CN102279165B - 一种机动车尾气在线监测系统 - Google Patents

一种机动车尾气在线监测系统 Download PDF

Info

Publication number
CN102279165B
CN102279165B CN 201110098638 CN201110098638A CN102279165B CN 102279165 B CN102279165 B CN 102279165B CN 201110098638 CN201110098638 CN 201110098638 CN 201110098638 A CN201110098638 A CN 201110098638A CN 102279165 B CN102279165 B CN 102279165B
Authority
CN
China
Prior art keywords
solenoid valve
infrared
gas
ultraviolet
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110098638
Other languages
English (en)
Other versions
CN102279165A (zh
Inventor
张辉
刘政
Original Assignee
Zhuhai Zhongke Information Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Zhongke Information Technology Development Co Ltd filed Critical Zhuhai Zhongke Information Technology Development Co Ltd
Priority to CN 201110098638 priority Critical patent/CN102279165B/zh
Publication of CN102279165A publication Critical patent/CN102279165A/zh
Application granted granted Critical
Publication of CN102279165B publication Critical patent/CN102279165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明适用于环保技术领域,提供了一种机动车尾气监测系统,包括:紫外监测通道,用于向监测区域发出紫外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的紫外光信号;红外监测通道,用于向监测区域发出红外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的红外光信号;主控制单元,同时连接紫外监测通道和红外监测通道,用于根据紫外监测通道和红外监测通道的获取的光信号计算机动车尾气成分含量。本发明中,通过紫外和红外两个通道来监测机动车尾气中相应气体成分的含量,可实现无人值守全自动在线监测,掌握机动车在行驶过程中尾气真实排放情况,方便对重度污染车辆进行即时治理。

