CN102313358A - 二氧化碳热泵热水器的排气压力的控制方法 - Google Patents

二氧化碳热泵热水器的排气压力的控制方法 Download PDF

Info

Publication number
CN102313358A
CN102313358A CN2010102165918A CN201010216591A CN102313358A CN 102313358 A CN102313358 A CN 102313358A CN 2010102165918 A CN2010102165918 A CN 2010102165918A CN 201010216591 A CN201010216591 A CN 201010216591A CN 102313358 A CN102313358 A CN 102313358A
Authority
CN
China
Prior art keywords
pressure
temperature
expulsion
control method
pump water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102165918A
Other languages
English (en)
Inventor
黄玉优
肖洪海
于静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Gree Energy Saving Environmental Protection Refrigeration Technology Research Center Co Ltd
Original Assignee
Zhuhai Gree Energy Saving Environmental Protection Refrigeration Technology Research Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Gree Energy Saving Environmental Protection Refrigeration Technology Research Center Co Ltd filed Critical Zhuhai Gree Energy Saving Environmental Protection Refrigeration Technology Research Center Co Ltd
Priority to CN2010102165918A priority Critical patent/CN102313358A/zh
Publication of CN102313358A publication Critical patent/CN102313358A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

本发明公开一种二氧化碳热泵热水器的排气压力的控制方法,其在二氧化碳热泵热水器系统的气冷器的制冷剂出口处设置温度感温包,回热器的制冷剂出口处设置温度感温包,或在电子膨胀阀前位置处设置温度感温包,通过感测该三处及蒸发器中管的温度、及压缩机的排气压力来确定排气压力,并且可通过调节电子膨胀阀的开度、蒸发器的风机速度及控制与气冷器连接的水流量调节阀的开度来改变系统的温度。可通过调节电子膨胀阀、蒸发器的风机速度及调节水流量调节阀来改变系统内的温度、压力。

