Connect public, paid and private patent data with Google Patents Public Datasets

Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering

Download PDF

Info

Publication number
CN102336394B
CN102336394B CN 201110328910 CN201110328910A CN102336394B CN 102336394 B CN102336394 B CN 102336394B CN 201110328910 CN201110328910 CN 201110328910 CN 201110328910 A CN201110328910 A CN 201110328910A CN 102336394 B CN102336394 B CN 102336394B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
mems
manufacturing
flexible
covering
micro
Prior art date
Application number
CN 201110328910
Other languages
Chinese (zh)
Other versions
CN102336394A (en )
Inventor
李勇
李文平
朱效谷
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开一种柔性MEMS减阻蒙皮的制造方法,主要是为了提供一种改进的制造工艺而设计。 It discloses a flexible MEMS skin drag reducing method of the present invention, primarily to provide an improved manufacturing process designed. 本发明所述的减阻蒙皮的制造方法,包括:步骤1、在基底上制备一层中间夹层;步骤2、在完成步骤1的所述基底上制备一层柔性衬底;步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线;步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位;步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来。 A method for producing drag reducing skin of the present invention, comprising the steps of: 1. Preparation of a laminated layer on a substrate intermediate; Step 2, in said step of preparing the substrate 1 is a flexible substrate layer; step 3, on completion of said step of forming a metal layer of the substrate 2, and the process of forming micro-plane using MEMS electrolytic anode, cathode electrolysis, the anode lead terminal, and a cathode lead terminal interconnector on the metal layer; step 4, after completion the step of preparing said layer of flexible skin layer on the substrate 3, and the micro-pit array is formed by photolithography or etching, and an external power supply connected to the welding wire portion; step 5, the intermediate structure is formed over the interlayer from the substrate is peeled off. 本发明采用正序方法,先制备柔性衬底,然后制备柔性表层,减少了工序,简化了制作工艺。 The method of the present invention uses the positive sequence first preparing a flexible substrate, the flexible skin layer then prepared, reducing the process, simplifying the manufacturing process.

Description

柔性MEMS减阻蒙皮的制造方法 A method for manufacturing a flexible MEMS drag reducing skin

技术领域 FIELD

[0001] 本发明涉及微制造和柔性MEMS技术领域,尤其涉及一种柔性MEMS(MicroElectro-Mechanical Systems)减阻蒙皮的制造方法。 [0001] The present invention relates to a flexible MEMS micro-fabrication technology and, more particularly, relates to a method for manufacturing a flexible MEMS (MicroElectro-Mechanical Systems) skin drag.

背景技术 Background technique

[0002] 水面及水下航行体行驶时所受到的行进阻力包括压差阻力、行波阻力和表面摩擦阻力等,其中表面摩阻通常占据最大比重,对于长度和长宽比/长径比较大的航行体尤其如此。 [0002] surface and submerged body is subjected when traveling running resistance includes a pressure drag, skin friction drag and wave lines and the like, wherein the friction surface normally occupied the largest share, and the aspect ratio of the length / large aspect ratio sailing body in particular. 因此,降低航行体表面摩擦阻力能够有效地提高航速、增加航程、降低能耗,具有巨大的经济价值。 Therefore, to reduce skin friction drag sail body can effectively improve the speed, increased range, reduce energy consumption, has great economic value.

[0003]目前摩阻减阻技术的理论和应用研究主要集中在湍流边界层,涉及多种技术方案,例如表面形貌减阻(如肋条减阻)、仿生减阻(如柔顺壁减阻)等无源减阻方式,以及聚合物添加剂减阻、注入气泡减阻等需要注入物质或消耗能量的减阻方式。 [0003] The present theoretical and applied research focused friction drag reduction in the turbulent boundary layer, to a variety of technical solutions, for example, drag reducing surface topography (e.g., ribs drag reduction), bionic drag (e.g., a compliant wall drag) and other passive drag reduction mode, and a polymer drag reducing additives, drag reducing bubble injection or the like substance to be injected drag mode consumes energy. 在航行体表面形成一层气膜是现今理论减阻率最高的减阻方式之一,近年来受到了广泛的关注。 A layer of air film is formed on the surface of the sail is now one of the highest theoretical drag reduction of drag reduction way, recently has attracted widespread attention. 主要思想为:以气膜将航行体大部分外表面包裹,从而变液-固界面为液-气-固界面,大大减小摩擦阻力。 The main idea was: majority of the outer surface of the wrapping film to the gas sail body so becomes liquid - solid interface liquid - gas - solid interface, greatly reduce the frictional resistance. 目前主要以超空化和喷入气体两种方式形成气膜。 At present, ultra-cavitation and the injected gas to form a gas film in two ways. 对于喷气方式,需要额外的气体喷射系统,并且该系统必需持续工作,这对航行体的动力系统是较大负担。 For the jet way, the need for additional gas injection system, and the system must continue to work, which is a big burden for the power systems of navigation body. 对于超空化方式,存在空化噪声,而且需要采用特殊的发动机,且功耗极大。 For supercavitation embodiment, the presence of cavitation noise, and require the use of special motor, and the power consumption greatly.

