the value of the servo motor encoder.
控制系统采用力限制条件下的下探法对炭碗的位置进行搜索,即刀具在搜索过程中每移动一步,刀具下探接触炭块,并在达到一定接触力后停止,通过下压高度判断刀具是否对准炭碗中心和斜槽位置。The control system searches for the position of the charcoal bowl using the method of descending under the condition of force limitation, that is, every time the tool moves one step during the search process, the tool descends to touch the carbon block, and stops after reaching a certain contact force. Whether the cutter is aligned with the center of the charcoal bowl and the position of the chute.
PLC控制三自由度直角坐标机器人搜索炭碗中心的实际位置时,采用了一种网格式遍历搜索方式,即以计算坐标为中心划分网格,以固定步长在X和Y方向进行对刀试探。When the PLC controls the three-degree-of-freedom rectangular coordinate robot to search for the actual position of the center of the charcoal bowl, a grid-style traversal search method is adopted, that is, the calculation coordinates are used as the center to divide the grid, and the knife is tested in the X and Y directions with a fixed step. .
炭块高度的测量是利用刀具接触炭块的方法实现,即刀具下压并读取力传感器数据,当刀具与炭块上表面接触时,通过Z轴伺服电机的编码器数值能够得到炭块高度。The measurement of the height of the carbon block is realized by using the tool to touch the carbon block, that is, the tool is pressed down and reads the data of the force sensor. When the tool is in contact with the upper surface of the carbon block, the height of the carbon block can be obtained through the encoder value of the Z-axis servo motor .
切削过程对垂直方向的压力和斜槽刀的扭力进行限制,通过扭力与斜槽刀运动的闭环PID控制实现了力位置混合控制,使斜槽刀能够在切削下降过程中,自动沿斜槽的螺旋方向转动,实现炭碗和斜槽的同时清理。During the cutting process, the pressure in the vertical direction and the torsion of the chute knife are limited. The closed-loop PID control of the torque and the movement of the chute knife realizes the mixed control of force and position, so that the chute knife can automatically move along the direction of the chute during the cutting process. Rotate in the helical direction to realize simultaneous cleaning of the charcoal bowl and the chute.
具有双触摸屏操作界面,其中触摸式工控机显示屏用于操作炭碗拍照识别软件和监视炭碗情况,工业触摸屏用于整个系统的操作、控制和过程监控。It has a dual touch screen operation interface, in which the touch industrial computer display is used to operate the charcoal bowl photo recognition software and monitor the charcoal bowl situation, and the industrial touch screen is used for the operation, control and process monitoring of the entire system.
由上述本发明提供的技术方案可以看出,本发明提供的实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统,由于包括可编程控制器,所述可编程控制器通过现场总线与五台伺服驱动电机通信、并通过I/O端口与所述压力传感器和扭矩传感器相连;还包括安装在炭块的起始位置和终点位置用于对炭块进行定位的光电开关;还包括对炭块的炭碗中心和斜槽角度定位的视觉系统;所述可编程控制器根据对炭块的炭碗和斜槽的定位控制刀具对炭碗和斜槽同时进行清理。在阳极炭块定位完成后,自动完成对炭块的测高,炭碗与斜槽定位、炭碗与斜槽清理等任务,同时保证不损坏斜槽、炭碗内部炭粒清理干净符合工业要求,炭块的清理效率保证在300块/天,完全达到生产车间的日产量要求。It can be seen from the above-mentioned technical solution provided by the present invention that the force position servo control system provided by the present invention to realize the automatic cleaning of the anode carbon block and carbon bowl for aluminum electrolysis includes a programmable controller, and the programmable controller is connected through the field bus. It communicates with five servo drive motors and is connected with the pressure sensor and torque sensor through the I/O port; it also includes a photoelectric switch installed at the starting position and end position of the carbon block for positioning the carbon block; it also includes A visual system for positioning the center of the carbon bowl and the angle of the chute of the carbon block; the programmable controller controls the cutter to clean the carbon bowl and the chute at the same time according to the positioning of the carbon bowl and the chute of the carbon block. After the positioning of the anode carbon block is completed, the height measurement of the carbon block, the positioning of the carbon bowl and the chute, and the cleaning of the carbon bowl and the chute are automatically completed, while ensuring that the chute is not damaged, and the carbon particles inside the carbon bowl are cleaned up to meet industrial requirements. , The cleaning efficiency of carbon blocks is guaranteed to be 300 blocks/day, which fully meets the daily output requirements of the production workshop.
附图说明 Description of drawings
图1为本发明实施例提供的实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统的原理示意图;Fig. 1 is the schematic diagram of the principle of the force position servo control system that realizes the automatic cleaning of the anode carbon block carbon bowl for aluminum electrolysis provided by the embodiment of the present invention;
图2为本发明中炭碗清理系统结构示意总图;Fig. 2 is a schematic general diagram of the structure of the charcoal bowl cleaning system in the present invention;
图3为本发明中刀具结构示意图;Fig. 3 is a schematic diagram of cutter structure in the present invention;
图4a为本发明中阳极炭块示意图;Figure 4a is a schematic diagram of the anode carbon block in the present invention;
图4b为本发明中炭碗示意图;Figure 4b is a schematic diagram of the charcoal bowl in the present invention;
图5为本发明中力位置伺服控制系统流程图;Fig. 5 is a flow chart of the force position servo control system of the present invention;
图6为本发明中炭块高度测量信号流程图;Fig. 6 is a flow chart of the carbon block height measurement signal in the present invention;
图7为本发明中炭碗中心定位信号流程图;Fig. 7 is the flow chart of charcoal bowl center positioning signal in the present invention;
图8为本发明中炭碗清理信号流程图。Fig. 8 is a flow chart of signals for cleaning the charcoal bowl in the present invention.