Description

一种机动车尾气在线监测系统
技术领域
本发明属于环保技术领域,尤其涉及一种机动车尾气监测系统。
背景技术
近年来,随着城市机动车保有量的剧增,尾气排放已成为城市空气的第一大污染源。它也成为增长最快的温室气体排放源。机动车尾气排放中主要含有的NO、CO、CO2、丁烷等有害气体还会严重影响人体健康,其中,CO与人体血液中的血红蛋白结合速度比O2快250倍。即使仅吸入微量CO,也可能给人造成缺氧性伤害,轻者眩晕、头疼,重者脑细胞受到永久性损伤,并且由于机动车尾气多排放在1.5米以下,儿童吸入量一般是成人的两倍左右,对儿童健康损害尤为严重。
因此机动车尾气的在线监测显得尤为重要。
发明内容
本发明的目的在于提供一种机动车尾气在线监测系统,旨在实现实时监测机动车在行驶过程中尾气真实排放情况。
本发明是这样实现的,一种机动车尾气监测系统,包括:
紫外监测通道,用于向监测区域发出紫外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的紫外光信号;
红外监测通道,用于向监测区域发出红外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的红外光信号;
主控制单元,同时连接所述紫外监测通道和所述红外监测通道,用于根据所述紫外监测通道和所述红外监测通道的获取的光信号计算机动车尾气成分含量;
所述紫外监测通道包括:紫外光发射端和紫外光接收端;所述紫外光接收端沿光路方向依次包括:第一聚焦平凸透镜、NO标气池和光谱仪;
所述光谱仪连接所述主控制单元;
所述NO标气池通过第一电磁阀连接氮气源,所述第一电磁阀的入口连接氮气源,出口连接所述NO标气池;
所述NO标气池通过第二电磁阀连接一气泵,所述第二电磁阀的入口连接所述NO标气池,出口连接所述气泵;
所述NO标气池通过第三电磁阀连接NO源,所述第三电磁阀的入口连接NO源,出口连接所述NO标气池;
所述红外监测通道包括:红外光发射端和红外光接收端;所述红外光接收端沿光路方向依次包括:第二聚焦平凸透镜、红外标气池、红外探测器、信号处理电路;
所述信号处理电路连接在所述红外探测器和所述主控制单元之间;
所述红外标气池通过第一电磁阀连接氮气源,所述第一电磁阀的入口连接氮气源,出口连接所述红外标气池;
所述红外标气池通过第二电磁阀连接一气泵,所述第二电磁阀的入口连接所述红外标气池,出口连接所述气泵;
所述红外标气池通过第四电磁阀连接CO源、CO2源、碳氢化合物气体源中的一种或多种,所述第四电磁阀的入口连接CO源、CO2源、碳氢化合物气体源中的一种或多种,出口连接所述红外标气池;
所述主控制单元通过一电磁阀控制电路连接所述第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀,用于通过对第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀的开关控制来实现测量背景光谱、紫外通道参考光谱、红外通道参考光谱,所述主控制单元首先打开第一电磁阀和第二电磁阀,关闭气泵、第三电磁阀和第四电磁阀,通过第一电磁阀充入氮气,持续冲入一段时间后关闭所有电磁阀,进行背景测量,保存紫外、红外通道此时测量的光谱信号,作为背景光谱,所述主控制单元打开所有电磁阀,打开气泵,把NO标气池与红外标气池的氮气排走;然后所述主控制单元打开第二电磁阀、第三电磁阀,关闭气泵、第一电磁阀和第四电磁阀,通过第三电磁阀充入标准浓度的NO气体,持续充入一段时间后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到紫外通道的吸收光谱,保存紫外通道的吸收光谱,作为NO气体的标准光谱,所述主控制单元打开所有电磁阀,打开气泵,把NO标气池内的气体排走;所述主控制单元再控制打开第二电磁阀、第四电磁阀,关闭气泵、第一电磁阀和第三电磁阀,通过第四电磁阀充入标准浓度的CO、CO2、碳氢化合物气体,持续充入一段时间后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到红外通道的吸收光谱,保存红外通道的吸收光谱,作为红外通道的标准光谱,所述主控制单元打开所有电磁阀,打开气泵,把红外标气池内的混合气体排走;最后所述主控制单元打开第一电磁阀和第二电磁阀,关闭气泵、第三电磁阀和第四电磁阀,通过第一电磁阀充入氮气并维持一段预设时间后,关闭所有电磁阀。