Description

二氧化碳热泵热水器的排气压力的控制方法
【技术领域】
本发明涉及暖通空调领域,尤其是指一种二氧化碳热泵热水器的排气压力的控制方法。
【背景技术】
现有的二氧化碳热泵热水器主要部件有:压缩机、气冷器、回热器、电子膨胀阀、蒸发器及气液分离器。最初低温低压二氧化碳进入压缩机,被压缩为高压二氧化碳气体,进入到气冷器,并被冷却,其释放的热量使通过该冷却器的冷水加热,经过气冷器之后,二氧化碳进入回热器进一步冷却,然后再经过电子膨胀阀节流降温并部分气化,湿蒸气进入蒸发器与空气换热变为气液混合物,经气液分离器后,进入回热器进一步加热,后再进入压缩机,完成一个循环。
在上述循环中,二氧化碳跨临界循环热泵热水器有一个明显的特性,就是在确定的气冷器制冷剂出口温度和蒸发器的蒸发温度下,存在一个最优排气压力,使得系统的性能系数COP最佳;最优排气压力主要受气冷器制冷剂出口温度所影响,蒸发器的蒸发温度的影响属于次要地位。而每套系统受压缩机、气冷器、电子膨胀阀、蒸发器、系统型号和结构等设计选型的不同而有不同的最优排气压力特性关系式,必须经过大量的实验数据进行整理拟合得出。
如图1所示,现有的最优二氧化碳的排气量的控制方法,首先计算出最优的目标排气压力,再通过调节电子膨胀阀的开度,实时检测得到测得压力,将测得排气压力和目标压力对比,当测得排气压力等于目标排气压力时,则为最终的最优排气压力。显然,现有技术的控制方法只能通过调节电子膨胀阀的开度来达到最优排气压力,当电子膨胀阀的开度为最大或最小,不可调节时,则不能通过调节电子膨胀阀的开度来达到二氧化碳最优排气压力。并且当且仅当测得压力与目标压力相等时,才结束循环,而实际上,测得压力与目标压力相等的可操作性较不大,一般技术人员很难把握调节电子膨胀阀的力度。
由此可鉴,为了实现空调机组的节能运行,必须寻找一种可操作性强的二氧化碳最优排气量的控制方法,因此,本发明提供一种二氧化碳热泵热水器的排气压力的控制方法,其能够实现二氧化碳跨临界循环热泵热水器的最优排气压力的检测、判断和控制,实现空调机组的节能运行。
【发明内容】
本发明的目的在于提供一种二氧化碳热泵热水器的排气压力的控制方法,其可对二氧化碳跨临界循环热泵热水器的最优排气压力的检测、判断和控制,实现空调机组的节能运行。
为实现本发明目的,提供以下技术方案:
一种二氧化碳热泵热水器的排气压力的控制方法,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入计算机系统,并判断是否符合代入最优排气压力关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调整电子膨胀阀的开度,以及调整蒸发器的风机速度、和/或调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度,以满足上述关系式,再重复步骤(2),进入下一个循环。
优选的是,为了便于控制二氧化碳的最优排气压力,需要预先根据实验数据整理得出最优排气压力关系式P=f(Tco,Te),并在得出该排气夜里关系式的同时,确定ΔP的值,ΔP优选为不同的压力值范围对应一个限值,根据不同的机型、不同的需要确定不同的ΔP。
优选的是,该气冷器制冷剂出口处设有温度感温包,该蒸发器内部设有温度感温包,在该压缩机的出口处设有压力传感器。
可供选择的是,可在回热器的制冷剂出口处设有温度感温包,测得回热器的制冷剂出口处温度Tho,上述最优排气压力关系式替换为P=f(Tho,Te)±ΔP,利用回热器的制冷剂出口处的温度Tho、蒸发器的管中温度Te及压缩机排气管的压力判断是否在最优排气压力范围内。
可供选择的是,可在节流装置设有温度感温包,测得节流装置温度Tvf,上述最优排气压力关系式替换为P=f(Tvf,Te)±ΔP,利用节流装置前的温度Tvf、蒸发器的管中温度Te及压缩机排气管的压力判断是否在最优排气压力范围内。
本发明次提供一种二氧化碳热泵热水器的排气压力的控制方法,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入计算机系统,并判断是否符合代入关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调整蒸发器的风机速度,以满足上述关系式,再重复步骤(2),进入下一个循环。
本发明还提供一种二氧化碳热泵热水器的排气压力的控制方法,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入计算机系统,并判断是否符合代入关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度,以满足上述关系式,再重复步骤(2),进入下一个循环。
本发明的最优排气压力关系式替换为P=(0.03109-0.00136Tco)Te+0.27592Tco-0.8363。
本发明的有益效果是:
在二氧化碳热泵热水器系统的气冷器的制冷剂出口处设置温度感温包,回热器的制冷剂出口处设置温度感温包,或在电子膨胀阀前位置处设置温度感温包,通过感测该三处及蒸发器中管的温度、及压缩机的排气压力来确定排气压力,并且可通过调节电子膨胀阀的开度、蒸发器的风机速度及控制与气冷器连接的水流量调节阀的开度来改变系统的温度。可通过调节电子膨胀阀、蒸发器的风机速度及调节水流量调节阀来改变系统内的温度、压力。
【附图说明】
图1现有技术的二氧化碳最优排气压力的控制逻辑图;
图2为热泵热水器系统的结构示意图之一;
图3为热泵热水器系统的结构示意图之二;
图4为本发明二氧化碳热泵热水器的排气压力的控制方法的逻辑图。
【具体实施方式】
