CN102280631B - 一种电致伸缩可逆储氢结构系统 - Google Patents

一种电致伸缩可逆储氢结构系统 Download PDF

Info

Publication number
CN102280631B
CN102280631B CN2011101967973A CN201110196797A CN102280631B CN 102280631 B CN102280631 B CN 102280631B CN 2011101967973 A CN2011101967973 A CN 2011101967973A CN 201110196797 A CN201110196797 A CN 201110196797A CN 102280631 B CN102280631 B CN 102280631B
Authority
CN
China
Prior art keywords
hydrogen storage
electrostrictive
film
layer
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011101967973A
Other languages
English (en)
Other versions
CN102280631A (zh
Inventor
陈吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN2011101967973A priority Critical patent/CN102280631B/zh
Publication of CN102280631A publication Critical patent/CN102280631A/zh
Application granted granted Critical
Publication of CN102280631B publication Critical patent/CN102280631B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种电致伸缩可逆储氢结构系统。它的储氢材料具有多层三明治结构,三明治结构的表层为将分子氢H2分解为原子氢H的催化剂薄膜;第二层为纯Mg薄膜或Mg基多元低合金薄膜;第三层为电致伸缩材料薄膜;向内依次有交替的第二层和第三层薄膜。在多层三明治结构上加有方向和强度可变的电场。本发明通过外加电场控制Mg及其合金的储氢及释氢过程。利用电致伸缩材料薄膜在电场作用下发生电致伸缩效应,在Mg及其合金薄膜中产生应力s,改变其晶格常数甚至改变晶体结构,降低Mg及其合金储氢及释氢温度,加快反应速度。本发明控制简单,过程可逆;可以大幅度降低氢电池储氢及释氢温度(小于100℃,甚至达到室温),降低能耗,提高效率。