进一步地,所述紫外光发射端和所述紫外光接收端分别设置于道路两侧,或所述紫外光发射端设于道路上方而所述紫外光接收端设于路面上方;
当所述紫外光发射端和所述紫外光接收端分别设置于道路两侧时,所述紫外光发射端和紫外光接收端之间的光路横穿道路;
当所述紫外光发射端设于道路上方而所述紫外光接收端设于路面上方时,所述紫外光发射端和紫外光接收端之间的光路垂直于路面。
进一步地,所述紫外光发射端沿光路方向依次包括:紫外光源和第一准直平凸透镜。
进一步地,所述紫外光源包括一紫外光灯控制电路和一与所述紫外光灯控制电路连接的氘灯或氙灯。
进一步地,所述红外光发射端和所述红外光接收端分别设置于道路两侧,或所述红外光发射端设于道路上方而所述红外光接收端设于路面上方;
当所述红外光发射端和所述红外光接收端分别设置于道路两侧时,所述红外光发射端和红外光接收端之间的光路横穿道路;
当所述红外光发射端设于道路上方而所述红外光接收端设于路面上方时,所述红外光发射端和红外光接收端之间的光路垂直于路面。
进一步地,所述红外光发射端沿光路方向依次包括:红外光源和第二准直平凸透镜。
进一步地,所述红外光源包括一红外光灯控制电路和一与所述红外光灯控制电路连接的碳化硅灯。
进一步地,所述红外标气池与红外探测器之间设置有一斩波器。
本发明通过紫外和红外两个通道来监测机动车尾气中相应气体成分的含量,可实现无人值守全自动在线监测,掌握机动车在行驶过程中尾气真实排放情况,方便对重度污染车辆进行即时治理。整个监测系统具有在线校准、实时性、监测效率高、无人职守、连续运行的优点。
附图说明
图1是本发明实施例提供的机动车尾气监测系统的架构原理图;
图2是本发明实施例提供的紫外通道和红外通道的一种安装示意图;
图3是本发明实施例提供的紫外通道和红外通道的另一种安装示意图;
图4是图1所示监测系统的一种具体实施结构图;
图5是图1所示监测系统的尾气监测方法的实现流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明实施例提供的机动车尾气监测系统架构原理,为了便于描述,仅示出了与本实施例相关的部分。
参照图1,本机动车尾气监测系统包括紫外监测通道1、红外监测通道2以及主控制单元3。当机动车行驶经过后,其排放的尾气团会吸收掉光路中的部分波长的光的光强,由于不同气体的吸收谱是不一样的,因此通过光路中各波段波长的光的光强变化可以演算出各气体成分的含量。又由于尾气是汽油和大气在高温高压下反应的产物,汽油的主要成分是碳氢化合物,大气的成分主要是氮气和氧气,因此尾气中各成分的含量关系具有一定的相关性,可以通关检测尾气的特征参数或特征成分的含量来计算出其它尾气成分的含量。本监测系统中紫外监测通道1和红外监测通道2分别用于监测机动车尾气对紫外光和红外光的吸收程度,具体地,紫外监测通道1向监测区域发出红外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的红外光信号;红外监测通道2向监测区域发出红外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的红外光信号;主控制单元3同时连接紫外监测通道1和红外监测通道2,用于根据紫外监测通道1和红外监测通道2的获取的光信号计算机动车尾气成分含量。
紫外监测通道1包括紫外光发射端和紫外光接收端,红外监测通道2也包括红外光发射端和红外光接收端,安装方式可以为如图2所示的横式检测和如图3所示的立式检测两种。图2中①和②分别为紫外光/红外光发射端和紫外光/红外光接收端,③为检测光路,④为道路,紫外光/红外光发射端和紫外光/红外光接收端分别设置于道路④两侧,检测光路③横穿道路④。图3中①和②分别为紫外光/红外光发发射端和紫外光/红外光发接收端,③为检测光路,⑤为路面,紫外光/红外光发发射端设于道路上方而紫外光/红外光发接收端设于路面上方,紫外光/红外光发发射端和紫外光/红外光发接收端之间的光路垂直于路面⑤。