实施例一,如图2所示,其示意了不包括回热器的热泵热水器系统。本发明二氧化碳热泵热水器的排气压力的控制方法,其包括有:压缩机1、气冷器2、电子膨胀阀3、蒸发器4及气液分离器5。其中,该气冷器2贯通有冷水管21,在该冷水管21的进口端设置有水流量调节阀22,该气冷器2制冷剂出口处设有温度感温包23,该蒸发器4的内部设有温度感温包41(优选设于蒸发器的中管处),该电子膨胀阀3的进口处设有温度感温包31,该压缩机1的出口处设有压力传感器11。
该热泵热水器的工作流程如下:气液分离器5内的二氧化碳气体进入压缩机1,经过压缩机1的压缩之后变为高温高压的二氧化碳气体,再进入气冷器2,冷水通过冷水管21对二氧化碳气体进行冷却,经过电子膨胀阀3节流降温并部分气化,湿蒸气进入蒸发器4与空气换热变为气液混合物,经气液分离器5后,再进入压缩机,完成一个循环。其中,可通过调节该水流量调节阀22的进水量、电子膨胀阀3的开度、及该蒸发器4的风机速度来调节系统的温度及排气压力。而该温度感温包23、温度感温包31、温度感温包41及压力传感器11,则分别用于感测相应位置的温度或压力。
参见图4。该控制方法包括:
(1)开机运行热泵热水器系统101;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P102;
(3)将探测到的Tco、Te、P输入计算机系统,并判断是否符合最优排气压力关系式P=f(Tco,Te)±ΔP103,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调整电子膨胀阀的开度104、调整蒸发器的风机速度105、和调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度106,以满足上述关系式,再重复步骤(2),进入下一个循环。
热泵热水器系统启动后,压力传感器11感测压缩机1处的排气压力P、温度感温包23感测气冷器2的制冷剂出口的温度Tco、温度感温包31感测电子膨胀阀3之前的温度Tvf、而温度感温包41则感测蒸发器4的中管温度Te。之后,将所测参数代入最优排气压力关系式P=f(Tco,Te)±ΔP或P=f(Tvf,Te)±ΔP,并判断是否满足该关系式(其中,ΔP可设置成不同的系统对应的不同的修正值,。若满足最优排气压力关系式P=f(Tco,Te)±ΔP,则回上一步骤,继续感测参数P、Tco、Te或P、Tvf、Te;若不符合,调整电子膨胀阀的开度104、调整蒸发器的风机速度105、和调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度106,以使二氧化碳排气压力满足上述最优排气压力关系式,之后,再重新回到步骤二,重新感测P、Tco、Te或P、Tvf、Te,达到实时监测,确保二氧化碳的排气压力保持为二氧化碳最优排气压力。
当电子膨胀阀3的开度为最大或其他不可调节时情况时,可直接调整蒸发器风机速度105步骤;同理,当蒸发器4的风机速度为最大或其他情况不可调节情况时,可直接调整水流量调节阀的开度106步骤,最终使该热泵热水器系统达到最优排气压力。
优选的是,本发明的控制方法,还可以调整电子膨胀阀的开度104、调整蒸发器的风机速度105;或调整电子膨胀阀的开度104、和调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度106;或是仅仅通过调节蒸发器的风机转度105;或是仅通过调整气冷器连接的控制冷水进水量的不流量调节阀的开度106,均可以达到对该热泵热水器系统的排气压力调节,以达到最优排气压力。
实施例2,如图3所示,其示意了包括回热器的热泵热水器系统。本发明二氧化碳热泵热水器的排气压力的控制方法,其包括有:压缩机1a、气冷器2a、电子膨胀阀3a、蒸发器4a、气液分离器5a及回热器6a。其中,该气冷器2a贯通有冷水管21a,在该冷水管21a的进口端设置有水流量调节阀22a,该气冷器2a制冷剂出口处设有温度感温包23a,该蒸发器4a的内部设有温度感温包41a(优选设于蒸发器的中管处),该电子膨胀阀3a的进口处设有温度感温包31a,该回热器6a的制冷剂出口处设有温度感温包61a。
其工作流程如下:气液分离器5a内的二氧化碳气体进入压缩机1a,经过压缩机1a的压缩之后变为高温高压的二氧化碳气体,再进入气冷器2a,冷水通过冷水管21a对二氧化碳气体进行冷却,经过气冷器2a之后,二氧化碳进入回热器6a进一步冷却,然后再经过电子膨胀阀3a节流降温并部分气化,湿蒸气进入蒸发器4a与空气换热变为气液混合物,经气液分离器5a后,进入回热器6a进一步加热,后再进入压缩机1a,完成一个循环。其中,可通过调节该水流量调节阀22a的进水量、电子膨胀阀3a的开度、及该蒸发器4a的风机速度来调节系统的温度及排气压。而该温度感温包23a、温度感温包31a、温度感温包41a、温度感温包61a及压力传感器11a,则分别用于感测相应位置的温度或压力。
本实施例的控制方法与实施例一的控制方法相类似,不同的是最优排气压力关系式,还可为P=f(Tho,Te)±ΔP,其中,Tho为温度感温包61a感测制冷剂回热器出口处的温度。
在本发明中,该最优排气压力关系式P=f(Tco,Te)±ΔP、P=f(Tvf,Te)±ΔP及P=f(Tho,Te)±ΔP中的参数,可根据系统受压缩机、气冷器、电子膨胀阀、蒸发器、系统型号和结构等设计选型的不同而有不同的最优排气压力特性关系式的不同选用不同的参数,可预先经过大量的实验数据进行整理拟合得出,如在本发明中,根据大量的实验数据整理拟合得出的关系式为P=(0.03109-0.00136Tco)Te+0.27592Tco-0.8363。
以上所述仅为本发明的较佳实施例,本发明的保护范围并不局限于此,任何基于本发明技术方案上的等效变换均属于本发明保护范围之内。

