CN102260769A - Ladle refining method for improving dynamical conditions by using ultrasonic wave - Google Patents
Ladle refining method for improving dynamical conditions by using ultrasonic wave Download PDFInfo
- Publication number
- CN102260769A CN102260769A CN 201010181315 CN201010181315A CN102260769A CN 102260769 A CN102260769 A CN 102260769A CN 201010181315 CN201010181315 CN 201010181315 CN 201010181315 A CN201010181315 A CN 201010181315A CN 102260769 A CN102260769 A CN 102260769A
- Authority
- CN
- China
- Prior art keywords
- ladle
- molten steel
- ultrasonic
- refining
- ultrasonic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007670 refining Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 51
- 239000010959 steel Substances 0.000 claims abstract description 51
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 23
- 238000003756 stirring Methods 0.000 claims abstract description 23
- 229910052786 argon Inorganic materials 0.000 claims abstract description 17
- 238000007664 blowing Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 5
- 239000002893 slag Substances 0.000 claims description 5
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 claims description 3
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011449 brick Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010310 metallurgical process Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
本发明公开了一种应用超声波改善动力学条件的钢包精炼方法,在钢水中输入超声波,解决底吹气体搅拌存在搅拌死区问题。本发明包括以下内容:在转炉或电炉出钢后,将钢水倒入钢包内,将钢包置于精炼工位,在钢包底部开始吹氩气搅拌,加入造渣及脱氧材料,同时开启超声波发生器,在钢包底部及侧壁输入超声波,对钢水进行搅拌。超声波的功率由钢包内钢水的重量决定,超声波功率范围为5-500kW/吨钢水,超声波的输入时间为钢包精炼结束所用的时间。本发明可降低钢水夹杂和气体含量,显著提高钢包精炼效果。
The invention discloses a ladle refining method which uses ultrasonic wave to improve dynamic conditions, and ultrasonic wave is input into molten steel to solve the problem of stirring dead zone in bottom blowing gas stirring. The invention includes the following contents: after the converter or electric furnace taps steel, pour the molten steel into the ladle, place the ladle in the refining station, start blowing argon to stir at the bottom of the ladle, add slagging and deoxidizing materials, and turn on the ultrasonic generator at the same time , input ultrasonic waves at the bottom and side walls of the ladle to stir the molten steel. The power of the ultrasonic is determined by the weight of the molten steel in the ladle. The ultrasonic power ranges from 5-500kW/ton of molten steel. The input time of the ultrasonic is the time taken for the ladle to finish refining. The invention can reduce the inclusion and gas content of molten steel, and significantly improve the ladle refining effect.
Description
技术领域 technical field
本发明涉及炼钢过程中钢包精炼的方法,特别是一种应用超声波改善动力学条件的钢包精炼方法。The invention relates to a ladle refining method in the steelmaking process, in particular to a ladle refining method using ultrasonic wave to improve dynamic conditions.