图4是图1所示监测系统的一种具体实施结构。
参照图4,紫外光发射端至少包括紫外光源11和第一准直平凸透镜12,其中紫外光源11能够提供搞功率的紫外光能,特别在200nm~400nm波段处,第一准直平凸透镜12用于对紫外光源11所发出的紫外光进行高质量的准直例如可选用口径为52mm,焦距为60mm,中心波长为225nm的紫外石英平凸透镜实现。进一步地,紫外光源11又包括一紫外光灯控制电路和一与所述紫外光灯控制电路连接的紫外光灯,本发明实施例中,该紫外光灯选用氘灯或氙灯。紫外光接收端沿光路方向依次包括:第一聚焦平凸透镜13、NO标气池14和光谱仪15,其中光谱仪通过USB线连接主控制单元3,第一聚焦平凸透镜13用于光束进行聚焦接收,例如可选用口径为120mm,焦距为360mm,中心波长为225nm的紫外石英平凸透镜实现。NO标气池14通过第一电磁阀5连接氮气源,具体为第一电磁阀5的入口连接氮气源,出口连接NO标气池14,NO标气池14又通过第二电磁阀6连接一气泵7,具体为第二电磁阀6的入口连接NO标气池14,出口连接气泵7,NO标气池14又通过第三电磁阀8连接NO源,具体为第三电磁阀8的入口连接NO源,出口连接NO标气池14,主控制单元3通过一电磁阀控制电路4连接第一电磁阀5、第二电磁阀6、第三电磁阀8,实现对第一电磁阀5、第二电磁阀6、第三电磁阀8的开关控制。
红外光发射端沿光路方向依次包括:红外光源21和第二准直平凸透镜22,其中红外光源21能够提供高功率的中红外光能,主要波段在3~5微米处,而第二准直平凸透镜22用于对红外光源21所发出的红外光进行高质量的准直,例如可采用口径为120mm、100mm、90mm等,焦距为360mm、200mm等,中心波长为4000nm的红外晶体氟化钙的平凸透镜实现。进一步地,红外光源21又包括一红外光灯控制电路和一与所述红外光灯控制电路连接的红外光灯,本发明实施例中,该红外光灯选用碳化硅灯等类似红外光源。红外光接收端沿光路方向至少依次包括:第二聚焦平凸透镜23、红外标气池24、红外探测器25、信号处理电路26,第二聚焦平凸透镜23用于光束进行聚焦接收,例如可采用口径为100mm,焦距为200mm,中心波长为4000nm的红外晶体氟化钙的平凸透镜实现,红外探测器25用于对光信号进行光电转换,信号处理电路26用于对经过红外探测器25转换后的信号进行放大滤波处理。其中信号处理电路26连接在红外探测器25和主控制单元3之间,具体可通过一PCI(外设部件互连标准,Peripheral Component Interconnect)采集卡与主控制单元3连接,红外标气池24通过第一电磁阀5连接氮气源,具体为第一电磁阀5的入口连接氮气源,出口连接红外标气池24,红外标气池24又通过第二电磁阀6连接气泵7,具体为第二电磁阀6的入口连接红外标气池24,出口连接气泵7,红外标气池24还通过第四电磁阀9连接CO源、CO2源、碳氢化合物气体源中的一种或多种,具体为第四电磁阀9的入口连接CO源、CO2源、碳氢化合物气体源中的一种或多种,出口连接所述红外标气池24,主控制单元3通过电磁阀控制电路4连接第一电磁阀5、第二电磁阀6、第四电磁阀9,实现对第一电磁阀5、第二电磁阀6、第四电磁阀9的开关控制。
进一步地,红外标气池24与红外探测器25之间设置有一斩波器27对光信号进行调制,以满足红外探测器25的需要。
进一步地,为节省系统成本,减少使用电磁阀的数量,在空气、氮气源、NO源、CO源、CO2源、碳氢化合物气体源等通道中的两个或多个通过可共用一电磁阀,此时采用多入单出型的电磁阀即可,如将图4中第一电磁阀5和第四电磁阀所在的通道上共用一入两出的电磁阀。
图5为图2所示的机动车尾气监测系统的在线监测方法的实现流程,详述如下。
在步骤S501中,测量背景光谱、紫外通道参考光谱、红外通道参考光谱。
为准确测量机动车所排放的尾气中有害气体的浓度,需要对检测仪器进行校准并设定一浓度计算的参考光谱,本实施例中,将此过程称为标定。