图中:1、滚道安装位置,2、炭块清理位置,3、第三光电开关发射与第二光电开关接收安装位置,4.、刀具,5、X轴导轨,6、Z轴导轨,7、Z轴伺服电机,8、Y轴导轨,9、Y轴伺服电机,10、信号灯安装位置,11、X轴伺服电机,12、夹紧电机,13、第三光电开关接收与第二光电开关发射位置,14、主轴(M轴)伺服电机,15、斜槽电机,16、压力传感器,17、扭矩传感器,18、第二刀头,19、第一刀头,20、第一炭碗,21、第二炭碗,22、第三炭碗,23、第四炭碗,24、斜槽,25、炭碗台阶面,26、阳极炭块炭碗,27、阳极炭块。In the figure: 1. Roller installation position, 2. Carbon block cleaning position, 3. Third photoelectric switch emission and second photoelectric switch reception installation position, 4. Tool, 5. X-axis guide rail, 6. Z-axis guide rail, 7. Z-axis servo motor, 8. Y-axis guide rail, 9. Y-axis servo motor, 10. Signal light installation position, 11. X-axis servo motor, 12. Clamping motor, 13. The third photoelectric switch receiving and the second photoelectric Switch launch position, 14, main shaft (M-axis) servo motor, 15, chute motor, 16, pressure sensor, 17, torque sensor, 18, second cutter head, 19, first cutter head, 20, first charcoal bowl , 21, the second charcoal bowl, 22, the third charcoal bowl, 23, the fourth charcoal bowl, 24, the chute, 25, the charcoal bowl step surface, 26, the anode charcoal block charcoal bowl, 27, the anode charcoal block.
具体实施方式 Detailed ways
本发明的实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统,实现了炭碗清理系统的全自动循环运行、故障诊断和保护功能,采用专用的控制系统和控制方法实现其功能。该控制系统结合图像识别技术和现场总线技术解决了炭碗坐标识别定位问题,同时利用切削力测量部件实现了炭碗清理刀具的力位置混合控制,高效率的通过一次切削完成炭碗内表面和斜槽的同时清理,同时力测量部件还为清理过程的故障诊断和自保护提供监控数据。该系统通过PLC控制单元实现了全部的过程控制、运动控制和力反馈控制算法,首次通过主轴刀铣削和斜槽刀具同时随动切削的方法实现了电解阳极炭碗的自动清理,该系统对于炭碗中炭粒粘接硬度较高的情况也能够完全清理。The force position servo control system of the present invention realizes the automatic cleaning of the anode carbon block carbon bowl for aluminum electrolysis, realizes the fully automatic cycle operation, fault diagnosis and protection functions of the carbon bowl cleaning system, and uses a special control system and control method to realize its functions . The control system combines image recognition technology and field bus technology to solve the problem of charcoal bowl coordinate identification and positioning. At the same time, the cutting force measurement component is used to realize the mixed control of the force and position of the charcoal bowl cleaning tool. Simultaneous cleaning of the chute, while the force measurement component also provides monitoring data for fault diagnosis and self-protection of the cleaning process. The system realizes all the process control, motion control and force feedback control algorithms through the PLC control unit. For the first time, the automatic cleaning of the electrolytic anode carbon bowl is realized by the method of spindle cutter milling and inclined groove cutter simultaneous cutting. The case where the carbon particles in the bowl have a high bonding hardness can also be completely cleaned.
下面将结合附图对本发明实施例作进一步地详细描述。Embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明的实现铝电解用阳极炭块炭碗自动化清理的力位置伺服控制系统,其较佳的具体实施方式如图1所示:The force position servo control system for realizing the automatic cleaning of the anode carbon block carbon bowl for aluminum electrolysis of the present invention, its preferred specific implementation is as shown in Figure 1:
包括五台自带绝对编码器的伺服驱动电机、两个压力传感器、一个扭矩传感器和一个通过现场总线与五台伺服驱动电机通信、通过I/O端口与压力传感器和扭矩传感器相连的可编程控制器PLC。其特征是:阳极炭块通过第一装置和第二装置在在工件的起始位置和终点位置安装光电开关进行定位→通过视觉系统对阳极炭块的炭碗中心和斜槽角度定位→对阳极炭块的实际高度进行测量→PLC搜索算法对阳极炭块炭碗和斜槽的精确定位→刀具对炭碗和斜槽同时进行清理。Consists of five servo drive motors with absolute encoders, two pressure sensors, a torque sensor and a programmable controller that communicates with five servo drive motors via fieldbus and connects with pressure sensors and torque sensors through I/O ports device PLC. Its characteristics are: the anode carbon block is positioned by installing a photoelectric switch at the starting position and end position of the workpiece through the first device and the second device → positioning the center of the carbon bowl and the angle of the chute of the anode carbon block through the visual system → aligning the anode The actual height of the carbon block is measured → the PLC search algorithm accurately locates the carbon bowl and the chute of the anode carbon block → the cutter cleans the carbon bowl and the chute at the same time.
第一装置安装在炭块的起始位置,对炭块准备情况向控制系统发出信号;第二装置安装在炭块的终点位置,对炭块的到位情况向控制系统发出信号。The first device is installed at the starting position of the carbon block, and sends a signal to the control system for the preparation of the carbon block; the second device is installed at the end position of the carbon block, and sends a signal to the control system for the presence of the carbon block.
具有多个第二装置处的光电开关。There are a plurality of photoelectric switches at the second device.
在炭块未到达,起始或终点位置时,由于现场环境恶劣导致的光电开关误触发的情况下,不会导致机械系统的误动作。When the carbon block does not reach the start or end position, the photoelectric switch is mistriggered due to the harsh environment on site, which will not cause malfunction of the mechanical system.
对炭碗和斜槽的定位采用机器人视觉系统和PLC搜索算法双重定位。The positioning of the carbon bowl and the chute adopts dual positioning of the robot vision system and the PLC search algorithm.
机器人视觉系统与PLC的通讯方式采用RS232。The communication mode between robot vision system and PLC adopts RS232.
对炭碗的位置搜索,第二刀头进入炭碗为完成标志信号,即当前Z轴编码器数值与第一刀头到达炭块上表面时Z轴伺服电机编码器数值的差值是否大于一定的数值。Searching for the position of the charcoal bowl, when the second cutter head enters the charcoal bowl is a sign signal of completion, that is, whether the difference between the current Z-axis encoder value and the value of the Z-axis servo motor encoder when the first cutter head reaches the upper surface of the carbon block is greater than a certain value value.
控制系统采用点击法对炭碗的位置进行搜索,即刀具每移动一定的距离,向下点击一次,确定是否到达炭碗的中心位置。The control system uses the click method to search for the position of the charcoal bowl, that is, every time the tool moves a certain distance, click down once to determine whether it reaches the center of the charcoal bowl.
控制系统对炭碗搜索的警告判断是压力传感器的力反馈超出限制。The warning judgment of the control system for the carbon bowl search is that the force feedback of the pressure sensor exceeds the limit.
具体搜索范围的判断是系统允许的X轴方向和Y轴方向的最大误差。The judgment of the specific search range is the maximum error allowed by the system in the X-axis direction and the Y-axis direction.