[0004] 中国发明专利“柔性MEMS减阻蒙皮及其制造方法”(专利号ZL200910079713.0,授权公告日2011年I月26日)公开了一种利用驻留微气泡实现减阻的减阻蒙皮及其制造方法。 [0004] Chinese patent "flexible MEMS skin drag and its manufacturing method" (Patent No. ZL200910079713.0, I authorized announcement May 26, 2011) discloses a method of using microbubble drag reduction of drag reduction achieved residing skin and its manufacturing method. 其制造方法不足之处在于:采用了逆序方法制备减阻蒙皮,即先制备柔性材料薄膜表层,然后制备柔性材料薄膜衬底。 Its shortcomings in that the manufacturing method: A method of preparing a reverse drag reducing the skin, i.e., a surface layer of a flexible material to prepare a film, and then preparing the flexible material film substrates. 从而带来了以下两个问题:①、需要存在中间工序采用体硅刻蚀工艺将硬质基底硅片完全去除,增加了工艺的难度以及成本、需要存在单独的工序以加工形成连接外部供电导线的焊接部位。 Which brings the following two problems: ①, requires the presence of an intermediate step of etching for the silicon hard substrate wafer is completely removed, increasing the difficulty and cost of the process, the wire needs to be present in a separate processing step of forming an external power supply connected to the welded portion.

发明内容 SUMMARY

[0005] 针对上述问题,本发明提供一种改进的柔性MEMS减阻蒙皮的制造方法,其采用正序方法并简化了制造工艺。 [0005] In view of the above problems, the present invention provides an improved method for manufacturing a flexible MEMS skin drag reduction, a method which employs positive sequence and simplifies the manufacturing process.

[0006] 为达到上述目的,本发明所述柔性MEMS减阻蒙皮的制造方法,包括如下步骤: [0006] To achieve the above object, the present invention is the method for manufacturing a flexible MEMS drag skin, comprising the steps of:

[0007] 步骤1、在基底上制备一层中间夹层; [0007] Step 1. Preparation of an intermediate layer of the sandwich on the substrate;

[0008] 步骤2、在完成步骤I的所述基底上制备一层柔性衬底; [0008] Step 2, a layer of flexible substrate on the substrate prepared in step I is completed;

[0009] 步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线; [0009] Step 3, a metal layer is formed on the substrate 2 to complete the step, and fine-plane using MEMS process for forming the electrolytic anode, cathode electrolysis, the anode lead terminal, and a cathode lead terminal attached to the inside of the metal layer line;

[0010] 步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位; [0010] Step 4. Preparation of a layer of flexible skin layer on the substrate 3 to complete the step and the micro-pit array is formed by photolithography or etching, and an external power supply connected to the welding wire portion;

[0011] 步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来。 [0011] Step 5, formed on the substrate from peeling off of the intermediate structure in mezzanine above.

[0012] 进一步地,所述中间夹层的聚合物为PDMS (聚二甲基硅氧烷),该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为0.05〜0.2: I。 [0012] Furthermore, the mid sole polymer is PDMS (polydimethylsiloxane), the polymer mass before curing prepolymer curing agent PDMS monomer ratio of 0.05~0.2: I.

[0013] 进一步地,所述柔性衬底的聚合物为聚酰亚胺。 [0013] Further, the polymer is a polyimide flexible substrate.

[0014] 进一步地,所述金属图案的金属材料为钼。 [0014] Further, the metallic material of the metal pattern is molybdenum.

[0015] 进一步地,所述的MEMS平面微细工艺包括:甩胶、光刻、溅射和超声剥离。 [0015] Further, the planar micro-MEMS process comprising: a spin coater, lithography, sputtering, and ultrasonic peeling.