本步骤中,标定过程包括背景光谱的测量、紫外通道参考光谱的测量、红外通道参考光谱的测量,结合图4,具体标定过程如下:
1.测量背景光谱,以对仪器进行校准,消除环境变化对测量精度的影响:打开第一电磁阀5和第二电磁阀6,关闭气泵7、第三电磁阀8和第四电磁阀9,通过第一电磁阀5充入氮气,持续冲入一段时间(20秒,可软件设置)后关闭所有电磁阀,进行背景测量,保存紫外、红外通道此时测量的光谱信号,作为背景光谱,打开所有电磁阀,打开气泵7,把NO标气池14与红外标气池24的氮气排走。
2.测量紫外通道参考光谱,以对NO气体进行标定:打开第二电磁阀6、第三电磁阀8,关闭气泵7、第一电磁阀5和第四电磁阀9,通过第三电磁阀8充入标准浓度的NO气体,持续充入一段时间(20秒,可软件设置)后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到紫外通道的吸收光谱,保存紫外通道的吸收光谱,作为NO气体的标准光谱,打开所有电磁阀,打开气泵7,把NO标气池14内的气体排走。
3.测量红外通道参考光谱,以对CO、CO2、碳氢化合物气体进行标定:打开第二电磁阀6、第四电磁阀9,关闭气泵7、第一电磁阀5和第三电磁阀8,通过第四电磁阀9充入标准浓度的CO、CO2、碳氢化合物气体,持续充入一段时间(20秒,可软件设置)后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到红外通道的吸收光谱,保存红外通道的吸收光谱,作为红外通道的标准光谱,打开所有电磁阀,打开气泵,把红外标气池24内的混合气体排走。
4.在标气池内冲入氮气:打开第一电磁阀5和第二电磁阀6,关闭气泵7、第三电磁阀8和第四电磁阀9,通过第一电磁阀5充入氮气时间(20秒,可软件设置)后,关闭所有电磁阀。
完成定标过程,此时两个标汽池内充有氮气,氮气对气体吸光度没有影响。
在步骤S502中,当检测到有机动车遮挡住紫外通道和红外通道的光线时,主控制单元开始获取经过该机动车所排放的尾气吸收过的紫外光信号和红外光信号,并根据预存的背景光谱、紫外通道参考光谱、红外通道参考光谱计算尾气成分。
本实施例中,对于尾气中NO气体浓度的计算基于紫外差分吸收原理,对CO、CO2、碳氢化合物气体浓度的计算基于非分光红外技术原理,下文仅对非分光红外技术原理进行描述。
当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯--比尔(Lambert-Beer)吸收定律。3种气体测量通道(CO/4.64μm、CO2/4.26μm、HC/3.4μm)和参考通道(3.93μm)探测信号用电压表示如下:
Ugas=Igas(e-kCL)TgasRgas    1.1
Uref=IrefTrefRref    1.2
其中,Igas、Iref:气体测量通道和参考通道的出射光强;
Tgas、Tref:气体测量通道和参考通道在滤光片下的透射率;
Rgas、Rref:气体测量通道和参考通道中红外探测器的响应度;
K:气体吸收系数;
C:待测气体浓度;
L:气体吸收光程;
ΔU = Y gas U ref = I gas T gas R gas I ref T ref R ref · e - kcL - - - 1.3
第一步:通入氮气时,即c=0,得到
Figure GDA00002776740100092
主要是对仪器进行校准,包括:光路机械结构的校准、不同波长处的出射光强的校准、滤光片透射率的校准、红外探测器响应度的校准等。在不同的环境下需要对这个ΔU0进行标定。本系统中测量3种组分的气体,故得到对应3种气体的ΔU0
第二步:通入标准气体,设冲入的气体浓度为C1,则有:
C 1 = - ln ( ΔU 1 / ΔU 0 ) kL - - - 1.4
其中,ΔU1是测量得到冲入标准气体时的气体测量通道和参考通道探测电压值比,即对kL进行标定,对于未知浓度气体测量时有:
C x = - ln ( ΔU x / ΔU 0 ) kL - - - 1.5
把1.5与1.4式进行比较就可以得到: C x = ln ( ΔU x / ΔU 0 ) ln ( Δ U 1 / Δ U 0 ) · C 1
