CN102259826A - 飞秒激光束制备微纳复合周期结构的方法及装置 - Google Patents

飞秒激光束制备微纳复合周期结构的方法及装置 Download PDF

Info

Publication number
CN102259826A
CN102259826A CN2011101691395A CN201110169139A CN102259826A CN 102259826 A CN102259826 A CN 102259826A CN 2011101691395 A CN2011101691395 A CN 2011101691395A CN 201110169139 A CN201110169139 A CN 201110169139A CN 102259826 A CN102259826 A CN 102259826A
Authority
CN
China
Prior art keywords
light
wave plate
trans
femtosecond laser
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101691395A
Other languages
English (en)
Inventor
贾鑫
贾天卿
熊平新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN2011101691395A priority Critical patent/CN102259826A/zh
Publication of CN102259826A publication Critical patent/CN102259826A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种飞秒激光束制备微纳复合周期结构的方法及装置,结合多光束干涉技术与飞秒激光诱导纳米结构,并发展偏振调节的方法,利用同一干涉装置,将飞秒激光束分成三光束,通过简单地旋转半波片角度调节三光束的偏振状态,能够制备种类繁多的微纳复合周期结构,极大地丰富了表面纳米周期结构的花样,提高了激光干涉技术的多样性,为激光纳米加工、材料改性等研究提供了新的技术手段。