控制系统对炭碗搜索的Y轴方向判断是通过压力传感器在第一刀头与炭块表面接触的时,两个压力传感器的力反馈不同判断。The control system judges the Y-axis direction of the charcoal bowl search through the pressure sensor when the first cutter head is in contact with the surface of the carbon block, and the force feedback of the two pressure sensors is different.
炭块高度的测量是通过刀具与炭块上表面的接触时的Z轴编码器数值确定的。The measurement of the height of the carbon block is determined by the Z-axis encoder value when the tool is in contact with the upper surface of the carbon block.
炭块高度测量到位判断是通过两个压力传感器的力反馈数值超过炭碗清理时的限制值。The judging that the height of the carbon block is in place is judged by the force feedback value of the two pressure sensors exceeding the limit value when the carbon bowl is cleaned.
在测高期间,主轴伺服电机以力矩模式驱动第一刀头转动,清走炭块表面上的炭粒。During height measurement, the spindle servo motor drives the first cutter head to rotate in torque mode to remove the carbon particles on the surface of the carbon block.
搜索斜槽期间,第二刀头保持与炭碗台阶面的一定接触力。During searching the chute, the second cutter head maintains a certain contact force with the step surface of the charcoal bowl.
保持接触力的实现是以压力传感器的力反馈为PID的输入,PID的输出为第二刀头在竖直方向上的位置。The realization of maintaining the contact force is that the force feedback of the pressure sensor is used as the input of the PID, and the output of the PID is the position of the second cutter head in the vertical direction.
PID的周期脉冲方式触发,输出第二刀头在竖直方向上的相对位移。The periodic pulse mode of PID is triggered, and the relative displacement of the second cutter head in the vertical direction is output.
搜索斜槽期间,A轴伺服电机以力矩模式驱动第二刀头转动,同时通过扭矩传感器的力反馈控制第二刀头在竖直方向上的位置即刀具在Z轴方向上的位置。During the search of the chute, the A-axis servo motor drives the second cutter head to rotate in torque mode, and at the same time controls the vertical position of the second cutter head through the force feedback of the torque sensor, that is, the position of the tool in the Z-axis direction.
搜索斜槽期间,通过压力传感器的力反馈判断第二刀头是否到达斜槽的正上方。During the search for the chute, it is judged whether the second cutting head reaches the top of the chute through the force feedback of the pressure sensor.
搜索斜槽期间,压力传感器的力反馈超过限制的情况下,控制系统PLC会发出警告。During the search for the chute, the control system PLC issues a warning in case the force feedback from the pressure sensor exceeds the limit.
控制系统发出的警告可以表现在控制柜面板上的报警指示灯、触摸屏和报警蜂鸣器。The warning issued by the control system can be displayed on the alarm indicator light, touch screen and alarm buzzer on the panel of the control cabinet.
清理炭碗内部和炭碗斜槽内的炭粒同时被清理。Clean up the charcoal particles inside the charcoal bowl and in the charcoal bowl chute to be cleaned at the same time.
炭碗斜槽的位置控制方式为PID伺服控制。The position control method of the carbon bowl chute is PID servo control.
PID伺服控制的输入为扭矩传感器的力反馈,输出为第二刀头在斜槽内部的移动的相对位移。The input of the PID servo control is the force feedback of the torque sensor, and the output is the relative displacement of the movement of the second cutter head inside the chute.
扭矩传感器反馈的力为第二刀头的六个刀刃所受的水平切向力。The force fed back by the torque sensor is the horizontal tangential force suffered by the six blades of the second cutter head.
炭碗清理期间第二刀头运动的与斜槽形状相符的空间螺旋线是通过控制系统的PID调节第二刀头的角度实现的。The space helix that the second cutter head moves in conformity with the shape of the chute during the cleaning of the carbon bowl is realized by adjusting the angle of the second cutter head through the PID of the control system.
在找到炭碗和斜槽的位置后,控制系统会对炭碗和斜槽的位置和形状拟定理想的规划曲线。After finding the position of the carbon bowl and the chute, the control system will draw up an ideal planning curve for the position and shape of the carbon bowl and the chute.
控制系统对第二刀头的水平和竖直方向的运动与理想的规划曲线进行拟合,允许一定的误差。The control system fits the horizontal and vertical movement of the second cutter head with the ideal planning curve, allowing a certain error.
具体对于炭碗的损坏状况控制系统根据压力传感器和扭矩传感器的力反馈与正常清理时的力反馈进行综合比较判断。Specifically, the damage control system of the charcoal bowl is comprehensively compared and judged according to the force feedback of the pressure sensor and the torque sensor and the force feedback during normal cleaning.
第一刀头是否到达炭碗的底部的判断是通过压力传感器的力反馈数值超过预设数值和当前Z轴编码器数值与第一刀头到达炭块上表面时Z轴伺服电机编码器数值的差值大于预设的数值。Whether the first cutter head reaches the bottom of the carbon bowl is judged by the force feedback value of the pressure sensor exceeding the preset value and the current Z-axis encoder value and the value of the Z-axis servo motor encoder when the first cutter head reaches the upper surface of the carbon block. The difference is greater than the preset value.
本发明的控制对象主要是炭碗清理系统的刀具系统。控制系统在实现炭块清理功能的同时,还赋予了炭碗清理系统全面的自动化运行能力。能够克服阳极炭块生产中的阳极炭块表面温度高、炭碗形状不规则、炭粒粘附在炭块表面和炭碗内部的随机性大、电磁干扰强烈、碳粉的高污染性和导电性等不良因素对控制系统的影响。克服现有技术中存在的投入人力多、对人体健康危害大、生产效率低、成本高、受主观因素影响大、污染环境等不足;本发明提供一种严格高效、低投入、高产出、无环境污染、操作方便、自动化程度高、无需专业人员,通过人机界面即可达到完全监控阳极炭块炭碗清理的控制系统。The control object of the present invention is mainly the cutter system of the carbon bowl cleaning system. While realizing the carbon block cleaning function, the control system also endows the carbon bowl cleaning system with comprehensive automatic operation capabilities. It can overcome the high surface temperature of the anode carbon block, the irregular shape of the carbon bowl, the randomness of carbon particles adhering to the surface of the carbon block and the inside of the carbon bowl, strong electromagnetic interference, high pollution and conductivity of carbon powder in the production of anode carbon blocks The impact of adverse factors such as sex on the control system. It overcomes the deficiencies in the prior art, such as large investment of manpower, great harm to human health, low production efficiency, high cost, great influence by subjective factors, and environmental pollution; the present invention provides a strict and efficient, low-input, high-output, No environmental pollution, convenient operation, high degree of automation, no need for professionals, and a control system that can completely monitor the cleaning of the anode carbon block and carbon bowl through the man-machine interface.