其中:ΔUx、ΔU1是直接测量得到。
通过公式1.3、1.4、1.5,可以看出:背景光谱用于校准仪器参数,包括光路机械结构的校准、不同波长处的出射光强的校准、滤光片透射率的校准、红外探测器响应度的校准等。而当通入氮气时,可认为是没有气体吸收(因空气中CO、CO2、NO、碳氢化合物气体含量很少,基本忽略),作为仪器参数定标,是不需要在尾气吸收前后的光谱中都减去这个背景光谱。在实时测量时,即机动车通过时测量尾气时,为了解决空气中尾气对测量的影响,处理的办法是:系统在没有机动车通过时,而且在下一次挡光触发信号前的一个系统测量周期时,保存一条光谱作为当前环境下的背景光谱,此光谱是实时测量的光谱,定为“实时环境背景光谱”,此“实时环境背景光谱”与前面的背景光谱不是一个概念,前面的背景光谱、紫外通道参考光谱、红外通道参考光谱都是定标时测量的(长时间没有机动车通过时或者在刚安装仪器时)。当下一次有触发信号时,测量得到尾气吸收光谱(此尾气吸收光谱中包含了实时真实尾气吸收光谱与实时环境背景光谱),因保存的实时环境背景光谱与尾气吸收光谱时间差为1ms(仪器响应时间)左右,可认为这1ms内的实时环境背景光谱相同,故可以通过上面测量的光谱计算实时真实尾气吸收光谱,实际中是通过电压值表示,减去后,即为Ugas(实时尾气光谱)-Ugas(实时环境背景光谱)=Ugas(实时真实尾气光谱),且用Ugas(实时真实尾气光谱)代入公式1.5计算机动车通过时的尾气真实浓度。
当机动车通过后,若在预设的时间内(如15秒内)没有下一次的触发发生,系统自动保存15秒后的环境空气的光谱,作为最新的背景谱,替换以前保存的背景光谱,对系统参数进行重新设置,可提高系统的稳定性和可靠性。若在15秒内出现一个触发信号,表示又有机动车通过,此时背景谱继续采用上一次的背景光谱。
本领域普通技术人员可以理解实现上述各实施例提供的方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,所述的程序可内置于主控制单元3中,当有机动车遮挡住光路时即触发该程序进行浓度计算。同时所述的程序可以存储于一计算机可读取存储介质中,该存储介质可以为ROM/RAM、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种机动车尾气在线监测系统,其特征在于,包括:
紫外监测通道,用于向监测区域发出紫外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的紫外光信号;
红外监测通道,用于向监测区域发出红外光,并在有机动车行驶至监测区域时,获取经过该机动车所排放的尾气吸收过的红外光信号;
主控制单元,同时连接所述紫外监测通道和所述红外监测通道,用于根据所述紫外监测通道和所述红外监测通道的获取的光信号计算机动车尾气成分含量;
所述紫外监测通道包括:紫外光发射端和紫外光接收端;所述紫外光接收端沿光路方向依次包括:第一聚焦平凸透镜、NO标气池和光谱仪;
所述光谱仪连接所述主控制单元;
所述NO标气池通过第一电磁阀连接氮气源,所述第一电磁阀的入口连接氮气源,出口连接所述NO标气池;
所述NO标气池通过第二电磁阀连接一气泵,所述第二电磁阀的入口连接所述NO标气池,出口连接所述气泵;
所述NO标气池通过第三电磁阀连接NO源,所述第三电磁阀的入口连接NO源,出口连接所述NO标气池;
所述红外监测通道包括:红外光发射端和红外光接收端;所述红外光接收端沿光路方向依次包括:第二聚焦平凸透镜、红外标气池、红外探测器、信号处理电路;
所述信号处理电路连接在所述红外探测器和所述主控制单元之间;
所述红外标气池通过第一电磁阀连接氮气源,所述第一电磁阀的入口连接氮气源,出口连接所述红外标气池;
所述红外标气池通过第二电磁阀连接一气泵,所述第二电磁阀的入口连接所述红外标气池,出口连接所述气泵;
所述红外标气池通过第四电磁阀连接CO源、CO2源、碳氢化合物气体源中的一种或多种,所述第四电磁阀的入口连接CO源、CO2源、碳氢化合物气体源中的一种或多种,出口连接所述红外标气池;