[0016] 进一步地,所述柔性表层的聚合物为SU-8光刻胶或聚酰亚胺。 [0016] Further, the flexible skin layer polymer is SU-8 photoresist or polyimide.

[0017] 进一步地,其中,步骤5的具体实现步骤如下: [0017] Further, wherein the step of step 5 is embodied as follows:

[0018] 使用薄刀片和尖头镊子将形成在所述中间夹层上方的结构从所述基底上机械剥离下来。 [0018] using a thin blade and pointed tweezers formed peeled from the substrate mechanically in the sandwich structure of the above intermediate.

[0019] 进一步地,其中,步骤5的具体实现步骤如下: [0019] Further, wherein the step of step 5 is embodied as follows:

[0020] 将完成步骤4的所述基底浸泡在有机化学溶剂中,以溶解所述中间夹层或改变所述中间夹层的性质,将形成在所述中间夹层上方的结构从所述基底上脱落。 [0020] The said step of immersing the substrate 4 in the organic chemical solvent to dissolve the mid sole or alter the properties of the mid sole, the intermediate structure will be formed over the interlayer detached from the substrate.

[0021] 本发明的有益效果是: [0021] Advantageous effects of the present invention are:

[0022] 1.本发明采用正序方法,先制备柔性衬底,然后制备柔性表层,减少了工序,简化了制作工艺。 [0022] 1. The method of the present invention uses the positive sequence first preparing a flexible substrate, the flexible skin layer then prepared, reducing the process, simplifying the manufacturing process.

[0023] 2.选用PDMS (聚二甲基硅氧烷)作为中间夹层。 [0023] 2. Use PDMS (polydimethylsiloxane) as the mid sole. PDMS薄膜具有高度的柔性以及较小的表面能,便于使用薄刀片和尖头镊子对形成在所述中间夹层上方的蒙皮结构与基底进行机械分离。 PDMS film having a high degree of flexibility and low surface energy, thin blade and ease of use of the forceps tips and skin structure substrate is formed over the intermediate interlayer mechanically separated. 同时,PDMS对有机溶剂,如丙酮、四氢呋喃等等,具有吸胀作用,吸胀后的PDMS表面粘性变得极弱,并且会发生变形,产生内应力,便于实现蒙皮结构的自然脱落。 Meanwhile, the PDMS organic solvent, such as acetone, tetrahydrofuran and the like, having imbibition, the PDMS surface tack after imbibition becomes extremely weak, and deformed, resulting in stress, facilitate the natural shedding of the skin structure.

[0024] 3.选用SU-8光刻胶作为表层材料。 [0024] 3. Use SU-8 photoresist as a skin material. SU-8光刻胶光刻性能好,能够实现小尺寸,大深宽比、高陡直度的凹坑结构。 SU-8 photoresist lithographic performance is good, it is possible to achieve small size and large aspect ratio, high steepness of the pit structure. 同时,SU-8光刻胶物理化学性能稳定,制备的减阻蒙皮能够满足不同环境下的使用要求。 Meanwhile, SU-8 photoresist stable physical and chemical properties, drag the skin can be prepared to meet the requirements in different environments.

附图说明 BRIEF DESCRIPTION

[0025] 图1是本发明所述柔性MEMS减阻蒙皮的制造方法的一具体实施例的流程图; [0025] FIG. 1 is a flowchart of a particular embodiment of the method for manufacturing a flexible MEMS drag reducing skin of the present invention;

[0026] 图2是本发明所述的硬质基底的结构示意图; [0026] FIG. 2 is a schematic view of a rigid substrate according to the present invention;

[0027] 图3是本发明在所述硬质基底上制备一层中间夹层的结构示意图; [0027] FIG. 3 is a structural diagram of the present invention is the preparation of the intermediate layer on the interlayer hard substrate;

[0028] 图4是本发明在所述中间夹层上制备一层柔性衬底的结构示意图; [0028] FIG. 4 is a schematic view of a flexible substrate according to the present invention is prepared on the intermediate layer interlayer;

[0029] 图5是本发明在所述柔性衬底上形成一层含有电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线的金属图案的结构示意图; [0029] FIG. 5 is a schematic structural diagram of an electrolytic layer containing an anode, a cathode electrolysis, the anode lead terminal, a cathode lead terminal and internal wiring metal pattern of the present invention is formed on the flexible substrate;