Claims (7)

1.一种二氧化碳热泵热水器的排气压力的控制方法,其特征在于,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入判断模块,并判断是否符合最优排气关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调整电子膨胀阀的开度,以及调整蒸发器的风机速度、和/或调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度,以满足上述关系式,再重复步骤(2),进入下一个循环。
2.一种二氧化碳热泵热水器的排气压力的控制方法,其特征在于,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入判断模块,并判断是否符合最优排气压力关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调整蒸发器的风机速度,以满足上述关系式,再重复步骤(2),进入下一个循环。
3.一种二氧化碳热泵热水器的排气压力的控制方法,其特征在于,该控制方法包括:
(1)开机运行热泵热水器系统;
(2)探测出气冷器制冷剂出口处的温度Tco、蒸发器的管中温度Te、及压缩机出口压力P;
(3)将探测到的Tco、Te、P输入判断模块,并判断是否符合最优排气压力关系式P=f(Tco,Te)±ΔP,若符合,则回到步骤(2),若不符合,则进行下一步骤;
(4)调节与该气冷器连接的控制冷水进水量的水流量调节阀的开度,以满足上述关系式,再重复步骤(2),进入下一个循环。
4.如权利要求1或2或3所述的二氧化碳热泵热水器的排气压力的控制方法,其特征在于,该气冷器制冷剂出口处设有温度感温包,该蒸发器内部设有温度感温包,在该压缩机的出口处设有压力传感器。
5.如权利要求4所述的二氧化碳热泵热水器的排气压力的控制方法,其特征在于,或在回热器的制冷剂出口处设有温度感温包,测得回热器的制冷剂出口处温度Tho,所述最优排气压力关系式替换为P=f(Tho,Te)±ΔP。
6.如权利要求4所述的二氧化碳热泵热水器的排气压力的控制方法,其特征在于,或在节流装置设有温度感温包,测得节流装置温度Tvf,所述最优排气压力关系式替换为P=f(Tvf,Te)±ΔP。
7.如权利要求1或2或3所述的二氧化碳热泵热水器的排气压力的控制方法,其特征在于,所述最优排气压力关系式替换为P=(0.03109-0.00136Tco)Te+0.27592Tco-0.8363。
CN2010102165918A 2010-07-01 2010-07-01 二氧化碳热泵热水器的排气压力的控制方法 Pending CN102313358A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102165918A CN102313358A (zh) 2010-07-01 2010-07-01 二氧化碳热泵热水器的排气压力的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102165918A CN102313358A (zh) 2010-07-01 2010-07-01 二氧化碳热泵热水器的排气压力的控制方法

Publications (1)

Publication Number Publication Date
CN102313358A true CN102313358A (zh) 2012-01-11

Family

ID=45426753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102165918A Pending CN102313358A (zh) 2010-07-01 2010-07-01 二氧化碳热泵热水器的排气压力的控制方法

Country Status (1)