所述主控制单元通过一电磁阀控制电路连接所述第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀,用于通过对第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀的开关控制来实现测量背景光谱、紫外通道参考光谱、红外通道参考光谱,所述主控制单元首先打开第一电磁阀和第二电磁阀,关闭气泵、第三电磁阀和第四电磁阀,通过第一电磁阀充入氮气,持续冲入一段时间后关闭所有电磁阀,进行背景测量,保存紫外、红外通道此时测量的光谱信号,作为背景光谱,所述主控制单元打开所有电磁阀,打开气泵,把NO标气池与红外标气池的氮气排走;然后所述主控制单元打开第二电磁阀、第三电磁阀,关闭气泵、第一电磁阀和第四电磁阀,通过第三电磁阀充入标准浓度的NO气体,持续充入一段时间后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到紫外通道的吸收光谱,保存紫外通道的吸收光谱,作为NO气体的标准光谱,所述主控制单元打开所有电磁阀,打开气泵,把NO标气池内的气体排走;所述主控制单元再控制打开第二电磁阀、第四电磁阀,关闭气泵、第一电磁阀和第三电磁阀,通过第四电磁阀充入标准浓度的CO、CO2、碳氢化合物气体,持续充入一段时间后关闭所有电磁阀,进行光谱测量,将测得的光谱减去上述背景光谱得到红外通道的吸收光谱,保存红外通道的吸收光谱,作为红外通道的标准光谱,所述主控制单元打开所有电磁阀,打开气泵,把红外标气池内的混合气体排走;最后所述主控制单元打开第一电磁阀和第二电磁阀,关闭气泵、第三电磁阀和第四电磁阀,通过第一电磁阀充入氮气并维持一段预设时间后,关闭所有电磁阀。
2.如权利要求1所述的机动车尾气在线监测系统,其特征在于,所述紫外光发射端和所述紫外光接收端分别设置于道路两侧,或所述紫外光发射端设于道路上方而所述紫外光接收端设于路面上方;
当所述紫外光发射端和所述紫外光接收端分别设置于道路两侧时,所述紫外光发射端和紫外光接收端之间的光路横穿道路;
当所述紫外光发射端设于道路上方而所述紫外光接收端设于路面上方时,所述紫外光发射端和紫外光接收端之间的光路垂直于路面。
3.如权利要求2所述的机动车尾气在线监测系统,其特征在于,所述紫外光发射端沿光路方向依次包括:紫外光源和第一准直平凸透镜。
4.如权利要求3所述的机动车尾气在线监测系统,其特征在于,所述紫外光源包括一紫外光灯控制电路和一与所述紫外光灯控制电路连接的氘灯或氙灯。
5.如权利要求1所述的机动车尾气在线监测系统,其特征在于,所述红外光发射端和所述红外光接收端分别设置于道路两侧,或所述红外光发射端设于道路上方而所述红外光接收端设于路面上方;
当所述红外光发射端和所述红外光接收端分别设置于道路两侧时,所述红外光发射端和红外光接收端之间的光路横穿道路;
当所述红外光发射端设于道路上方而所述红外光接收端设于路面上方时,所述红外光发射端和红外光接收端之间的光路垂直于路面。
6.如权利要求5所述的机动车尾气在线监测系统,其特征在于,所述红外光发射端沿光路方向依次包括:红外光源和第二准直平凸透镜。
7.如权利要求6所述的机动车尾气在线监测系统,其特征在于,所述红外光源包括一红外光灯控制电路和一与所述红外光灯控制电路连接的碳化硅灯。
8.如权利要求5所述的机动车尾气在线监测系统,其特征在于,所述红外标气池与红外探测器之间设置有一斩波器。
CN 201110098638 2011-04-19 2011-04-19 一种机动车尾气在线监测系统 Active CN102279165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110098638 CN102279165B (zh) 2011-04-19 2011-04-19 一种机动车尾气在线监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110098638 CN102279165B (zh) 2011-04-19 2011-04-19 一种机动车尾气在线监测系统