本发明中,PLC系统载入控制算法程序,通过既定的流程,根据传感器反馈的信息,向伺服电机发出指令,控制伺服电机工作与停止;In the present invention, the PLC system loads the control algorithm program, through the established process, according to the information fed back by the sensor, sends instructions to the servo motor to control the operation and stop of the servo motor;
人机界面系统与PLC系统产生交互信息,完成控制系统的状态监控、默认值修改、手动操作、故障处理等操作。The human-machine interface system and the PLC system generate interactive information to complete operations such as status monitoring, default value modification, manual operation, and fault handling of the control system.
其中PLC与五个伺服驱动电机的通讯方式为Canopen总线;Among them, the communication mode between PLC and five servo drive motors is Canopen bus;
所述的扭矩传感器和压力传感器采集的数据通过PLC的I/O数据采集模块传输到PLC;The data collected by the torque sensor and the pressure sensor are transmitted to the PLC through the I/O data acquisition module of the PLC;
系统中主要采用的技术有伺服电机控制技术、压力测量技术、扭矩测量技术、I/O数据采集技术、I/O数据滤波技术、数据时域分析技术和PID控制技术等与阳极炭块工艺生产流水线相结合的清理控制方案;PLC自动搜索程序方案的搜索范围为视觉系统反馈阳极炭碗中心坐标和斜槽角度坐标的误差最大误差。The main technologies used in the system are servo motor control technology, pressure measurement technology, torque measurement technology, I/O data acquisition technology, I/O data filtering technology, data time domain analysis technology and PID control technology, etc. and anode carbon block process production The cleaning control scheme combined with the assembly line; the search range of the PLC automatic search program scheme is the maximum error of the error of the center coordinate of the anode carbon bowl and the angular coordinate of the chute fed back by the vision system.
下面对如何实现炭块高度测量、炭碗中心定位、斜槽的定位、炭碗和斜槽的清理分别说明:The following describes how to measure the height of the carbon block, the center positioning of the carbon bowl, the positioning of the chute, and the cleaning of the carbon bowl and the chute:
炭块高度测量:阳极炭块上表面有部分炭粒,具有一定的硬度和粘附力。在进行阳极炭块的炭碗清理以前,首先将刀具移至阳极炭块的上方,利用Z轴伺服电机自带的绝对编码器,可以随时记录Z轴上刀具的位置。Z轴下降,同时启动主轴伺服电机的扭矩模式,使第一刀头以一定的扭矩转动,当刀具与阳极炭块表面进行接触时,第一刀头可以清除阳极炭块表面的粘附炭粒,通过刀具上部的两个压力传感器的测得数值确定刀具是否到达实际的炭块表面。采用该方案是考虑刀具系统本身具有一定的柔性,刀具的柔性在一般情况下可以保护刀具的刀头和压力传感器不受损害;如果采用常规技术进行测量,即使忽略成本和技术问题,测得精度很高的数据,在刀具本身具有柔性的情况下,即使Z轴已经下降理论上的炭碗深度,但是刀具的刀头仍不能到达炭碗底部,不能将炭碗内部的炭粒完全清理干净。Carbon block height measurement: There are some carbon particles on the upper surface of the anode carbon block, which has a certain hardness and adhesion. Before cleaning the carbon bowl of the anode carbon block, first move the cutter to the top of the anode carbon block, and use the absolute encoder that comes with the Z-axis servo motor to record the position of the cutter on the Z-axis at any time. The Z-axis descends and starts the torque mode of the spindle servo motor at the same time, so that the first cutter head rotates with a certain torque. When the cutter contacts the surface of the anode carbon block, the first cutter head can remove the adhered carbon particles on the surface of the anode carbon block. , determine whether the cutter has reached the actual carbon block surface by the measured values of the two pressure sensors on the upper part of the cutter. The adoption of this scheme is to consider that the tool system itself has a certain degree of flexibility, and the flexibility of the tool can protect the tool head and pressure sensor from damage under normal circumstances; With very high data, in the case of the flexibility of the cutter itself, even if the Z-axis has dropped to the theoretical depth of the carbon bowl, the cutter head of the cutter still cannot reach the bottom of the carbon bowl, and the carbon particles inside the carbon bowl cannot be completely cleaned.
炭碗中心定位:刀具的初始位置为视觉系统所给坐标位置;对阳极炭块炭碗的搜索,通过刀具的两侧压力传感器的当前值波峰变化,判断第二刀头进入炭碗的情况:(第一刀头较之炭碗有一定的余量,即使炭块定位有一定的误差,也可以进入炭碗,)第二刀头要进入炭碗,其定位精度需要达到2mm;根据炭块的定位误差(X轴方向上一般为6mm左右,Y轴方向上一般为4mm左右);刀具按照预定阳极炭块炭碗位置下降,此时有两个算法:一是第二刀头进入炭碗8mm以上,则认为第二刀头进入炭碗,开始搜索斜槽;二是第二刀头探入炭碗的深度小于8mm;触发搜索程序,在X轴方向上对炭碗进行搜索,以点击法搜索炭碗的中心,即以一定的步长,分步进行,当未到达X轴方向炭碗中心的位置时,由于点击炭块造成的刀具上方两个压力传感器数值变化量相差不会太大或保持固定的差值,通过观察两个压力传感器的输出数据滤波后形成的时域波动曲线可以得到准确的判断;当到达炭碗中心X轴方向位置时,根据两个压力传感器的输出数据滤波后形成的时域波动曲线,两个压力传感器的变化量有明显的差别,由此可以推断第二刀头的位置误差是在Y轴的正方向还是负方向;在对Y轴方向进行搜索,以较小步长,点击搜索,找到炭碗中心位置;Center positioning of the carbon bowl: the initial position of the cutter is the coordinate position given by the vision system; to search for the anode carbon block carbon bowl, judge the situation that the second cutter head enters the carbon bowl through the current value peak change of the pressure sensor on both sides of the cutter: (The first cutter head has a certain margin compared with the charcoal bowl. Even if there is a certain error in the positioning of the charcoal block, it can still enter the charcoal bowl.) The second cutter head must enter the charcoal bowl, and its positioning accuracy needs to reach 2mm; according to the carbon block The positioning error (generally about 6mm in the X-axis direction and about 4mm in the Y-axis direction); the cutting tool descends according to the predetermined position of the carbon bowl of the anode carbon block. At this time, there are two algorithms: one is that the second cutter head enters the carbon bowl If it is above 8mm, it means that the second cutter head enters the charcoal bowl and starts to search for the chute; secondly, the depth of the second cutter head penetrating into the charcoal bowl is less than 8mm; the search program is triggered, and the charcoal bowl is searched in the X-axis direction to click The center of the carbon bowl is searched by the method, that is, it is carried out step by step with a certain step length. When the position of the center of the carbon bowl in the X-axis direction is not reached, the difference in the values of the two pressure sensors above the tool caused by clicking on the carbon block will not be too large. Larger or keep a fixed difference, accurate judgment can be obtained by observing the time-domain fluctuation curve formed by filtering the output data of the two pressure sensors; when reaching the X-axis position of the center of the carbon bowl, according to the output data In the time-domain fluctuation curve formed after filtering, the changes of the two pressure sensors are significantly different, from which it can be inferred whether the position error of the second cutter head is in the positive or negative direction of the Y-axis; when searching for the Y-axis direction , with a smaller step size, click Search to find the center of the charcoal bowl;