[0030] 图6是本发明在所述金属图案层上制备一层柔性表层的结构示意图; [0030] FIG. 6 is a structural diagram of the present invention is the preparation of a flexible skin layer on said metal pattern layer;

[0031] 图7是本发明通过对所述柔性表层进行光刻或刻蚀,形成微凹坑阵列以及引线端子焊接部位的结构示意图; [0031] FIG. 7 of the present invention is by photolithography or etching the surface of said flexible, a schematic structure of the micro array of pits and the lead terminal welding portion is formed;

[0032] 图8是本发明从硬质基底上分离后的减阻蒙皮的结构示意图。 [0032] FIG. 8 is a schematic view of the drag reducing skin separated from the rigid substrate of the present invention.

[0033] 附图标记: [0033] The reference numerals:

[0034] 1-基底;2_中间夹层;3_柔性衬底;4_电解阳极;5_电解阴极; [0034] 1- substrate; 2_ mid sole; 3_ flexible substrate; 4_ electrolytic anode; a cathode electrolysis 5_;

[0035] 6-阳极引线端子;7_阴极引线端子;8_柔性表层;9_微凹坑。 [0035] 6- anode lead terminal; 7_ cathode lead terminal; 8_ flexible surface; 9_ micropits.

具体实施方式 detailed description

[0036] 下面结合说明书附图对本发明做进一步的描述。 [0036] the following description in conjunction with the accompanying drawings of the present invention will be further described. [0037] 如图1所示,本发明所述的柔性MEMS减阻蒙皮的制造方法,包括如下步骤: [0037] As shown in FIG. 1, a method of manufacturing a flexible MEMS drag the skin of the present invention, comprising the steps of:

[0038] 步骤1、准备基底I。 [0038] Step 1. Preparation of the substrate I. 该基底最好选为硬质基底,如:单抛硅片或经抛光后的金属薄板,如图2所示。 The substrate is preferably selected to hard substrates, such as: a thin metal plate after a single cast or polished silicon wafer, as shown in FIG.

[0039] 步骤2、在所述基底I上旋涂聚合物的预聚物,固化后形成中间夹层2,如图3所述。 [0039] Step 2, in the spin-coated substrate I a prepolymer of the polymer, after curing the middle sole 2 is formed, as shown in claim 3. 所述聚合物为PDMS,该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为 The polymer is PDMS, a polymer mass before curing of the prepolymer with a curing agent ratio of PDMS monomer

0.05 〜0.2: I。 0.05 ~0.2: I.

[0040] 步骤3、在完成步骤2的所述基底I上旋涂聚合物的预聚物,固化后形成柔性衬底3,如图4所述。 [0040] Step 3, the substrate 2 at the completion of step I prepolymer spin-coated on the polymer, after curing, 3, 4 forming the flexible substrate in FIG. 所述聚合物为聚酰亚胺。 The polymer is a polyimide.

[0041] 步骤4、在完成步骤3的所述基底I上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极4、电解阴极5、阳极引线端子6、阴极引线端子7和内部连线,如图5所示。 [0041] Step 4, a metal layer formed on said substrate completion of step I 3, and using 4, 5 cathodic electrolysis, the anode lead 6 and the cathode lead plane MEMS process for forming the fine anode electrolytic layer on the metal terminal 7 and internal wiring terminals, as shown in FIG. 其中,所述的金属图案优选材料为钼,以便电解电极在电解水反应中稳定不损耗。 Wherein, the metal pattern material is preferably molybdenum, in order not stable electrolysis electrode in the electrolysis of water loss reaction. 所述的MEMS平面微细工艺具体包括:甩胶、光刻、溅射和超声剥离。 Process according MEMS micro-plane comprises: a spin coater, lithography, sputtering, and ultrasonic peeling.

[0042] 步骤5、在完成步骤4的所述基底I上旋涂聚合物的预聚物,固化后形成柔性表层8,如图6所示。 [0042] Step 5, after completion of the step of the base 4 of the prepolymer spin-coated on the I polymer, the flexible skin layer 8 is formed after curing, as shown in FIG. 所述聚合物可光刻或刻蚀,本发明优先推荐聚酰亚胺和SU-8光刻胶。 The polymer may be photolithography or etching, the polyimide of the present invention is preferably recommended, and SU-8 photoresist.