Description

一种电致伸缩可逆储氢结构系统
一、     技术领域
本发明涉及新能源领域的固态储氢技术,特别是Mg及Mg合金薄膜的储氢。
二、     背景技术
氢是未来绿色清洁能源系统的最富有希望的能源载体。相对于传统化石能源材料,氢具有显著优势,譬如高能量密度(142MJ.kg-1),丰富的来源(如水、生物质、有机物质等都含有氢),重量轻,环境影响小等(因为水是唯一的反应产物)。然而,开发体积紧凑的储氢系统在科学和技术方面仍然是一个挑战。储存分子状态的氢,无论是气态还是液态,都需要很高的压力或极低的温度,从能量角度看都不是经济的。当前,储氢技术的研究和发展趋势是将原子状态的氢储存在固态的金属或复杂氢化物中。氢原子通常占据受体金属晶格的间隙位置。理论上,固态储氢可以获得单位体积或单位质量储氢系统的高能量密度,同时储氢和释氢过程可以在室温和大气环境中可逆进行。
Mg是最有希望的金属储氢材料,其价格低廉,矿藏丰富。Mg通过与氢反应形成MgH2,其单位体系储氢能量密度高达7.6 wt.%。然而,由于受储氢和释氢反应相关热力学和动力学因素限制,块体Mg和气态氢反应的速度极低,在氢平衡分压为1个大气压时,MgH2分解释氢至少需要300°C。目前,固态储氢技术主要集中在三维储氢结构,已有不同路线来降低释氢反应的动力学势垒,譬如利用机械合金化技术细化MgH2晶粒,降低氢原子的扩散距离;添加适当催化剂。还有一些方法用来改变Mg-H体系的热力学特性,譬如降低三维颗粒尺寸、合金化、多元过渡金属氢化物等,但很难将释氢温度降低到100°C以下。近期,二维薄膜结构储氢性能的研究进入人们的视野。与传统三维储氢结构相比,薄膜具有结构可控制性,是研究储氢机理的理想体系。该领域的研究已经取得一些突破性进展,薄膜中的应力被认为是引起Mg-H薄膜体系释氢温度大幅度降低的本质原因。
所谓电致伸缩效应,是指材料在电场作用时,其体积和长度将发生变化的现象。电致伸缩材料通常为绝缘材料,譬如一些工程陶瓷,主要有镁铌酸铅(PMN)、镁铌酸铅-钛酸铅(PMN-PT)、镧锆钛酸铅(PLNZT)等,具有极高的电致伸缩系数。
三、     发明内容
   本发明的目的是提供一种能够在较低温度下实现的电致伸缩可逆储氢结构系统。
本发明的储氢材料具有多层三明治结构,三明治结构的表层为将分子氢H2分解为原子氢H的催化剂薄膜;第二层为纯Mg薄膜或Mg基多元低合金薄膜;第三层为电致伸缩材料薄膜;向内依次有交替的第二层和第三层薄膜。在多层三明治结构上加有方向和强度可变的电场。
本发明通过外加电场控制Mg及其合金的储氢及释氢过程。利用电致伸缩材料薄膜在电场作用下发生电致伸缩效应,在 Mg及其合金薄膜中产生应力s,改变其晶格常数甚至改变晶体结构,形成亚稳态Mg基氢化物,降低Mg及其合金储氢及释氢温度,加快储氢及释氢反应速度。通过改变外加电场的大小和方向,可以改变Mg及其合金薄膜中应力s的大小和方向,引起储氢系统中Mg及其合金薄膜晶格的膨胀,或释氢系统中Mg氢化物晶格的收缩,达到可逆储氢和释氢的目的。
本发明控制简单,过程可逆;可以大幅度降低氢电池储氢及释氢温度(小于100°C,甚至达到室温),降低Mg及其合金薄膜储氢及释氢反应能耗,提高效率。
四、     附图说明
图1为本发明储氢材料的多层三明治结构示意图;
图2为本发明的储氢、释氢工作原理示意图。
五、     具体实施方式
本发明由储氢材料和外加电场构成一个储氢/释氢系统,该系统具有多层三明治结构,其中:表层为将分子氢H2分解为原子氢H的催化剂薄膜1,如纯Pt、纯Pd、Pt合金或Pd合金薄膜,厚度约为5~50 nm;第二层为纯Mg薄膜或Mg基低合金薄膜2,厚度约为5~500 nm,Mg基多元低合金薄膜的合金元素可以是Nb、Ti、V、Ni中的一种或数种,合金总含量为0~20 wt.%;第三层为电致伸缩材料薄膜3,厚度约为5~500 nm,可以是镁铌酸铅(PMN)、镁铌酸铅-钛酸铅(PMN-PT)或镧锆钛酸铅(PLNZT)等;向内依次有交替的第二层和第三层薄膜。在多层三明治结构上加有方向和大小可变的电场,电场由电池组5通过导线连接两个电容极板4构成,两电容极板4分处于三明治结构的两侧。
多层三明治薄膜的形成是在硅或表面预氧化硅基体表面沉积一层催化剂薄膜1;再沉积纯Mg或Mg基低合金薄膜2;再沉积电致伸缩材料薄膜3;重复沉积Mg或Mg基低合金薄膜2、电致伸缩材料薄膜3至X次(X为调制周期数,由总膜厚决定);然后再沉积纯Mg或Mg基低合金薄膜2;再沉积催化剂薄膜 1;蚀刻掉硅片,得到电致伸缩储氢多层三明治结构。
电致伸缩储氢结构的工作原理是:氢分子H2在催化剂薄膜1作用下,快速分解成氢原子H进入催化剂薄膜1。外加电场引起电致伸缩材料薄膜3伸长, 在Mg或Mg基低合金薄膜2中产生拉应力s,引起Mg或Mg基低合金薄膜2晶格膨胀甚至改变晶体结构,改变反应热力学及动力学势垒,在弹性应力作用下加快氢原子H在Mg或Mg基低合金薄膜2晶格间隙的扩散,形成亚稳态Mg基氢化物,达到较低温度储氢的目的。电致伸缩材料薄膜3也可以作为氢原子H进入Mg或Mg基低合金薄膜2的通道之一。改变电场的大小及方向,引起电致伸缩材料薄膜3收缩,在Mg或Mg基低合金薄膜2中产生压应力-s,引起亚稳态Mg基氢化物晶格收缩甚至改变其晶体结构,降低体系热力学稳定性,在弹性应力作用下将亚稳态Mg基氢化物中的氢原子挤出Mg或Mg基低合金薄膜2,重新结合成分子氢逸出,完成较低温度释氢。

Claims (5)

1.一种电致伸缩可逆储氢结构系统,它的储氢材料具有多层三明治结构,其特征是:三明治结构的表层为将分子氢H2分解为原子氢H的催化剂薄膜(1);第二层为纯Mg薄膜或Mg基多元低合金薄膜(2);第三层为电致伸缩材料薄膜(3);向内依次有交替的第二层和第三层薄膜;在多层三明治结构上加有方向和强度可变的电场。
2.根据权利要求1所述的电致伸缩可逆储氢结构系统,其特征是:所说的催化剂薄膜(1)为纯Pt、纯Pd、Pt合金或Pd合金薄膜,厚度为5-50 nm。
3.根据权利要求1所述的电致伸缩可逆储氢结构系统,其特征是:所说的纯Mg薄膜或Mg基多元低合金薄膜(2)厚度为5~500 nm,Mg基多元低合金薄膜的合金元素是Nb、Ti、V、Ni中的一种或数种,合金总含量为0~20 wt.%。
4.根据权利要求1所述的电致伸缩可逆储氢结构系统,其特征是:所说的电致伸缩材料薄膜(3)厚度为5~500 nm,是镁铌酸铅、镁铌酸铅-钛酸铅或镧锆钛酸铅。
5.根据权利要求1所述的电致伸缩可逆储氢结构系统,其特征是:所说的电场由电池组(5)通过导线连接两个电容极板(4)构成,两电容极板(4)分处于三明治结构的两侧。
CN2011101967973A 2011-07-14 2011-07-14 一种电致伸缩可逆储氢结构系统 Expired - Fee Related CN102280631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101967973A CN102280631B (zh) 2011-07-14 2011-07-14 一种电致伸缩可逆储氢结构系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101967973A CN102280631B (zh) 2011-07-14 2011-07-14 一种电致伸缩可逆储氢结构系统