对阳极炭块斜槽的搜索:第二刀头进入炭碗里8mm左右,需要在炭碗内部的台阶面上寻找斜槽的位置,第二刀头压在台阶面上(压力的大小保证在一定的范围内),该过程以两个压力传感器的输出,作为PID控制算法的输入,然后以PID算法的输出作为Z轴位置微量调节的位移,从而达到将第二刀头与炭碗台阶面保持接触力的目的;同时,以一定的扭矩转动第二刀头,当遇到较大粘附炭粒时,第二刀头速度降低,Z轴升起刀具,同时保持第二刀头以一定的压力压在台阶面上,直至第二刀头的六个刀刃进入斜槽。Search for the chute of the anode carbon block: the second cutter head enters the carbon bowl for about 8mm, and it is necessary to find the position of the chute on the step surface inside the carbon bowl, and the second cutter head is pressed on the step surface (the pressure is guaranteed to be within within a certain range), in this process, the output of the two pressure sensors is used as the input of the PID control algorithm, and then the output of the PID algorithm is used as the displacement of the Z-axis position micro-adjustment, so that the second cutter head and the charcoal bowl step surface The purpose of maintaining the contact force; at the same time, the second cutter head is rotated with a certain torque, and when encountering larger adhered carbon particles, the speed of the second cutter head is reduced, and the Z-axis lifts the tool while maintaining the second cutter head at a certain The pressure is pressed on the step surface until the six blades of the second cutter head enter the chute.
对阳极炭块炭碗的清理:确定炭碗的中心位置和斜槽的角度后,刀具上升,退出炭碗;保持位置不变,启动主轴伺服电机,第一刀头开始以恒速转动,启动刀具快速下降模式,接近炭块;距离炭块5mm处,Z轴伺服电机切换到扭矩模式开始下降,此时同时启动斜槽伺服电机的力位置伺服控制系统,进入斜槽;在斜槽内,第二刀头的六个刀刃将受到两个方向的力作用,分别为:竖直方向上的力和刀刃上的侧向力,刀刃受到的竖直方向力为清理炭粒时产生的,不做单独的测量与监控,它与第一刀头清理炭碗内部炭粒时受到的力之和同时反映到两个压力传感器的数值变化上,当两个压力传感器的输出数值变化过大时,刀具停止下降,并上升一定的高度,保护刀头和压力传感器;刀刃上的侧向力是需要严格控制的力;考虑炭碗斜槽的宽度较之刀刃的宽度大4mm,力位置伺服控制的目标是刀刃只受到竖直方向上的力,侧向力为零;但是炭碗的六个斜槽工艺为以空间螺旋形分布在炭碗的内表面,第二刀头的六个刀刃要想到达炭碗的底部,不可避免要与斜槽的内壁进行接触,产生与六个刀刃形成圆周的切向力,第二刀头所受切向力可以通过扭矩传感器直接测得,一旦超过正常转动需要的扭矩,将触发斜槽伺服电机对第二刀头进行位置调节,位置调节的方向与切向力的方向相同,该调节是以扭矩传感器测得切向力变化作为PID控制算法的输入,PID控制算法的输出为第二刀头转动的角度,这个角度的累计最大值不会超过斜刀槽和刀刃的差值;这种调节是实时进行的,可以说第二刀头在这种模式下,是处于一种动平衡状态,正是这种动平衡状态使第二刀头的刀刃在清理炭碗和斜槽时的运动轨迹为与斜槽工艺相符的空间螺旋曲线。从而保证了炭碗和斜槽的清理效果符合要求。Cleaning of the anode carbon block carbon bowl: After determining the center position of the carbon bowl and the angle of the chute, the cutter rises and exits the carbon bowl; keep the position unchanged, start the spindle servo motor, the first cutter head starts to rotate at a constant speed, start The tool is in the fast descending mode, approaching the carbon block; at a distance of 5mm from the carbon block, the Z-axis servo motor switches to the torque mode and begins to descend, at the same time start the force position servo control system of the chute servo motor and enter the chute; in the chute, The six blades of the second cutter head will be subjected to the force in two directions, which are respectively: the force in the vertical direction and the lateral force on the blade. Do separate measurement and monitoring, it and the sum of the force received by the first cutter head when cleaning the carbon particles inside the carbon bowl are reflected on the value changes of the two pressure sensors at the same time, when the output values of the two pressure sensors change too much, The cutter stops falling and rises to a certain height to protect the cutter head and pressure sensor; the lateral force on the blade is a force that needs to be strictly controlled; considering that the width of the carbon bowl chute is 4mm larger than the width of the blade, the force position is controlled by servo The goal is that the blade is only subjected to the force in the vertical direction, and the lateral force is zero; however, the six chute technology of the charcoal bowl is distributed spirally in space on the inner surface of the charcoal bowl, and the six blades of the second cutter head should be considered When reaching the bottom of the charcoal bowl, it is inevitable to contact the inner wall of the chute to generate a tangential force forming a circle with the six blades. The tangential force on the second cutter head can be directly measured by the torque sensor. Once it exceeds the normal rotation The required torque will trigger the chute servo motor to adjust the position of the second cutter head. The direction of the position adjustment is the same as the direction of the tangential force. The adjustment is based on the change of the tangential force measured by the torque sensor as the input of the PID control algorithm. The output of the PID control algorithm is the rotation angle of the second cutter head, and the cumulative maximum value of this angle will not exceed the difference between the inclined groove and the blade; this adjustment is carried out in real time, and it can be said that the second cutter head is in this mode Below, it is in a state of dynamic balance, and it is this state of dynamic balance that makes the movement trajectory of the blade of the second cutter head when cleaning the charcoal bowl and the chute be a space spiral curve that conforms to the chute process. Thereby it is ensured that the cleaning effect of the charcoal bowl and the chute meets the requirements.