背景技术 Background technique
钢材质量与钢的纯净度有关,近年来,随用户对钢材质量要求的提高,对钢水的纯净度要求也相应提高,洁净钢冶炼工艺一直是国际上炼钢技术研究的主要课题,钢水脱硫、脱磷、脱氧剂的热力学条件已能将钢水中硫、磷、氧含量脱至极低水平,满足洁净钢冶炼条件,但钢包精炼工艺过程中动力学条件主要靠底吹气体搅拌,其作用是利用其循环流场的特点来清洁钢液,均匀温度、均匀成分,促进冶金化学反应。钢包底吹氩工艺是通过安装在钢包底部的透气砖向钢液中吹入氩气等惰性气体,使钢液在钢包内产生环流,对钢水进行搅拌,使添加在钢水中的合金、脱氧剂、脱硫剂等快速熔化、分散,促使钢液成分和温度均匀,吸附钢液中的夹杂物,去除钢中的非金属夹杂,从而达到净化钢液的目的。但底吹氩气流量小时,钢包中存在循环死区,不能充分均匀化钢液成分、温度,若氩气流量增大,易引起钢液面裸露和翻滚,增加二次氧化机会。相关文献:唐海燕、李京社、王建斌等,“钢包精炼不同吹氩工艺对夹杂物去除效果的研究”,《钢铁》2007,42(4)21-24。同时氩气流量受底吹透气砖的严格制约,要提高氩气流量很困难,增加氩气流量还会使操作成本上升,而且透气砖有时易堵塞,与钢包寿命不同步。受钢包底部透气元件的影响底吹氩吹出的气泡较大气泡上浮过程经过钢液的流程较长,在上升过程中气泡的直径增大,容易使钢水上表面炉渣被吹裸露,造成钢液吸氧,降低脱硫、脱磷效率。相关文献:Yoon B.H.,Heo K.H.,Kin JS.Improvement of Steel Cleanliness by Controlling Slag Composition[J],Ironmaking and Steelmaking,2002,29(3):215~218。The quality of steel is related to the purity of steel. In recent years, with the improvement of users' requirements for steel quality, the requirements for purity of molten steel have also increased accordingly. Clean steel smelting technology has always been the main subject of international steelmaking technology research. Desulfurization of molten steel, The thermodynamic conditions of dephosphorization and deoxidizers have been able to remove sulfur, phosphorus, and oxygen content in molten steel to extremely low levels, which meets the conditions for clean steel smelting, but the kinetic conditions in the ladle refining process are mainly based on bottom blowing gas stirring, and its role is Use the characteristics of its circulating flow field to clean molten steel, uniform temperature, uniform composition, and promote metallurgical chemical reactions. The argon blowing process at the bottom of the ladle is to blow inert gas such as argon into the molten steel through the breathable brick installed at the bottom of the ladle to make the molten steel circulate in the ladle, stir the molten steel, and make the alloy and deoxidizer added to the molten steel , desulfurizer, etc. to melt and disperse quickly, promote the uniform composition and temperature of molten steel, absorb inclusions in molten steel, and remove non-metallic inclusions in steel, thereby achieving the purpose of purifying molten steel. However, when the flow rate of bottom blowing argon gas is small, there is a dead zone in the ladle, which cannot fully homogenize the composition and temperature of molten steel. If the flow rate of argon gas increases, it is easy to cause the surface of molten steel to be exposed and tumbling, increasing the chance of secondary oxidation. Related literature: Tang Haiyan, Li Jingshe, Wang Jianbin, etc., "Study on the Effects of Different Argon Blowing Processes on the Removal of Inclusions in Ladle Refining", Iron and Steel, 2007, 42(4)21-24. At the same time, the flow rate of argon gas is strictly restricted by the bottom-blowing gas bricks. It is very difficult to increase the flow rate of argon gas. Increasing the flow rate of argon gas will also increase the operating cost, and the gas bricks are sometimes easy to block, which is out of sync with the life of the ladle. Affected by the air-permeable elements at the bottom of the ladle, the bubbles blown out by bottom-blowing argon are relatively large. The bubbles float up and pass through the molten steel for a long time. The diameter of the bubbles increases during the rising process, which easily exposes the slag on the upper surface of the molten steel and causes the molten steel to absorb. Oxygen will reduce the efficiency of desulfurization and dephosphorization. Related literature: Yoon B.H., Heo K.H., Kin JS. Improvement of Steel Cleanliness by Controlling Slag Composition[J], Ironmaking and Steelmaking, 2002, 29(3): 215~218.
由于气体搅拌产生涡流、有搅拌死区等问题,所以采用底吹氩搅拌还远不能达到钢水脱硫、脱磷、脱氧剂热力学脱硫、脱磷、脱氧的理想水平,即动力学条件,不能满足洁净钢冶炼要求。Due to the problems of vortex and dead zone caused by gas stirring, bottom blowing argon stirring is still far from reaching the ideal level of molten steel desulfurization, dephosphorization, and deoxidizer thermodynamic desulfurization, dephosphorization, and deoxidation, that is, dynamic conditions, which cannot meet the cleanliness requirements. Steel smelting requirements.