[0043] 步骤6、在完成步骤5的所述基底I上对所述柔性表层8进行光刻或刻蚀,形成微凹坑9阵列以及连接外部供电导线的焊接部位,如图7所示。 [0043] Step 6, carried out on completion of step I 5 of the substrate to the flexible skin layer 8 photolithography or etching to form a micro-pit array, and the welded portion 9 is connected to an external power supply line, as shown in FIG. 所述的阳极引线端子6和阴极引线端子7通过内部连接分别与每个微凹坑内的电解阳极4和电极阴极5导通。 The anode lead terminal 6 and the cathode lead terminal 7, respectively, with the anode of each electrolysis dimples pit 4 and the cathode electrode 5 through the conductive internal connection.

[0044] 步骤7、将形成在所述中间夹层2上方的结构从所述基底I上剥离下来,形成如图8所示结构的减阻蒙皮。 [0044] Step 7, formed in the upper mid sole structure 2 is peeled off from the substrate I, form a drag reducing skin structure shown in FIG. 8. 其中,该步骤可具体通过两种方式实现,方式一,采用机械方式将其分离,如使用薄刀片从中间夹层处将减阻蒙皮结构剃下来,或使用镊子将蒙皮结构从中间夹层处撕下。 Wherein, the step may be embodied in two ways, one way, it is separated mechanically, such as using a thin blade to shave from the mid sole drag down the skin structure, or skin structure using forceps at the mid sole tear off. 方式二,采用化学方式将其分离,如将基底以及已经制备好的中间夹层、柔性衬底、金属薄膜层以及柔性表层作为整体浸泡在有机化学溶剂中,以溶解中间夹层,或改变中间夹层的性质,使得蒙皮结构自然脱落。 Mode 2 separated by chemical way, as will be intermediate substrate and good interlayer, flexible substrate, the flexible skin layer and the metal thin film layers as a whole have been prepared immersed in organochemical solvents to dissolve the mid sole, or changing the mid sole properties, so that the natural shedding skin structure.

[0045] 实施例1: [0045] Example 1:

[0046] 制造方法包括如下步骤: [0046] The manufacturing method comprising the steps of:

[0047] 1.1、准备硬质基底:选用普通单抛硅片作为整个柔性减阻蒙皮加工的载体。 [0047] 1.1, to prepare a hard base: use an ordinary single-wafer polishing as carrier entire flexible skin drag processing.

[0048] 1.2、制备中间夹层:将PDMS单体与固化剂以单体的质量比为5: I〜20: I的比例混合,充分搅拌均匀并抽真空处理15min以去除混合液中的气泡。 [0048] 1.2 Preparation of Interlayer: The PDMS monomer with a curing agent to the monomer mass ratio is 5: I~20: I proportions, stir 15min processed and evacuated to remove air bubbles in the mixture. 使用匀胶机将搅拌均匀的混合溶液旋涂在硬质基底上,然后置于烘箱,在90°C下加热60min使PDMS固化。 Using a spin coater Stir the mixed solution was spin-coated on hard substrate, and then placed in an oven and heated at 90 ° C 60min make cured PDMS. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的PDMS薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be obtained PDMS films of different thicknesses. 本实施例中PDMS薄膜的厚度为20 μ m。 The thickness of PDMS film embodiment of the present embodiment is 20 μ m.

[0049] 1.3、制备柔性衬底:在中间夹层上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0049] 1.3 Preparation of flexible substrate: spin-coated on the intermediate interlayer polyimide prepolymer plastic coating, and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be obtained a polyimide film of a different thickness. 本实施例中聚酰亚胺薄膜的厚度为20 μ m。 The thickness of the polyimide film of the present embodiment is the embodiment of 20 μ m.

[0050] 1.4、制备金属图案层:在所述柔性衬底上形成一层金属层,并在所述金属层上采用MEMS平面微细工艺制备金属图案,形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线。 [0050] 1.4 Preparation of the metal pattern layer: formed on the flexible substrate a metal layer, and a fine plane using MEMS process for preparing a metal pattern on the metal layer, forming an electrolytic anode, cathode electrolysis, the anode lead terminal, a cathode lead terminal and internal wiring. 即采用甩胶-光刻-溅射-超声剥离的工艺在聚酰亚胺层(即柔性衬底)上制备钼图形,钼层厚度为2000A。 Preparation of Molybdenum pattern on the polyimide layer (i.e., a flexible substrate) of the ultrasonic stripping process, the molybdenum layer with a thickness of 2000A - i.e., using spin coater - lithography - sputtering.