Publications (2)

Publication Number Publication Date
CN102279165A CN102279165A (zh) 2011-12-14
CN102279165B true CN102279165B (zh) 2013-06-12

Family

ID=45104733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110098638 Active CN102279165B (zh) 2011-04-19 2011-04-19 一种机动车尾气在线监测系统

Country Status (1)

Country Link
CN (1) CN102279165B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590133B (zh) * 2012-03-01 2013-12-11 深圳市赛宝伦计算机技术有限公司 在线监测仪
CN103454242B (zh) * 2013-09-27 2015-11-25 中安消技术有限公司 一种气体浓度测量方法及其系统
CN103604750A (zh) * 2013-11-25 2014-02-26 无锡俊达测试技术服务有限公司 一种红外汽车尾气检测报警装置
CN106840260B (zh) * 2017-01-24 2020-04-03 安徽庆宇光电科技有限公司 机动车污染源在线监测系统
CN108169180A (zh) * 2018-02-27 2018-06-15 华电智控(北京)技术有限公司 尾气不透光度遥测系统及光路设置结构
CN110057770A (zh) * 2019-05-05 2019-07-26 杭州电子科技大学 一种基于差分吸收光谱及望远镜结构的汽车尾气遥测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455851B1 (en) * 2000-03-28 2002-09-24 Air Instruments And Measurement, Inc. Spectroscopic remote sensing exhaust emission monitoring system
CN101400986A (zh) * 2006-01-18 2009-04-01 狄比科技有限公司 尾气遥感检测系统和方法
CN101726466A (zh) * 2009-12-01 2010-06-09 康宇 多车道机动车尾气遥测装置
CN202126391U (zh) * 2011-04-19 2012-01-25 珠海市中科信息技术开发有限公司 一种机动车尾气在线监测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134004A (en) * 1996-07-10 2000-10-17 3M Innovative Properties Company Open air optical analysis apparatus and method regarding same
JP2001291185A (ja) * 2000-04-05 2001-10-19 Omron Corp 計測システムおよび方法、並びに記録媒体
CN101387607B (zh) * 2008-10-08 2010-12-08 南京顺泰科技有限公司 红外激光光谱的氧气原位检测方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455851B1 (en) * 2000-03-28 2002-09-24 Air Instruments And Measurement, Inc. Spectroscopic remote sensing exhaust emission monitoring system
CN101400986A (zh) * 2006-01-18 2009-04-01 狄比科技有限公司 尾气遥感检测系统和方法
CN101726466A (zh) * 2009-12-01 2010-06-09 康宇 多车道机动车尾气遥测装置
CN202126391U (zh) * 2011-04-19 2012-01-25 珠海市中科信息技术开发有限公司 一种机动车尾气在线监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2001-291185A 2001.10.19

Also Published As

Publication number Publication date
CN102279165A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
CN102252988B (zh) 一种机动车尾气监测系统的在线监测方法
CN102279165B (zh) 一种机动车尾气在线监测系统
CN206208752U (zh) 基于可调谐激光器的机动车尾气遥感检测系统
CN106383097A (zh) 基于可调谐激光器的机动车尾气遥感检测系统及方法
CN103748441B (zh) 用于流体传感的光学传感装置和光学传感方法
Washenfelder et al. Broadband measurements of aerosol extinction in the ultraviolet spectral region
CN102183482B (zh) 非分散红外多组分烟气分析仪
CN100590418C (zh) 一种二氧化碳气体分析仪及其分析方法
CN103733046B (zh) 气体分析装置
CN104198393A (zh) Sf6电气设备内分解气体组分在线监测系统及方法
CN203324177U (zh) 一种测量气体浓度的装置
CN202126391U (zh) 一种机动车尾气在线监测系统
CN105158206A (zh) 一种车载式机动车尾气中氧气浓度的激光检测系统
US8771597B2 (en) Apparatus for the determination of a concentration of a component to be measured in a gas
JPH0712723A (ja) 潤滑油劣化度測定装置
Hu et al. Simultaneous measurement of NO and NO 2 by dual-channel cavity ring down spectroscopy technique
CN204008434U (zh) 光声光谱在线监测sf6电气设备内气体分解产物装置
CN210155029U (zh) 一种全激光机动车尾气遥感检测系统
KR20150115036A (ko) 비분산자외선을 이용한 no/no2 멀티측정기 및 no/no2 멀티 측정방법
CN106124407A (zh) 一种光腔、具有该光腔的气溶胶消光仪及气溶胶消光系数的测量方法
CN108760640A (zh) 一种移动源排放污染气体快速检测系统及检测方法
CN107064035A (zh) 一种机动车尾气监测系统的在线监测方法
CN209542439U (zh) 高浓度臭氧分析仪
CN103575687B (zh) 便携式co2高灵敏检测系统
Barreto et al. Reagent-less and sub-minute quantification of sulfite in food samples using substrate-integrated hollow waveguide gas sensors coupled to deep-UV LED

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160918

Address after: Futian District South Road Shenzhen city Guangdong province 518000 South 68 Field Road No. 68 building Shangbu 6I

Patentee after: Zhang Hui

Address before: 713-716, room 101, building A, Tsinghua Science and Technology Park (Zhuhai), No. 519000 University Road, Tang Wan Road, Guangdong, Zhuhai

Patentee before: Zhuhai Zhongke Information Technology Development Co., Ltd.