超声波是一种压缩纵波,可在气体、液体、固体及固熔体中有效传播,具有很强的穿透性,这些固有特性使它在液体中传播时可传递很强的能量,能够在界面上产生强烈的冲击和空化作用,且同声波一样会产生反射、干涉、叠加和共振现象。首先尝试利用超声波应用在冶金过程中的工作是圣彼得堡大学的Sokolov教授,他提出应用超声波探伤和进行超声波照射影响金属结晶化的系列研究相关文献:颜慧成、刘浏,“功率超声在钢铁冶金中的应用研究与展望”,《中国冶金》第4期(总第59期)2002年8月。Kuznetsov等采用超声振动来控制方坯和板坯的表面质量以及细化晶粒防止偏析。相关文献:Kuznetsov B.G.“带超声波振动内壁的结晶器的应用[A]”,中国金属学会连铸学会,《第一届欧洲连铸会议论文集[C]》,佛罗伦萨:意大利金属学会.1991:697-700)。Kobayashi M,Hatanaka SI等学者研究了用超声波处理溶液中的夹杂物。相关文献:Kobayashi M,Kamata C.Cold Mold Experiments of Removal from Molten Metal by an Irradiationof Ultrasonic Waves.ISIJ International,1997,37(1):9~15。日本名古屋大学桑原守教授将超声波应用在泡沫金属材料制备、控制泡沫渣高度、采用高速摄像机拍摄超声波空化气泡和微射的研究。相关文献:Iakashi KUBO,Mamoru KUWABARA and Jian YANG.Visualization ofacoustically induced cavitation bubbles and microjets with the aid of ahigh-speed camera.Japanese Journal of Applied Physics,2005,44(6B):4647-4652;Sergey V.KOMAROV,Mamoru KUWABARA,OlegV.ABRAMOV.High power ultrasonics in pyrometallurgy:current statusand recent development.ISIJ international,2005,(45)12:1765-1782。赵忠兴等人研究了在铝合金铸造时超声波的顶部导入和底部导入方式对铸造合金的组织影响。相关文献:赵忠兴,“超声波对合金结晶过程的均匀化作用”,《热加工工艺》1999,(5):10~11。Ultrasonic wave is a kind of compressed longitudinal wave, which can be effectively transmitted in gas, liquid, solid and solid solution, and has strong penetrability. These inherent characteristics enable it to transmit strong energy when propagating in liquid, and can It produces strong impact and cavitation, and like sound waves, it will produce reflection, interference, superposition and resonance. The first attempt to use ultrasonic application in the metallurgical process was Professor Sokolov of St. Petersburg University. He proposed a series of research on the application of ultrasonic flaw detection and ultrasonic irradiation to affect metal crystallization. Application Research and Prospect", "China Metallurgy" Issue 4 (Total Issue 59), August 2002. Kuznetsov et al. used ultrasonic vibration to control the surface quality of billets and slabs and to refine grains to prevent segregation. Related literature: Kuznetsov B.G. "Application of mold with ultrasonic vibration inner wall [A]", China Metal Society Continuous Casting Society, "Proceedings of the First European Continuous Casting Conference [C]", Florence: Italian Metal Society. 1991: 697-700). Kobayashi M, Hatanaka SI and other scholars have studied the use of ultrasonic treatment of inclusions in the solution. Related literature: Kobayashi M, Kamata C. Cold Mold Experiments of Removal from Molten Metal by an Irradiation of Ultrasonic Waves. ISIJ International, 1997, 37(1): 9-15. Professor Mamoru Kuwahara of Nagoya University in Japan applied ultrasound to the preparation of metal foam materials, controlled the height of foam slag, and used high-speed cameras to capture ultrasonic cavitation bubbles and micro-projections. Related literature: Iakashi KUBO, Mamoru KUWABARA and Jian YANG. Visualization ofacoustically induced cavitation bubbles and microjets with the aid of high-speed camera. Japanese Journal of Applied Physics, 2005, 44(6B), :4647-46yRO Mamoru KUWABARA, Oleg V. ABRAMOV. High power ultrasonics in pyrometallurgy: current status and recent development. ISIJ international, 2005, (45) 12: 1765-1782. Zhao Zhongxing and others studied the influence of the top and bottom introduction of ultrasonic waves on the microstructure of the cast alloy during aluminum alloy casting. Related literature: Zhao Zhongxing, "The Homogenization Effect of Ultrasonic on the Alloy Crystallization Process", "Thermal Processing Technology", 1999, (5): 10-11.
