CN102324546A - 微生物冶金电池 - Google Patents
微生物冶金电池 Download PDFInfo
- Publication number
- CN102324546A CN102324546A CN201110271557A CN201110271557A CN102324546A CN 102324546 A CN102324546 A CN 102324546A CN 201110271557 A CN201110271557 A CN 201110271557A CN 201110271557 A CN201110271557 A CN 201110271557A CN 102324546 A CN102324546 A CN 102324546A
- Authority
- CN
- China
- Prior art keywords
- chamber
- filter
- mmc
- percolate
- soaked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Abstract
本发明提供一种微生物冶金电池利用电絮凝法,处理含锌矿渣渗滤液并回收所生成锌盐的方法。该电池由三个极室组成并且相邻极室之间有分割物也有物质流通,通过生物浸滤和微生物燃料电池的两种原理作用,实现重金属从矿化态到单质态的一步式转变经预调pH后渗滤液进入电絮凝装置,利用絮凝沉淀原理去除渗滤液中的可溶解性锌盐并回收整个过程所生成的锌盐沉淀。本发明的电池具有处理效果好,残余浓度低,电能消耗少和废物回收无需外加电源,反应过程清洁无污染等优点。本发明适合应用于湿法冶金、采矿等行业的矿渣渗滤液处理。
Description
技术领域
本发明涉及到一种电池,尤其是一种微生物冶金电池。
背景技术
微生物燃料电池(MFC):微生物燃料电池除盐的依据:微生物消耗有机物过程中产生电子和H+,电子被传导至阴极与电子受体结合,氢离子穿过质子交换膜(PEM)补充阴极室阳离子缺失,整个闭合过程可以产电,又可以达到有机物去除的目的。微生物燃料电池已经实现了对铁、锰、铬、铜等重金属的离子或氧化酸根离子的还原。但究其根本,阴极还原的只是可溶状态的物质,对非可溶状态却无能为力。
微生物淋滤(MM):微生物淋滤是近年才兴起的一种去除重金属污染物的微生物方法。其利用自然界中一些微生物的直接作用或其代谢产物的间接作用,产生氧化、还原、络合、吸附或溶解作用,将固相中某些不溶性成分(如重金属、硫及其他金属)分离浸提出来的一种技术,又称微生物湿法冶金(Bio-hydrometallurgy)。
发明内容
本发明的目的是,提供一种微生物冶金电池,利用该电池可使重金属物质从矿化态直接变成单质态。本发明内容如下:
一种MFC和MM的组合装置,这里把它定义为Microbial Metallurgic Cell(MMC),微生物冶金电池。整个装置分为左边的阴极室、中间的滤浸室、右边的阳极室,三个反应室。其中阳极室与滤浸室通过PEM相通,滤浸室和阴极室通过U型虹吸管相连接。两极室采用可移动的石墨碳毡作为电极。
装置的启动分为两个方面:一、滤浸室的接种驯化,二、阳极室的接种驯化。过程一时间需求较长。装置运行阶段物质流程为:阳极液(如生活污水)中的有机物在阳极室内被微微生物氧化,过程产生的质子穿过PEM、石棉网进入滤浸室,产生的电子经钛丝导线传递到阴极室;滤浸室内污泥或矿石颗粒经微微生物滤浸作用释放出Cu2+等重金属离子,根据浓度扩散原理,离子进入滤浸室的虹吸室,经过U型虹吸管进入阴极;进入阴极的电子和金属离子在石墨碳毡上结合,被还原的金属吸附在碳粘上。
整个反应装置的三室中都设有排空孔,在滤浸室的左侧有虹吸室,连接处的石棉网防止悬浮的污泥或矿石颗粒进入阴极室。
本发明有以下优点:
1、 实现重金属从矿化态到单质态的一步式转变;
2、 无电能消耗,整个过程清洁无污染。
具体实施方式
本发明可按照下面具体方式实施:
整个装置分为左边的阴极室、中间的滤浸室、右边的阳极室,三个反应室。其中阳极室与滤浸室通过PEM相通,滤浸室和阴极室通过U型虹吸管相连接。两极室采用可移动的石墨碳毡作为电极。
装置的启动分为两个方面:一、滤浸室的接种驯化,二、阳极室的接种驯化。过程一时间需求较长。装置运行阶段物质流程为:有机物在阳极室内被微微生物氧化,过程产生的质子穿过PEM、石棉网进入滤浸室,产生的电子经钛丝导线传递到阴极室;滤浸室内污泥或矿石颗粒经微微生物滤浸作用释放出Cu2+、Fe3+等重金属离子,根据浓度扩散原理,离子进入滤浸室的虹吸室,经过U型虹吸管进入阴极;进入阴极的电子和金属离子在石墨碳毡上结合,被还原的金属吸附在碳粘上。
整个反应装置的三室中都设有排空孔,在滤浸室的左侧有虹吸室,连接处的石棉网防止悬浮的污泥或矿石颗粒进入阴极室。
Claims (3)
1.一种微生物冶金电池,其装置分为左边的阴极室、中间的滤浸室、右边的阳极室,三个反应室;其中阳极室与滤浸室通过质子交换膜(PEM)相通,滤浸室和阴极室通过U型虹吸管相连接;两极室采用可移动的石墨碳毡作为电极。
2.如权利要求1所述的电池,其特征在于:阳极液(如生活污水)中的有机物在阳极室内被微微生物氧化,过程产生的质子穿过PEM、石棉网进入滤浸室,产生的电子经钛丝导线传递到阴极室;滤浸室内污泥或矿石颗粒经微微生物滤浸作用释放出Cu2+、Fe3+等重金属离子,根据浓度扩散原理,离子进入滤浸室的虹吸室,经过U型虹吸管进入阴极;进入阴极的电子和金属离子在石墨碳毡上结合,被还原的金属吸附在碳粘上。
3.如权利要求1所述的电池,其特征在于:实现了重金属从矿化态到单质态的一步式转变,无电能消耗,整个过程清洁无污染。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110271557A CN102324546A (zh) | 2011-09-14 | 2011-09-14 | 微生物冶金电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110271557A CN102324546A (zh) | 2011-09-14 | 2011-09-14 | 微生物冶金电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102324546A true CN102324546A (zh) | 2012-01-18 |
Family
ID=45452246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110271557A Pending CN102324546A (zh) | 2011-09-14 | 2011-09-14 | 微生物冶金电池 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102324546A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102916210A (zh) * | 2012-10-25 | 2013-02-06 | 无锡中彩新材料股份有限公司 | 一种微生物冶金电池 |
CN103397195A (zh) * | 2013-08-09 | 2013-11-20 | 内蒙古科技大学 | 废弃印刷电路板中金属铜的回收装置与回收方法 |
CN105905994A (zh) * | 2016-04-27 | 2016-08-31 | 天津工业大学 | 一种利用印染废水化学能与电能间转换过程处理印染废水的新方法 |
CN107946623A (zh) * | 2017-10-31 | 2018-04-20 | 江苏理工学院 | 一种处理矿山酸性含铜废水的微生物燃料电池及铜回收的方法 |
CN111081477A (zh) * | 2013-06-25 | 2020-04-28 | 巴格西太阳能有限责任公司 | 生物化学能量转化电池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673837A (zh) * | 2009-09-22 | 2010-03-17 | 北京大学深圳研究生院 | 微生物燃料电池系统和微生物污水处理及产生电能的方法 |