本发明可以达到的效果为:在阳极炭块定位完成后,自动完成对炭块的测高,炭碗与斜槽定位、炭碗与斜槽清理等任务,同时保证不损坏斜槽、炭碗内部炭粒清理干净符合工业要求,炭块的清理效率保证在300块/天完全达到生产车间的日产量要求。The effect that the present invention can achieve is: after the positioning of the anode carbon block is completed, tasks such as height measurement of the carbon block, positioning of the carbon bowl and the chute, and cleaning of the carbon bowl and the chute are automatically completed, while ensuring that the chute and the carbon bowl are not damaged The cleaning of internal carbon particles meets industrial requirements, and the cleaning efficiency of carbon blocks is guaranteed to be 300 pieces per day to fully meet the daily output requirements of the production workshop.
下面结合附图,对本发明的实施案例进行进一步的详细描述如下:Below in conjunction with accompanying drawing, the embodiment of the present invention is described in further detail as follows:
如图2、图3、图4a、图4b所示,炭碗清理系统是安装在阳极炭块27生产线上的,对生产出的炭块27进行直接处理,首先,系统通过信号灯10通知推入炭块27,信号灯10有两个灯:绿色为推入炭块信号,红灯为开始清理阳极炭块信号,信号灯10自带蜂鸣器,发出等待信号。生产线推入阳极炭块27进入炭碗清理系统控制输送装置,第一光电开关检查到炭块27,启动滚道电机,将炭块27送入清理位置2。为了保证炭块的定位准确,为输送装置电机安装抱闸,使用两对光电开关——第二光电开关与第三光电开关;炭块27首先到达第二光电开关位置,PLC检测到第二光电开关启动,向滚道电机发出停止指令,同时检测第三光电开关的状态,第三光电开关的状态可直接与阳极炭块炭碗26的初始位置相关。两个光电开关的位置相差一定的距离,它们的状态可以将炭块27的位置误差保证在允许的范围内;PLC控制夹紧电机12夹紧炭块27,X轴伺服电机11驱动刀具4沿X轴正方向移动,分三步,为四个炭碗26拍照(初始位置可以为第一炭碗20拍照);PLC通过串口与视觉系统通讯,视觉系统负责拍照和计算各个炭碗的坐标,并发送给PLC,PLC根据收到的坐标确定各个炭碗的预定位置,视觉系统发送的坐标误差一般在±3mm。As shown in Figure 2, Figure 3, Figure 4a, and Figure 4b, the carbon bowl cleaning system is installed on the
如附图5、图6所示流程图,首先将刀具4移动到两个炭碗26的中心位置,启动压力传感器16保护程序,该程序分两种:其一,为正确测量炭块27高度的算法,压力传感器16输出达到该模式设定压力值范围内时,第一刀头19、刀具4、压力传感器16、导轨都可以正常工作,且可以正确测得炭块高度;其二,为保护刀具传感器16和导轨的算法,压力传感器16输出达到该模式设定压力值范围内时,第一刀头19、刀具4、压力传感器16、导轨可能出现故障,且测得炭块27高度偏低;这两种模式的压力值范围是根据压力传感器16的量程和清理过程中压力传感器16的变化范围确定的,这里所说的压力传感器16输出数值是指刀具4上方的两个压力传感器16单个和总体,即压力传感器16输出未超出规定范围不但指单个压力传感器16的输出未超过规定范围,而且要求压力传感器16的输出之和也未超过规定范围;考虑到刀具4为刚性部件,第一刀头19与炭块的接触采取快速接近,慢速接触,同时启动主轴伺服电机14扭矩模式,第一刀头19开始转动,可以清除阳极炭块27上表面绝大部分炭粒。第一刀头19压紧炭块以后,压力传感器19的输出出现跳变,PLC记录当前的Z轴伺服电机7编码器数值,作为炭块27的高度,同时Z轴导轨6上升,将第一刀头19与炭块27分开。通过这种方法测出的炭块27高度在炭碗定位判断时需要进行矫正,因为PLC是根据Z轴下降的位移作为判断刀头进入炭碗的情况的,矫正是要去除由于刀具4本身的柔性变形,对刀头下降位移造成的误差。As the flow chart shown in accompanying drawing 5, Fig. 6, at first cutter 4 is moved to the central position of two
如附图7所示流程图,确定阳极炭块27的高度后,根据视觉系统提供的坐标位置,PLC控制伺服电机移动刀具4到达第四炭碗23的中心坐标位置,调整第一刀头19两个刀刃的方向为X轴导轨5方向;启动压力传感器16力保护模式,同时Z轴快速下降,接近阳极炭块27,在距离阳极炭块表面1一定的距离,Z轴切换为慢速模式,准备进入阳极炭块炭碗26,在Z轴下降过程中,PLC会判断第一刀头19和第二刀头18是否进入炭碗26和斜槽24,是否满足正常清理炭碗26的条件;炭碗26搜索主程序中共有三个主要的判断标准:1、第一刀头19是否进入炭碗26,;2、第二刀头18是否进入炭碗26;3、第二刀头18的六个刀刃是否进入斜槽24。PLC对这三个判断表现为Z轴相对于矫正后的炭块高度位置下降的位移为多少,如当Z轴6当前位置相对于矫正后的炭块高度位置小于30mm,则认为第二刀头18的六个刀刃已经进入斜槽24,炭碗26的定位已经完成。As the flow chart shown in accompanying drawing 7, after determining the height of the
对于炭碗26定位主程序中的判断1,第一刀头19两个刀刃处于X轴5方向,所以可以不考虑Y方向刀具4的误差,只要刀具4的位置在X轴5方向的误差在误差范围内,第一刀头19就可以进入炭碗26,同时为了确保炭碗26的可清理率,也为第一刀头19设计一套搜索程序,首先将刀具4沿X轴5负方向移至炭碗坐标误差极限位置,以该位置为起点开始搜索,每移动一个步长,第一刀头(19)向下点击一次,每次点击完成后,Z轴6迅速升起,防止压力传感器16超限;如果Z轴6下降位置低于炭块高度位置一定的距离,则认为第一刀头18进入炭碗。正负极限位置之间总步数是确定的,搜索步数超过总步数则认为,炭碗损坏,不能搜索到炭碗。For the judgment 1 in the main program of positioning the
对于炭碗26定位主程序中的判断2,第一刀头18进入炭碗26的位移如果超过25mm,(第一刀头19与第二刀头18的竖直方向距离为15mm)则认为第二刀头19也进入炭碗26;如果不能进入炭碗26,启动第二刀头18搜索程序,首先Z轴6升起,移动刀具4至第二刀头18的误差极限位置或第一刀头进入炭碗的初始位置,同时转动第二刀头18使其中一对刀刃与Y轴8方向平行,开始搜索炭碗26,每移动一个步长,第二刀头(19)向下点击一次,每次点击完成后,Z轴6迅速升起,防止压力传感器16超限;每次点击完成后,由PLC分析两个压力传感器16的变化曲线和第二刀头19探入炭碗的深度,如果符合特定变化曲线的特征,且探入深度不满足要求,则认为第二刀头到达炭碗X轴5方向中心位置,但Y轴8方向还存在定位误差。通过对两个压力传感器16的变化曲线进行分析,可以得出第二刀头18的误差方向,同时退出炭碗26,Y轴8方向移动一个步长;再次点击炭块27;直至第二刀头19探入炭碗27的深度满足条件;X轴5与Y轴8由于其误差范围确定,所以它们各自的总搜索步数是确定的,达到总搜索步数仍不满足进入炭碗26的条件,则认为,该炭碗26损坏,不能搜索到炭碗26。For the
对于炭碗26定位主程序中的判断3,如果Z轴6下降位置低于炭块27高度35mm,则认为第二刀头18的六个刀刃进入斜槽24;否则启动斜槽24搜索程序;启动PID第一调节,该PID调节是以压力传感器16的输出为输入,Z轴6需要移动的相对位移为输出,进行的实时监控调节;该调节在第一次第二刀头18的六个刀刃压紧炭碗26的台阶面25时被触发;斜槽电机15扭矩模式启动,驱动第二刀头18沿逆时针方向转动;此时,如果第二刀头18停止转动,则表示遇到较大炭粒,此时Z轴6升起,第二刀头18重新开始转动,同时PID第一调节又促使Z轴6下降保持与台阶面25的压力值;直到找到第二刀头18的六个刀刃进入斜槽;第二刀头18的搜索范围为70度,第二刀头18转动70度后仍未能进入斜槽24,则认为炭碗26损坏,不能进入斜槽24;当刀刃被确定进入斜槽24,PID第一调节被关闭,同时记录当前X轴5、Y轴8位置,斜槽电机15的编码器位置(斜槽24的位置),然后Z轴6上升,第二刀头18退出炭碗26。