以上文献主要介绍了超声波在冶金过程中对金属内部组织的影响,并未提出在钢包精炼方面的超声波应用。The above literature mainly introduces the influence of ultrasonic waves on the internal structure of metals in the metallurgical process, but does not propose the application of ultrasonic waves in ladle refining.
发明内容 Contents of the invention
本发明提供了一种应用超声波改善动力学条件的钢包精炼方法,在钢水中输入超声波,解决底吹气体搅拌存在搅拌死区问题,提高搅拌效果,脱除钢水杂质,去除夹杂,生产洁净钢。The invention provides a ladle refining method using ultrasonic waves to improve dynamic conditions. Ultrasonic waves are input into molten steel to solve the problem of stirring dead zone in bottom blowing gas stirring, improve stirring effect, remove impurities and inclusions in molten steel, and produce clean steel.
本发明提供的应用超声波改善动力学条件的钢包精炼方法,包括以下内容:The ladle refining method that the application of ultrasonic waves to improve dynamic conditions provided by the present invention comprises the following contents:
在转炉或电炉出钢后,将钢水倒入钢包内,将钢包置于精炼工位,在钢包底部开始吹氩气搅拌,加入造渣及脱氧材料,同时开启超声波发生器,在钢包底部及侧壁输入超声波,对钢水进行搅拌。超声波的功率由钢包内钢水的重量决定,超声波功率范围为5-500kW/吨钢水,超声波的输入时间为钢包精炼结束所用的时间。After tapping out of the converter or electric furnace, pour the molten steel into the ladle, place the ladle in the refining station, start blowing argon gas at the bottom of the ladle to stir, add slagging and deoxidizing materials, and turn on the ultrasonic generator at the same time. Ultrasonic waves are input into the wall to stir the molten steel. The power of the ultrasonic is determined by the weight of the molten steel in the ladle. The ultrasonic power range is 5-500kW/ton of molten steel. The input time of the ultrasonic is the time taken for the ladle to finish refining.
所述的应用超声波改善动力学条件的钢包精炼方法,在钢包底部中心位置两侧吹氩气搅拌,在钢包底部中心和侧壁上均匀分布的四个位置上输入超声波。In the ladle refining method using ultrasonic waves to improve dynamic conditions, argon gas is blown on both sides of the bottom center of the ladle for stirring, and ultrasonic waves are input at four positions evenly distributed on the bottom center and side walls of the ladle.
所述的应用超声波改善动力学条件的钢包精炼方法采用的超声波发生器为压电换能器,在压电换能器与钢包包衬接触部位通循环冷却水。The ladle refining method using ultrasonic waves to improve dynamic conditions uses piezoelectric transducers as ultrasonic generators, and circulating cooling water passes through the contact parts between the piezoelectric transducers and the ladle lining.