Publications (2)

Publication Number Publication Date
CN102280631A CN102280631A (zh) 2011-12-14
CN102280631B true CN102280631B (zh) 2013-03-27

Family

ID=45105919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101967973A Expired - Fee Related CN102280631B (zh) 2011-07-14 2011-07-14 一种电致伸缩可逆储氢结构系统

Country Status (1)

Country Link
CN (1) CN102280631B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882396A (zh) * 2014-02-26 2014-06-25 长沙理工大学 一种利用应力改善镁基氢化物释氢热力学的方法
CN113350983A (zh) * 2020-03-06 2021-09-07 顾士平 电场极化气体吸附系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568118B1 (en) * 1989-08-04 1997-02-12 Canon Kabushiki Kaisha Process for storing hydrogen, apparatus and method for generating heat energy, using the process
US6666034B1 (en) * 2002-08-14 2003-12-23 Hsu-Yang Technologies Co., Ltd. Hydrogen storage and transportation system
AU2004247670A1 (en) * 2003-06-10 2004-12-23 General Electric Company Field-assisted gas storage materials and fuel cells comprising the same
CN100432249C (zh) * 2006-06-27 2008-11-12 上海大学 均恒强磁场下制备镁基储氢材料的方法及装置

Also Published As

Publication number Publication date
CN102280631A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
Jain et al. Hydrogen storage in Mg: a most promising material
Pang et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices
Dai et al. First principles study on hydrogen desorption from a metal (= Al, Ti, Mn, Ni) doped MgH2 (110) surface
Ahvenniemi et al. In situ atomic/molecular layer-by-layer deposition of inorganic–organic coordination network thin films from gaseous precursors
Nakamura et al. Structural study of La4MgNi19 hydride by in situ X-ray and neutron powder diffraction
CN1006377B (zh) 可逆式储氢用的改进的非晶态金属合金材料
Zhang et al. Enhanced hydrogen storage properties and mechanisms of magnesium hydride modified by transition metal dissolved magnesium oxides
Roco et al. Nanotechnology for sustainability: energy conversion, storage, and conservation
Rkhis et al. Engineering the hydrogen storage properties of the perovskite hydride ZrNiH3 by uniaxial/biaxial strain
FR3016258A1 (fr) Systeme photovoltaique de production d'electricite a haut rendement avec stockage integre au substrat ou embarque sur panneaux (stockage abord)
Christian et al. Application of nanotechnologies in the energy sector: A brief and short review
CN102280631B (zh) 一种电致伸缩可逆储氢结构系统
Chen et al. A comparative study on hydrogen storage properties of as-cast and extruded Mg-4.7 Y-4.1 Nd-0.5 Zr alloys
Ding et al. First-principles study of hydrogen incorporation into the MAX phase Ti3AlC2
Lefevre et al. Hydrogen storage in MgX (X= Cu and Ni) systems-is there still news?
Shimizu et al. Al–Ni alloy-based core-shell type microencapsulated phase change material for high temperature thermal energy utilization
Wu et al. Influences of interstitial nitrogen with high electronegativity on structure and hydrogen storage properties of Mg-based metal hydride: A theoretical study
Jiang et al. First-principles study on the hydrogen storage properties of MgH2 (1 0 1) surface by CuNi co-doping
Singh Advancements in energy storage through graphene
Shim et al. Vacancy formation and strain in low-temperature Cu/Cu (100) growth
CN102351142B (zh) 一种磁致伸缩可逆储氢材料
Xu et al. Electrochemical hydrogen storage materials: state-of-the-art and future perspectives
Tang et al. Structures and Electronic and Hydrogen Storage Properties of Magnesium Scandium Hydrides
Chun et al. First-principles computational study of Ni/α-Al2O3 hybrid interface reactions under extreme thermodynamic conditions
Lei et al. A potential hydrogen-storage media: C2H4 and C5H5 molecules doped with rare earth atoms

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130327

Termination date: 20170714