For the judgment 3 in the charcoal bowl 26 positioning main program, if the Z-axis 6 descending position is lower than the height of the carbon block 27 by 35mm, then it is considered that the six blades of the second cutter head 18 enter the chute 24; otherwise, the chute 24 search program is started; Start the PID first adjustment, the PID adjustment is based on the output of the pressure sensor 16 as the input, and the relative displacement that the Z axis 6 needs to move is the output, and the real-time monitoring adjustment is carried out; Triggered when the blade presses against the step surface 25 of the charcoal bowl 26; the chute motor 15 starts in torque mode and drives the second cutter head 18 to rotate counterclockwise; at this time, if the second cutter head 18 stops rotating, it means that it has encountered Larger carbon particles, now the Z-axis 6 rises, the second cutter head 18 starts to rotate again, and at the same time, the first PID adjustment impels the Z-axis 6 to descend to maintain the pressure value with the step surface 25; until the second cutter head 18 is found Six blades enter the chute; the search range of the second cutter head 18 is 70 degrees, and the second cutter head 18 still fails to enter the chute 24 after turning 70 degrees, then it is considered that the charcoal bowl 26 is damaged and cannot enter the chute 24; The blade is determined to enter the chute 24, the PID first adjustment is closed, and at the same time record the current X-axis 5, Y-axis 8 positions, the encoder position of the chute motor 15 (the position of the chute 24), and then the Z-axis 6 rises, the second The second knife head 18 exits the charcoal bowl 26.
如附图8所示流程图,确定阳极炭块的炭碗和斜槽位置后,对于测得X轴5Y轴8坐标还需要矫正,考虑到炭碗26直径比第二刀头直径大,单方向搜索进入炭碗26不能达到炭碗26的中心位置,所以对测得中心位置坐标需要进行矫正;矫正值是根据Y轴与X轴移动的步长和实验的经验值得出。启动PID第二调节,该PID调节是以扭矩传感器17的输出值变化量为输入,第二刀头18的位移调节量为输出。该调节可以实时将第二刀头18的六个刀刃受到的侧向力反映到第二刀头18的位置调节上来;对扭矩传感器17的输出数据进行的采集并不是一直进行的,而是每20ms采集一次,如果扭矩传感器17的输出满足调节要求,则驱动第二刀头18移动相应的位移量,否则PID处于监控状态;主轴伺服电机14驱动第一刀头19开始转动,负责清理炭碗26内部的炭粒;Z轴6下降,第二刀头18的六个刀刃开始进入斜槽24,此时存在两种调节:第一调节是PID第二调节;第二调节是压力传感器16的输出调节;对于第一调节,如果扭矩传感器17数值增大(减小),超出PID调节的死区范围,则逆时针(顺时针)调节第二刀头18的刀刃一定的角度;对于第二调节,如果压力传感器16的单个或总体数值超过限制值,将会触发Z轴6快退动作,以保护刀头和刀具上的传感器;第一调节、第二调节和Z轴下降等动作有效的条件是刀头未到达炭碗26的底部;一旦到达炭碗26的底部,将触发刀具4的快速退出炭碗程序;退出炭碗26时,PID第二调节不会被关闭,直到第二刀头18离开炭碗26,然后,开始下第三炭碗22的清理。As the flow chart shown in accompanying drawing 8, after determining the position of the carbon bowl and the chute of the anode carbon block, the measured X-axis 5Y-axis 8 coordinates also need to be corrected. Considering that the diameter of the
在对第三炭碗22进行定位以前,PLC会对第四炭碗23的实际清理位置、第三炭碗22的预设位置,根据阳极炭块27的炭碗设计位置进行综合比较,选择其中一个作为第三炭碗22的中心位置,将刀具4移动到该位置,正常情况下,刀具4不需要再进行搜索,就可以直接进入第三炭碗26,开始清理炭碗26的程序;但是如果炭块27在焙烧时,变形比较大,则还需要搜索,但是此时炭碗27的位置误差已经大大减小了,启动与第四炭碗同样的搜索程序完成第三炭碗22、第二炭碗21、和第一炭碗20的清理任务;此时,PLC控制夹紧电机12松开炭块26;松开完成后,信号灯10亮起,提示推入下一个炭块26,滚道电机输送下一个炭碗26的同时,清理完成的炭块26也被输送出。Before positioning the
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field can easily conceive of changes or changes within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101992744A CN102350421B (en) | 2011-07-15 | 2011-07-15 | Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101992744A CN102350421B (en) | 2011-07-15 | 2011-07-15 | Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102350421A CN102350421A (en) | 2012-02-15 |
CN102350421B true CN102350421B (en) | 2013-11-20 |
Family
ID=45574128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101992744A Expired - Fee Related CN102350421B (en) | 2011-07-15 | 2011-07-15 | Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102350421B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO336059B1 (en) * | 2012-12-27 | 2015-05-04 | Sinvent As | Method and apparatus for cleaning carbon anodes |
CN106802623A (en) * | 2016-12-30 | 2017-06-06 | 天津思博科科技发展有限公司 | Using the production line monitoring system of internet of things sensors |
CN108563185A (en) * | 2018-03-13 | 2018-09-21 | 深圳市腾浩科技有限公司 | PCB digital control processings control system and its torque knife-breaking detecting method |
CN112501654B (en) * | 2020-11-19 | 2022-02-22 | 中国铝业股份有限公司 | Automatic carbon anode carbon bowl feeding system and automatic carbon anode carbon bowl feeding method |
CN112689375A (en) * | 2021-01-12 | 2021-04-20 | 南京工业大学 | Multi-shaft variable-speed adjustment synchronous control method of low-cost titanium liquid refining plasma gun |
GB2605428B (en) | 2021-03-31 | 2023-07-05 | Alumatiq As | Positioning system for a lifting apparatus and method of use |
CN112958509A (en) * | 2021-04-09 | 2021-06-15 | 湖南嘉品源智能科技有限公司 | Multifunctional cutter for cleaning carbon electrode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390027A (en) * | 2006-02-23 | 2009-03-18 | Abb公司 | A system that controls the position and orientation of an object by means of forces and torques received from a user |