本发明与现有钢包精炼方法相比,其显著的有益效果体现在以下方面:Compared with the existing ladle refining method, the present invention has remarkable beneficial effects in the following aspects:
1.超声在熔体中传播时产生有限振幅衰减使液体内从声源处开始形成一定的声压梯度,导致液体的流动,在高能超声情况下,当声压幅值超过一定值时,液体中可以产生一个流体的喷射,使得金属熔液能够上下翻动,因而使金属熔液在宏观上受到一定的搅拌作用,可明显提高钢液温度场和成分的均匀性。超声搅拌具有良好的去气作用,产生的大量空化泡明显增大了气-液相接触面积,延长气泡上浮时间,有利于吸附去除夹杂物。1. Ultrasonic waves produce limited amplitude attenuation when propagating in the melt, so that a certain sound pressure gradient is formed in the liquid from the sound source, resulting in the flow of the liquid. In the case of high-energy ultrasonic, when the sound pressure amplitude exceeds a certain value, the liquid A fluid jet can be generated in the process, so that the molten metal can be turned up and down, so that the molten metal is subjected to a certain stirring effect on the macroscopic scale, which can significantly improve the temperature field and the uniformity of the composition of the molten steel. Ultrasonic stirring has a good degassing effect, and the large number of cavitation bubbles produced significantly increases the gas-liquid contact area, prolongs the floating time of bubbles, and is beneficial to adsorption and removal of inclusions.
2.超声波具有空化效应,当空化泡破裂时,形成所谓的“热点”,产生强烈的冲击波,对化学反应起到明显的加速作用。2. Ultrasonic waves have a cavitation effect. When the cavitation bubble breaks, a so-called "hot spot" is formed, which generates a strong shock wave and significantly accelerates the chemical reaction.
3.超声波使液体出现湍流的力学特性,降低扩散阻力,同时使固体的表面膜破坏,加速了传质过程,可显著改善钢包精炼的反应动力学条件,从而改善脱硫、合金化、升温和控制夹杂物形态等效果。3. Ultrasonic waves make the mechanical properties of turbulent flow in the liquid, reduce the diffusion resistance, destroy the surface film of the solid at the same time, accelerate the mass transfer process, and can significantly improve the reaction kinetic conditions of ladle refining, thereby improving desulfurization, alloying, heating and temperature control Inclusion shape and other effects.
4.将超声波波源设置在钢包底部和包壁,作用于气体搅拌搅拌死区位置,与底吹气体搅拌共同作用,增强搅拌效果,可改善钢包精炼的动力学条件,接近于渣钢间和去除气体的反应热力学平衡,可缩短精炼时间10分钟以上,降低钢水夹杂和气体含量,提高钢包精炼效果。4. The ultrasonic wave source is set at the bottom of the ladle and the wall of the ladle, acting on the position of the gas stirring dead zone, and working together with the stirring of the bottom blowing gas to enhance the stirring effect, which can improve the dynamic conditions of ladle refining, close to the slag steel room and remove The reaction thermodynamic balance of the gas can shorten the refining time by more than 10 minutes, reduce the inclusion and gas content of molten steel, and improve the ladle refining effect.
附图说明 Description of drawings
图1是应用超声波改善动力学条件的钢包精炼方法采用的钢包剖面结构示意图。Fig. 1 is a schematic diagram of a cross-sectional structure of a ladle adopted in a ladle refining method using ultrasonic waves to improve dynamic conditions.
具体实施方式 Detailed ways
如图1所示,应用超声波改善动力学条件的钢包精炼方法,按以下过程实施:As shown in Figure 1, the ladle refining method using ultrasonic waves to improve dynamic conditions is implemented according to the following process:
在钢包底部中心设置一个圆形压电换能器4,提供超声波波源,在钢包侧壁上均匀分布的四个位置设置四个圆形压电换能器4,提供超声波波源,在压电换能器与钢包包衬2接触的部位通循环冷却水5。在圆形压电换能器4的两侧设置底吹氩气3入口。在转炉或电炉出钢后,将钢水1倒入钢包内,将钢包置于精炼工位,在钢包底部开始吹氩气3搅拌,加入造渣及脱氧材料,同时开启在钢包底部中心及侧壁的圆形压电换能器4,输入超声波,对钢水1进行搅拌。每个超声波波源功率为10×钢包钢水总重量kW,超声波的输入时间为钢包精炼结束所用的时间。