Country Link
CN (1) CN102313358A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292465A (zh) * 2013-06-04 2013-09-11 江苏白雪电器股份有限公司 跨临界二氧化碳热泵热水器
CN103940148A (zh) * 2014-05-04 2014-07-23 江苏苏净集团有限公司 一种二氧化碳热泵系统及其控制方法
CN104896749A (zh) * 2014-03-04 2015-09-09 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN104896750A (zh) * 2015-04-10 2015-09-09 广东美的暖通设备有限公司 一种跨临界co2热泵热水机压力的控制方法及系统
CN104976774A (zh) * 2014-04-11 2015-10-14 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN106152376A (zh) * 2015-03-30 2016-11-23 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN106152375A (zh) * 2015-03-27 2016-11-23 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN107883575A (zh) * 2017-12-04 2018-04-06 广东纽恩泰新能源科技发展有限公司 空气能热泵热水器
CN110145906A (zh) * 2019-05-16 2019-08-20 广东美的暖通设备有限公司 冷媒循环系统及其控制方法和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509396A (zh) * 2002-02-12 2004-06-30 ���µ�����ҵ��ʽ���� 热泵式热水供应装置
JP2005300057A (ja) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
US20070125106A1 (en) * 2005-11-16 2007-06-07 Denso Corporation Supercritical refrigeration cycle
CN101240962A (zh) * 2008-01-18 2008-08-13 西安交通大学 一种基于压力-温度的二氧化碳热泵的控制方法
CN101688701A (zh) * 2007-07-18 2010-03-31 三菱电机株式会社 冷冻循环装置及其运转控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509396A (zh) * 2002-02-12 2004-06-30 ���µ�����ҵ��ʽ���� 热泵式热水供应装置
JP2005300057A (ja) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
US20070125106A1 (en) * 2005-11-16 2007-06-07 Denso Corporation Supercritical refrigeration cycle
CN101688701A (zh) * 2007-07-18 2010-03-31 三菱电机株式会社 冷冻循环装置及其运转控制方法
CN101240962A (zh) * 2008-01-18 2008-08-13 西安交通大学 一种基于压力-温度的二氧化碳热泵的控制方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292465A (zh) * 2013-06-04 2013-09-11 江苏白雪电器股份有限公司 跨临界二氧化碳热泵热水器
CN103292465B (zh) * 2013-06-04 2016-08-10 江苏白雪电器股份有限公司 跨临界二氧化碳热泵热水器
CN104896749A (zh) * 2014-03-04 2015-09-09 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN104896749B (zh) * 2014-03-04 2017-08-08 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN104976774A (zh) * 2014-04-11 2015-10-14 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN104976774B (zh) * 2014-04-11 2018-04-20 珠海格力电器股份有限公司 一种热泵热水器的控制方法及控制系统
CN103940148A (zh) * 2014-05-04 2014-07-23 江苏苏净集团有限公司 一种二氧化碳热泵系统及其控制方法
CN106152375B (zh) * 2015-03-27 2019-04-12 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN106152375A (zh) * 2015-03-27 2016-11-23 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN106152376A (zh) * 2015-03-30 2016-11-23 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN106152376B (zh) * 2015-03-30 2019-10-22 青岛海尔空调电子有限公司 高落差多联机空调系统及其控制方法
CN104896750A (zh) * 2015-04-10 2015-09-09 广东美的暖通设备有限公司 一种跨临界co2热泵热水机压力的控制方法及系统
CN107883575A (zh) * 2017-12-04 2018-04-06 广东纽恩泰新能源科技发展有限公司 空气能热泵热水器
CN110145906A (zh) * 2019-05-16 2019-08-20 广东美的暖通设备有限公司 冷媒循环系统及其控制方法和计算机可读存储介质

Similar Documents

Publication Publication Date Title
CN102313358A (zh) 二氧化碳热泵热水器的排气压力的控制方法
CN103119377B (zh) 制冷热水供给装置以及制冷热水供给方法
CN109458683B (zh) 干式辐射热泵与单元式分户空调一体机及其控制方法
CN103185420B (zh) 热泵系统及热泵装置的控制方法
CN107024046A (zh) 一种空调器控制方法和空调器
CN104748464A (zh) 空调系统的多联机化霜方法及装置和空调器
CN106765903B (zh) 一种用于空调系统的外风机的控制方法
CN107062468B (zh) 一种双冷源机房空调系统及其控制方法
CN102878616A (zh) 高热密度列间冷却空调机组及其应用方法
CN202371919U (zh) 空调器
CN107631447A (zh) 运行控制方法、运行控制装置、空调器和存储介质
CN110553325A (zh) 室温调节装置及控制方法
CN105627472A (zh) 立体式冷暖浴冰柜一体化智能控制系统
CN111006301A (zh) 一种二氧化碳复叠式供暖系统及其控制方法
CN106705231A (zh) 空调室内机组件、冷媒循环系统及其控制方法、控制装置
CN109341121A (zh) 一种制冷系统和控制方法
CN105299955A (zh) 一种压缩机蒸发温度自动优化的热泵系统
CN102455017B (zh) 基于物联网概念的高效空调
CN103629762B (zh) 一种以制冷剂为基础的系统及一种提高该系统效率的方法
CN203375568U (zh) 一种机房节能空调
CN206001761U (zh) 一种空调系统
CN204718169U (zh) 可无级调节回气温度的制冷系统
KR20160102672A (ko) 하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어방법
CN104864619B (zh) 可无级调节回气温度的制冷系统
CN205655524U (zh) 一种利用二氧化碳作为制冷剂的家用能源综合利用系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120111