[0051] 1.5、制备柔性表层:在所述柔性衬底和所述金属图案上旋涂SU-8光刻胶,然后置于烘箱内进行前烘。 [0051] 1.5 Preparation of a flexible skin layer: on the flexible substrate and the metal pattern SU-8 photoresist is spin-coated, and then placed in an oven pre-bake. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的SU-8光刻胶薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be of different thicknesses SU-8 resist film. 本实施例中SU-8光刻胶薄膜的厚度为50 μ m。 SU-8 resist film thickness in the present embodiment is 50 μ m.

[0052] 1.6、光刻:对上述步骤中制备的SU-8光刻胶进行曝光、显影以及后烘,形成微凹坑以及引线端子焊接部位。 [0052] 1.6, photolithography: SU-8 photoresist on the preparation of the above procedures in exposure, development and post-baking, the micro pits are formed and a lead terminal welding portion.

[0053] 1.7、分离蒙皮结构:将所述硬质基底以及已经制备好的中间夹层、柔性衬底、金属薄膜层以及柔性表层作为整体浸泡在盛有四氢呋喃溶液的烧杯中,并将烧杯置于超声清洗机中,辅助以超声振动,实现蒙皮结构的自然脱落。 [0053] 1.7, separation of the skin structure: rigid substrate and the mid sole good, flexible substrate, the flexible skin layer and the metal thin film layers as a whole have been prepared in a beaker immersed in a solution of tetrahydrofuran, and the beaker is set the ultrasonic cleaning machine, the auxiliary ultrasonic vibration to realize the natural shedding of the skin structure.

[0054] 实施例2: [0054] Example 2:

[0055] 制造方法包括如下步骤: [0055] The manufacturing method comprising the steps of:

[0056] 2.1、准备硬质基底:选用经抛光后的金属薄板作为整个柔性减阻蒙皮加工的载体。 [0056] 2.1, to prepare a hard base: selection by the polished metal sheet as a carrier entire flexible skin drag processing.

[0057] 2.2、制备中间夹层:将PDMS单体与固化剂以质量比为5:1〜20:1的比例混合,充分搅拌均匀并抽真空处理15min以去除混合液中的气泡。 [0057] 2.2, the middle of preparing a sandwich of: PDMS monomer with a curing agent in a mass ratio of 5: 1 ratio mixture, stir 15min processed and evacuated to remove air bubbles in the mixture: 1~20. 使用匀胶机将搅拌均匀的混合溶液旋涂在硬质基底上,然后置于烘箱,在90°C下加热60min使PDMS固化。 Using a spin coater Stir the mixed solution was spin-coated on hard substrate, and then placed in an oven and heated at 90 ° C 60min make cured PDMS. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的PDMS薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be obtained PDMS films of different thicknesses. 本实施例中PDMS薄膜的厚度为200 μ m。 The thickness of PDMS film according to the present embodiment is the embodiment of 200 μ m.

[0058] 2.3、制备柔性衬底:在中间夹层上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0058] 2.3 Preparation of flexible substrate: spin-coated on the intermediate interlayer polyimide prepolymer plastic coating, and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be obtained a polyimide film of a different thickness. 本实施例中聚酰亚胺薄膜的厚度为50 μ m。 The thickness of the polyimide film of the present embodiment is the embodiment of 50 μ m.

[0059] 2.4、制备金属图案层:在所述柔性衬底上形成一层金属层,并在所述金属层上采用MEMS平面微细工艺制备金属图案,形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线。 [0059] 2.4 Preparation of the metal pattern layer: formed on the flexible substrate a metal layer, and a fine plane using MEMS process for preparing a metal pattern on the metal layer, forming an electrolytic anode, cathode electrolysis, the anode lead terminal, a cathode lead terminal and internal wiring. 即采用甩胶-光刻-溅射-超声剥离的工艺在聚酰亚胺层(即柔性衬底)上制备钼图形,钼层厚度为2000A。 Preparation of Molybdenum pattern on the polyimide layer (i.e., a flexible substrate) of the ultrasonic stripping process, the molybdenum layer with a thickness of 2000A - i.e., using spin coater - lithography - sputtering.