A circular piezoelectric transducer 4 is arranged at the center of the bottom of the ladle to provide an ultrasonic wave source, and four circular piezoelectric transducers 4 are arranged at four positions evenly distributed on the side wall of the ladle to provide an ultrasonic wave source. The position where the energy device is in contact with the ladle lining 2 passes through circulating cooling water 5 . Bottom blowing argon gas 3 inlets are provided on both sides of the circular piezoelectric transducer 4 . After tapping the converter or electric furnace, pour the molten steel 1 into the ladle, put the ladle in the refining station, start blowing argon gas 3 at the bottom of the ladle to stir, add slagging and deoxidizing materials, and open the bottom center and side wall of the ladle at the same time The circular piezoelectric transducer 4 is used to input ultrasonic waves to stir the molten steel 1 . The power of each ultrasonic wave source is 10×the total weight of molten steel in the ladle kW, and the input time of ultrasonic waves is the time taken for the ladle to finish refining.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010181315 CN102260769A (en) | 2010-05-25 | 2010-05-25 | Ladle refining method for improving dynamical conditions by using ultrasonic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010181315 CN102260769A (en) | 2010-05-25 | 2010-05-25 | Ladle refining method for improving dynamical conditions by using ultrasonic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102260769A true CN102260769A (en) | 2011-11-30 |
Family
ID=45007602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010181315 Pending CN102260769A (en) | 2010-05-25 | 2010-05-25 | Ladle refining method for improving dynamical conditions by using ultrasonic wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102260769A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102994701A (en) * | 2012-11-30 | 2013-03-27 | 鞍钢股份有限公司 | Method for refining argon bubble size in refining process |
CN103924097A (en) * | 2013-10-31 | 2014-07-16 | 中南大学 | Ultrasonic/inert gas combined degassing technology |
CN107502764A (en) * | 2017-08-30 | 2017-12-22 | 河钢股份有限公司承德分公司 | A kind of method for smelting vanadium system alloy |
CN109295280A (en) * | 2018-11-24 | 2019-02-01 | 宁波市神光电炉有限公司 | A kind of exclusion device and impurity-removing method of medium frequency induction melting furnace |
CN109576439A (en) * | 2018-12-28 | 2019-04-05 | 刘玉满 | Steel water high-frequency vibration sublimate homogenizes method of refining |
CN112375873A (en) * | 2020-11-13 | 2021-02-19 | 李金芳 | Distributed ultrasonic signal detection system for steelmaking production |
US20220128303A1 (en) * | 2019-02-07 | 2022-04-28 | Institut Polytechnique De Grenoble | Cold crucible |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU571519A1 (en) * | 1972-11-30 | 1977-09-05 | Ждановский Филиал Украинского Государственного Института По Проектированию Металлургических Заводов | Method of processing metal melt |
CN1730199A (en) * | 2005-08-18 | 2006-02-08 | 广东圣都模具股份有限公司 | Method for removing impurities in cast-steel smelt by supersonic wave and single-purpose device thereof |
CN1850377A (en) * | 2005-04-22 | 2006-10-25 | 涟源钢铁集团有限公司 | Process for producing hot-rolled sheet for cold-rolling and punching |
CN101250608A (en) * | 2008-04-07 | 2008-08-27 | 安徽工业大学 | A method of directly introducing ultrasonic waves into molten steel to improve steel quality |
CN101307374A (en) * | 2007-05-15 | 2008-11-19 | 宝山钢铁股份有限公司 | Process for removing nonmetal inclusion in molten steel |
-
2010
- 2010-05-25 CN CN 201010181315 patent/CN102260769A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU571519A1 (en) * | 1972-11-30 | 1977-09-05 | Ждановский Филиал Украинского Государственного Института По Проектированию Металлургических Заводов | Method of processing metal melt |
CN1850377A (en) * | 2005-04-22 | 2006-10-25 | 涟源钢铁集团有限公司 | Process for producing hot-rolled sheet for cold-rolling and punching |
CN1730199A (en) * | 2005-08-18 | 2006-02-08 | 广东圣都模具股份有限公司 | Method for removing impurities in cast-steel smelt by supersonic wave and single-purpose device thereof |
CN101307374A (en) * | 2007-05-15 | 2008-11-19 | 宝山钢铁股份有限公司 | Process for removing nonmetal inclusion in molten steel |