CN102071437A (en) * | 2011-03-01 | 2011-05-25 | 北方工业大学 | Aluminum electrolytic anode carbon block and carbon cup cleaning system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701249A (en) * | 1985-08-31 | 1987-10-20 | Gewerkschaft Eisenhutte Westfalia Gmbh | Mobile apparatus for cleaning remnants of carbon anode blocks |
KR20060076884A (en) * | 2004-12-29 | 2006-07-05 | 두산인프라코어 주식회사 | Software PLC contact processing device and method of numerical control device |
CN2854663Y (en) * | 2005-11-18 | 2007-01-03 | 北京工业大学 | Automatic precision positioning visual servo mechanism device of microdevice |
CN100387931C (en) * | 2006-04-28 | 2008-05-14 | 南通大学 | A high-precision measurement method for large-scale free-form surfaces |
CN201389532Y (en) * | 2009-03-20 | 2010-01-27 | 云南铝业股份有限公司 | Top cleaning device of aluminum electrolytic baked anode carbon block |
CN201589786U (en) * | 2009-12-28 | 2010-09-22 | 贵阳铝镁设计研究院 | Device for judging carbon block direction in carbon block cleaner unit |
CN201592182U (en) * | 2009-12-30 | 2010-09-29 | 洛阳震动机械有限公司 | Block throwing cleaner |
-
2011
- 2011-07-15 CN CN2011101992744A patent/CN102350421B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390027A (en) * | 2006-02-23 | 2009-03-18 | Abb公司 | A system that controls the position and orientation of an object by means of forces and torques received from a user |
CN102071437A (en) * | 2011-03-01 | 2011-05-25 | 北方工业大学 | Aluminum electrolytic anode carbon block and carbon cup cleaning system |
Also Published As
Publication number | Publication date |
---|---|
CN102350421A (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102350421B (en) | Force position servo control system for automatically cleaning carbon bowl of anode carbon block for aluminum electrolysis | |
CN105690183B (en) | A kind of monitoring device and its monitoring method of numerical control milling cutter abnormal operation | |
CN104750027B (en) | A kind of tool failure early warning system based on machine tool chief axis power signal | |
CN202343638U (en) | Automatic carrying and detecting device for elastic bar stamping by using robot | |
CN102071437B (en) | Aluminum electrolytic anode carbon block and carbon cup cleaning system | |
CN203156342U (en) | Valve body ceramic chip positioning device based on machine vision | |
CN105033998A (en) | Intelligent flexible production line based on automatic robot assembling and operating method thereof | |
CN201872001U (en) | Processing error detection device for a machine tool | |
CN203100687U (en) | Automatic detection device for milling cutter | |
CN108627111B (en) | Online detection device and online detection method for drill punching | |
CN112437165A (en) | Remote monitoring type real-time monitoring system and method for detection workflow | |
CN215790895U (en) | Be used for calcination positive pole carbon block surface cleaning device | |
CN116945001A (en) | Automatic loading and unloading control system and method for milling cutter processing based on eight-station grinder | |
CN105290926A (en) | Blade intelligent grinding flexible manufacturing system | |
CN202933875U (en) | Automatic measuring sorting machine of wedge blocks | |
CN103831255B (en) | Voussoir Automatic Measuring and Sorting Machine | |
Dayam et al. | In-process dimension monitoring system for integration of legacy machine tools into the industry 4.0 framework | |
CN113566761A (en) | Online detection and finishing device for size of tablet personal computer | |
CN113843659A (en) | A spindle-integrated tool damage frequency conversion on-machine detection system and method based on machine vision | |
CN102553973B (en) | Longitudinal beam of automobile frame detects accurate positioning device and detection method | |
CN207464471U (en) | A kind of laser pipe cutter with chuck wear detection function | |
CN107990827B (en) | Full-automatic detection system for M value and tooth surface run-out of worm | |
CN103148820A (en) | Length detection device for rotary cutter | |
CN110802615A (en) | A cloud-based automatic deburring robot based on big data and its use method | |
CN102350541A (en) | Three-shaft following online cutting numerical control milling machine and three-shaft following control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131120 Termination date: 20140715 |
|
EXPY | Termination of patent right or utility model |