[0060] 2.5、制备柔性表层:在所述柔性衬底和所述金属图案上旋涂聚酰亚胺预聚体涂层胶,并加温固化。 [0060] 2.5 Preparation of a flexible skin layer: on the flexible substrate and the metal pattern was spin-coated polyimide prepolymer plastic coating, and heat curing. 本步骤中,通过调节匀胶机的转速以及选择不同的匀胶-固化次数可以得到不同厚度的聚酰亚胺薄膜。 In this step, by adjusting the rotational speed of the spin coater and selecting a different spin coating - curing times can be obtained a polyimide film of a different thickness. 本实施例中聚酰亚胺薄膜的厚度为50 μ m。 The thickness of the polyimide film of the present embodiment is the embodiment of 50 μ m.

[0061] 2.6、刻蚀:对上述步骤中制备的聚酰亚胺薄膜进行刻蚀,形成微凹坑以及引线端子焊接部位,刻蚀深度以露出金属图案为准。 [0061] 2.6, etching: polyimide film prepared in the above step by etching, forming a micro dimple and a lead terminal welding portion, the etching depth to expose the metal pattern prevail.

[0062] 2.7、分离蒙皮结构:使用薄刀片和镊子将蒙皮结构从中间夹层处与硬质基底分离开来。 [0062] 2.7, separating the skin structure: a thin blade and skin structure will be divided from the forceps at the mid sole and the hard substrate separated.

[0063] 以上实施例均采用本发明的方法,其中所列的具体工艺方法、参数以及尺寸仅是举例,而非对本发明方法适用范围的限制。 [0063] The above embodiments are used in the method of the present invention, the specific process methods, wherein the parameters and dimensions set forth by way of example only, and not to limit the scope of applicable methods of the present invention. 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 Any skilled in the art in the art within the technical scope of the present invention is disclosed, variations or replacement that can be easily thought, shall fall within the protection scope of the present invention. 因此,本发明的保护范围应该以权利要求所界定的保护范围为准。 Accordingly, the scope of the present invention should be in the scope of the claims and their equivalents.

Claims (4)

1.一种柔性MEMS减阻蒙皮的制造方法,其特征在于,包括如下步骤: 步骤1、在基底上制备一层中间夹层; 步骤2、在完成步骤I的所述基底上制备一层柔性衬底; 步骤3、在完成步骤2的所述基底上形成一层金属层,并采用MEMS平面微细工艺在所述金属层上形成电解阳极、电解阴极、阳极引线端子、阴极引线端子和内部连线; 步骤4、在完成步骤3的所述基底上制备一层柔性表层,并通过光刻或刻蚀形成微凹坑阵列以及连接外部供电导线的焊接部位; 步骤5、将形成在所述中间夹层上方的结构从所述基底上剥离下来; 其中,所述中间夹层的聚合物为PDMS,该聚合物固化前的预聚物中固化剂与PDMS单体的质量配比为0.05〜0.2:1 ;所述柔性表层的聚合物为SU-8光刻胶或聚酰亚胺; 上述步骤5的具体实现步骤如下: 使用薄刀片和尖头镊子将形成在所述中间夹层上方的结构从 A method for manufacturing a flexible MEMS drag reducing skin, characterized by comprising the following steps: Step 1, preparing one intermediate interlayer on the substrate; Step 2. Preparation of a flexible layer on the substrate is completed in step I a substrate; step 3, a metal layer is formed on the substrate 2 to complete the step, and fine-plane using MEMS process for forming the electrolytic anode, cathode electrolysis, the anode lead terminal, and a cathode lead terminal attached to the inside of the metal layer line; step 4, in said step of preparing the base layer of flexible skin layer 3, and the micro-pit array is formed by photolithography or etching, and an external power supply connected to the welding wire portion; step 5, to form the intermediate structure above the interlayer peeling off from the substrate; wherein said mid sole polymer is PDMS, a polymer mass before curing of the prepolymer with a curing agent PDMS monomer ratio of 0.05~0.2: 1 ; polymer skin layer to the flexible SU-8 photoresist or polyimide; step 5 above specific implementation steps are as follows: a thin blade and pointed tweezers formed above the sandwich structure of the intermediate from 所述基底上机械剥离下来; 或是; 步骤5的具体实现步骤如下: 将完成步骤4的所述基底浸泡在有机化学溶剂中,以溶解所述中间夹层或改变所述中间夹层的性质,将形成在所述中间夹层上方的结构从所述基底上脱落。 The upper substrate mechanically peeled; or; step 5 specific implementation steps are as follows: the said step of immersing the substrate 4 in the organic chemical solvent to dissolve the mid sole or mid sole changing the nature of the said intermediate structure is formed over the interlayer detached from the substrate.
2.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述柔性衬底的聚合物为聚酰亚胺。 2. The method of manufacturing a flexible MEMS drag the skin to claim 1, wherein said flexible substrate polymer is a polyimide.
3.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述金属层的金属材料为钼。 The method of manufacturing a flexible MEMS drag the skin of claim 1, wherein the metallic material of the metallic layer is molybdenum.
4.根据权利要求1所述的柔性MEMS减阻蒙皮的制造方法,其特征在于,所述的MEMS平面微细工艺包括:甩胶、光刻、溅射和超声剥离。 The method of manufacturing a flexible MEMS drag the skin according to claim 1, wherein said fine-plane MEMS process comprising: a spin coater, lithography, sputtering, and ultrasonic peeling.
CN 201110328910 2011-10-26 2011-10-26 Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering CN102336394B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110328910 CN102336394B (en) 2011-10-26 2011-10-26 Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110328910 CN102336394B (en) 2011-10-26 2011-10-26 Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering

Publications (2)

Publication Number Publication Date
CN102336394A true CN102336394A (en) 2012-02-01
CN102336394B true CN102336394B (en) 2014-05-28

Family

ID=45512404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110328910 CN102336394B (en) 2011-10-26 2011-10-26 Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering

Country Status (1)

Country Link
CN (1) CN102336394B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754819B (en) * 2014-01-21 2015-10-21 清华大学 The method of preparing a flexible skin drag mems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461003A (en) 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads
CN1889251A (en) 2005-07-21 2007-01-03 惠普开发有限公司 Production of multi-thin film device
CN101138663A (en) 2007-10-25 2008-03-12 上海交通大学 Preparation method of biological microelectrode array based on flexible substrate
CN101486438A (en) 2009-03-06 2009-07-22 清华大学 Flexible MEMS resistance reducing covering and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142333A (en) * 1994-11-15 1996-06-04 Ricoh Co Ltd Matrix of nozzle plate and production of nozzle plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461003A (en) 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads
CN1889251A (en) 2005-07-21 2007-01-03 惠普开发有限公司 Production of multi-thin film device
CN101138663A (en) 2007-10-25 2008-03-12 上海交通大学 Preparation method of biological microelectrode array based on flexible substrate
CN101486438A (en) 2009-03-06 2009-07-22 清华大学 Flexible MEMS resistance reducing covering and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平8-142333A 1996.06.04

Also Published As

Publication number Publication date Type
CN102336394A (en) 2012-02-01 application

Similar Documents

Publication Publication Date Title
US6921603B2 (en) Microfluidic fuel cell systems with embedded materials and structures and method thereof
WO2010072675A2 (en) Method for producing thin, free-standing layers of solid state materials with structured surfaces
US20040245191A1 (en) Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
CN101532159A (en) Preparation method for metallic aluminum super-hydrophobic surface
CN101872120A (en) Method for preparing patterned graphene
CN101059380A (en) Flexible capacitance type touch sensor production method
US20140242354A1 (en) Encapsulation film with thin layer composed of graphene oxide and reduced graphene oxide and method for forming the same
CN101082523A (en) Method for making flexibility temperature sensor
CN102637584A (en) Transfer preparation method of patterned graphene
CN101138663A (en) Preparation method of biological microelectrode array based on flexible substrate
US20090320274A1 (en) Electromechanical transducer and fabrication method of electromechanical transducing apparatus
JP2005256071A (en) Method for producing anodized film
JP2005032594A (en) Method of manufacturing corrosion resistant metal plate
CN104528721A (en) Preparation method of flaky two-dimensional nano-titanium carbide nanometre material
CN103342472A (en) Method for transferring graphene film
WO2002058178A1 (en) Method for manufacturing fuel cell elecrolyte film-electrode bond
US20090313809A1 (en) Electromechanical transducer and fabrication method of electromechanical transducing apparatus
JP2009246019A (en) Coarse surface making method of semiconductor substrate for solar cell
JP2004057993A (en) Method of manufacturing hydrogen producing filter
CN101540391A (en) Novel lithium battery cathode material
CN201962364U (en) Wet etching device for mono-crystalline silicon solar cell
US20110117357A1 (en) Microstructure, and method for production thereof
Psoma et al. Comparative assessment of different sacrificial materials for releasing SU-8 structures
CN1595703A (en) Method for manufacturing minitype liquid methanol fuel cell
Zhang et al. Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01