CN101250608A (en) * | 2008-04-07 | 2008-08-27 | 安徽工业大学 | A method of directly introducing ultrasonic waves into molten steel to improve steel quality |
Non-Patent Citations (1)
Title |
---|
《过程工程学报》 20100430 亢淑梅 超声波钢包精炼水力学模型实验研究 第124页结论第(2)点 1-3 第10卷, 第s1期 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102994701A (en) * | 2012-11-30 | 2013-03-27 | 鞍钢股份有限公司 | Method for refining argon bubble size in refining process |
CN103924097A (en) * | 2013-10-31 | 2014-07-16 | 中南大学 | Ultrasonic/inert gas combined degassing technology |
CN107502764A (en) * | 2017-08-30 | 2017-12-22 | 河钢股份有限公司承德分公司 | A kind of method for smelting vanadium system alloy |
CN109295280A (en) * | 2018-11-24 | 2019-02-01 | 宁波市神光电炉有限公司 | A kind of exclusion device and impurity-removing method of medium frequency induction melting furnace |
CN109576439A (en) * | 2018-12-28 | 2019-04-05 | 刘玉满 | Steel water high-frequency vibration sublimate homogenizes method of refining |
US20220128303A1 (en) * | 2019-02-07 | 2022-04-28 | Institut Polytechnique De Grenoble | Cold crucible |
CN112375873A (en) * | 2020-11-13 | 2021-02-19 | 李金芳 | Distributed ultrasonic signal detection system for steelmaking production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102260769A (en) | Ladle refining method for improving dynamical conditions by using ultrasonic wave | |
CN109943680B (en) | Production method of ultra-low carbon, low silicon, low manganese and low aluminum steel continuous casting billet | |
CN107299196B (en) | Method for synchronously desulfurizing molten steel and slag of non-oriented silicon steel RH vacuum furnace | |
CN103627853A (en) | Method for manufacturing low-carbon and low-silicon steel | |
JP6945055B2 (en) | Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel | |
CN114395731B (en) | Low-welding crack sensitivity crack arrest steel HY950CF for hydroelectric engineering and production method thereof | |
CN1501984A (en) | Ladle refining of steel | |
CN102965470A (en) | Smelting and pouring method of low-silicon and aluminum-controlled steel | |
CN102078924B (en) | Method for casting lower template beam steel casting | |
CN105714013A (en) | Control method for eddy slag rolling during converter tapping | |
CN115807196A (en) | A kind of high metallurgical quality high strength and toughness nitrogen-containing wind power gear steel and its manufacturing method and application | |
CN107671249A (en) | A kind of method that ultrasonic wave implements molten iron purification in nodularization bag | |
JP2004154803A (en) | Production method for high cleanliness steel cast slab by continuous casting | |
CN103468868B (en) | Method for improving cleanliness of low-phosphorus interstitial-free steel | |
CN103333991B (en) | Ferritic alloy for adjusting content of dissolved oxygen in molten steel, and preparation and usage method thereof | |
CN110396637B (en) | Process for producing SPHC with low cost, short flow and high efficiency | |
CN207276685U (en) | The device of the live ultrasonication molten iron of industry casting | |
Fandrich et al. | Actual review on secondary metallurgy | |
CN102296143A (en) | Method for reducing slagging time of refining furnace of steel ladle by variable-frequency ultrasonic waves | |
CN108655370A (en) | A kind of composite plate blanks casting method and device | |
JP6020414B2 (en) | Method for refining aluminum-containing stainless steel | |
CN201762368U (en) | Variable-frequency ultrasonic refined-smelting ladle furnace capable of rapidly slugging | |
JP2019039032A (en) | Top and bottom blown converter type refining apparatus and refining method of hot metal | |
CN106834610A (en) | A kind of high-strength micro alloyed steel multistage combination control nitrogen method | |
CN208214296U (en) | A kind of composite plate blanks casting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111130 |