CN101710625A (zh) * | 2009-10-30 | 2010-05-19 | 北京大学深圳研究生院 | 燃料电池系统和污水处理产电及还原重金属的方法 |
US20100304189A1 (en) * | 2009-05-27 | 2010-12-02 | University Of Massachusetts | Geobacteraceae strains and methods |
-
2011
- 2011-09-14 CN CN201110271557A patent/CN102324546A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100304189A1 (en) * | 2009-05-27 | 2010-12-02 | University Of Massachusetts | Geobacteraceae strains and methods |
CN101673837A (zh) * | 2009-09-22 | 2010-03-17 | 北京大学深圳研究生院 | 微生物燃料电池系统和微生物污水处理及产生电能的方法 |
CN101710625A (zh) * | 2009-10-30 | 2010-05-19 | 北京大学深圳研究生院 | 燃料电池系统和污水处理产电及还原重金属的方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102916210A (zh) * | 2012-10-25 | 2013-02-06 | 无锡中彩新材料股份有限公司 | 一种微生物冶金电池 |
CN111081477A (zh) * | 2013-06-25 | 2020-04-28 | 巴格西太阳能有限责任公司 | 生物化学能量转化电池 |
CN111081477B (zh) * | 2013-06-25 | 2022-04-01 | 巴格西太阳能有限责任公司 | 生物化学能量转化电池 |
US11521803B2 (en) | 2013-06-25 | 2022-12-06 | Bugsy Solar LLC | Biochemical energy conversion cell |
CN103397195A (zh) * | 2013-08-09 | 2013-11-20 | 内蒙古科技大学 | 废弃印刷电路板中金属铜的回收装置与回收方法 |
CN105905994A (zh) * | 2016-04-27 | 2016-08-31 | 天津工业大学 | 一种利用印染废水化学能与电能间转换过程处理印染废水的新方法 |
CN107946623A (zh) * | 2017-10-31 | 2018-04-20 | 江苏理工学院 | 一种处理矿山酸性含铜废水的微生物燃料电池及铜回收的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery | |
Xue et al. | Green electrochemical redox mediation for valuable metal extraction and recycling from industrial waste | |
Liu et al. | Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies | |
Lefebvre et al. | Bioelectrochemical treatment of acid mine drainage dominated with iron | |
Wang et al. | Electricity production from a bio-electrochemical cell for silver recovery in alkaline media | |
Liu et al. | In-situ Cr (VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria | |
Modin et al. | Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions | |
Zhang et al. | Selective recovery of lead and zinc through controlling cathodic potential in a bioelectrochemically-assisted electrodeposition system | |
Fradler et al. | Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery | |
CN101962240A (zh) | 内电解-电解法处理含重金属废水 | |
Liu et al. | Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs) | |
Luo et al. | Selective recovery of Cu 2+ and Ni 2+ from wastewater using bioelectrochemical system | |
CN102324546A (zh) | 微生物冶金电池 | |
Sharma et al. | Optimization of EC parameters using Fe and Al electrodes for hydrogen production and wastewater treatment | |
Can et al. | Arsenic and boron removal by electrocoagulation with aluminum electrodes | |
Govindan et al. | Electrochemical recovery of H2 and nutrients (N, P) from synthetic source separate urine water | |
Hai et al. | Remediation of Acid Mine Drainage Based on a Novel Coupled Membrane-Free Microbial Fuel Cell with Permeable Reactive Barrier System. | |
Wang et al. | Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective | |
Zhang et al. | Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system | |
Deng et al. | Selective recovery of copper from electroplating sludge by integrated EDTA mixed with citric acid leaching and electrodeposition | |
Wu et al. | Progress in heavy metals-containing wastewater treatment via microbial electrolysis cell: a review | |
Liu et al. | Nickel (II) removal from wastewater by Microbial Fuel Cell | |
CN113307420B (zh) | 一种去除冶金废水中cod的方法 | |
CN102942243A (zh) | 三维电极与电类Fenton联用的废水处理方法 | |
CN114804304A (zh) | 一种电解法回收污水中磷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120118 |