Description

飞秒激光束制备微纳复合周期结构的方法及装置
技术领域
本发明涉及激光纳米加工和全息光刻的技术,具体的涉及一种飞秒激光束制备微纳复合周期结构的方法及装置。
背景技术
近年来,人们采用胶体有序自组装、激光直写以及激光干涉等技术制备二维、三维周期结构。其中,激光干涉技术由于工艺简单并且成本低廉而得到了广泛的应用。激光干涉技术是将多束激光相干后产生的强度分布图样刻印在光敏材料上,从而制备规则的周期结构,通过改变光束数量以及光束间的排列方式能够制备规则的二维、三维周期结构。自2002年开始,某些半导体和电介质在使用飞秒激光照射后,能够在材料表面和内部诱导周期远小于激光波长的短周期纳米结构。纳米结构依赖于激光偏振状态,线偏振光诱导纳米条纹,条纹方向与激光偏振方向垂直,圆偏振光诱导纳米颗粒。这在激光纳米加工、可见光波段光子晶体制备及超高密度光存储等方面具有应用潜力。
由现有激光干涉技术得到的结构周期往往大于激光波长,处于微米量级。周期结构的花样仅决定于激光干涉的强度分布,光束数量和空间位置确定后,周期结构随之确定。因此,现有技术中的激光干涉技术得到的周期结构花样单调,缺乏灵活性。
发明内容
本发明的第一目的在于解决现有技术中的问题,提供一种飞秒激光三光束干涉制备周期纳米结构的方法,在该方法中,引入偏振使之成为影响纳米结构分布的一项重要因素,方便快捷地制备出不同类型的微纳复合周期结构。可丰富激光干涉技术制备的纳米周期花样,提高原有干涉技术的多样性,为激光纳米加工、材料改性等提供新的手段。
本发明的第二目的是,根据上述方法设计的一种相应的装置。
为了实现上述第一目的,本发明采取的技术方案是:
一种飞秒激光束制备微纳复合周期结构的方法,其特征是,步骤如下:
步骤一、由飞秒激光光源发出激光束;
步骤二、通过电子快门调节所述激光束的照射时间;
步骤三、通过第一半波片及格兰棱镜的组合调节所述激光束的能量和偏振方向;
步骤四、将所述激光束分成能量相等的多束光;
步骤五、通过延时光路系统使所述多束光同步;
步骤六、所述多束光通过多个半波片调节各自偏振方向;
步骤七、所述多束光通过多个会聚透镜共焦到样品上;
步骤八、所述多束光干涉烧蚀所述样品得到微纳复合周期结构。
进一步,经过所述步骤三以后,所述激光束再经过第一全反光镜反射至第一分束片后分成A、D两束光,两光束能量之比为1:2,反射光束A经第二全反光镜反射至第一延时光路系统,出射光经第三全反光镜反射后并经第二半波片和第一会聚透镜照射在所述样品上,透射光束D被第四全反光镜反射,经第二分束片再次分为能量相同的两束光B、C,光束C经第五全反光镜、第六全反光镜和第七全反光镜反射后,经第三半波片和第二会聚透镜照射在所述样品上,光束B经第八全反光镜反射至第二延时光路系统,出射光经第九全反光镜反射后,经第四半波片和第三会聚透镜照射在样品,所述三束光A、B、C在所述样品上共焦。
进一步,所述的三束光A、B、C的空间分布呈正三角形。
进一步,通过调节所述第二半波片、所述第三半波片和所述第四半波片使所述三束光A、B、C的偏振方向相同。
进一步,通过调节所述第二半波片、所述第三半波片和所述第四半波片使所述三束光A、B、C的偏振方向相互成120°夹角。
进一步,通过调节所述第二半波片、所述第三半波片和所述第四半波片使所述三束光A、B、C的偏振方向相互成60°夹角。
进一步,所述飞秒激光光源的波长为800nm、脉冲宽度为40fs、重复频率为1kHz的掺钛蓝宝石激光,所述样品为ZnO晶体。
为了实现上述第二目的,本发明采取的技术方案是:
一种飞秒激光束制备微纳复合周期结构的装置,包括飞秒激光光源、飞秒激光光源发出激光束,在激光束的光路上,依次设置电子快门、第一半波片、格兰棱镜、第一全反光镜、第一分束片,所述第一分束片将激光束分成A、D两束光,两束光能量之比为1:2,在反射光束A的光路上依次设置第二全反光镜、第一延时光路系统、第三全反光镜、第二半波片和第一会聚透镜,使光束A照射在样品上;在透射光束D的光路上依次设置第四全反光镜、第二分束片,将光束D分为能量相同的两束光B、C;在光束C的光路上依次设置第五全反光镜、第六全反光镜、第七全反光镜、第三半波片和第二会聚透镜,使光束C照射在样品上;在光束B的光路上依次设置第八全反光镜、第二延时光路系统、第九全反光镜、第四半波片和第三会聚透镜,使光束B照射在样品,所述三束光A、B、C在样品上共焦。
进一步,所述三束光的空间分布为正三角形。
进一步,所述飞秒激光光源是波长为800nm、脉冲宽度为40fs,重复频率为1kHz的掺钛蓝宝石激光,所述样品为ZnO晶体。
本发明飞秒激光束制备微纳复合周期结构的方法及装置的积极效果是:
结合多光束干涉技术与飞秒激光诱导纳米结构,并发展偏振调节的方法,利用同一干涉装置,将飞秒激光束分成能量相等的三束光,通过简单地旋转半波片角度调节三光束的偏振状态,能够制备种类繁多的微纳复合周期结构。极大地丰富了表面纳米周期结构的花样,提高了激光干涉技术的多样性,为激光纳米加工、材料改性等研究提供了新的技术手段。
附图说明
附图1是本发明飞秒激光束制备微纳复合周期结构的装置的结构示意图;
附图2是附图1所示的三光束的空间分布示意图;
附图3是三光束照射ZnO得到的微纳复合周期结构的扫描电子显微镜效果图。
附图中的标号分别为:
1.飞秒激光光源;   2.电子快门;       3.第一半波片;
4.格兰棱镜;      5.第一全反光镜;   6.第一分束片;
7.第二全反光镜    8.第一延时光路系统;9.第三全反光镜;
10.第二半波片;   11.第一会聚透镜;  12.第四全反光镜;
13.第二分束片;   14.第五全反光镜;  15.第六全反光镜;
16.第七全反光镜;  17.第三半波片;    18.第二会聚透镜;
19.第八全反光镜;  20.第二延时光路系统;21.第九全反光镜;
22.第四半波片;   23.第三会聚透镜;  24.样品;
A.光束;          B.光束;           C.光束;
D.光束;          O.重合点。
具体实施方式
以下结合附图对本发明飞秒激光束制备微纳复合周期结构的方法及装置的具体实施方式作详细说明。
参见附图1,飞秒激光束由飞秒激光光源1产生,通过电子快门2经过第一半波片3和第一格兰棱镜4调节能量和偏振方向后,再经过第一全反光镜5反射至第一分束片6后分成A、D两束光,两光束能量之比为1:2。反射光束A经第二全反光镜7反射至第一延时光路系统8,出射光经第三全反光镜9反射后并经第二半波片10和第一会聚透镜11照射在样品24上。透射光束D被第四全反光镜12反射,经第二分束片13再次分为能量相同的两束光B、C。光束C经第五全反光镜14、第六全反光镜15和第七全反光镜16反射后,经第三半波片17和第二会聚透镜18照射在样品24上。光束B经第八全反光镜19反射至第二延时光路系统20,出射光经第九全反光镜21反射后,经第四半波片22和第三会聚透镜23照射在样品24。所述三束光A、B、C在样品24上共焦。
参见附图2,附图2显示三光束A、B、C的空间分布以及三束光在样品24上重合点O的空间位置,三光束的空间分布呈正三角形。将激光干涉技术与飞秒激光诱导短周期纳米结构相结合,在三光束干涉的强度花样制备周期结构基础上又引入了飞秒激光诱导的短周期纳米结构。由于飞秒激光诱导的纳米结构与激光偏振密切相关,使用时只需要旋转三束光的半波片调节光束偏振组合,即可得到不同的干涉强度花样和偏振花样,制备出多种不同的周期纳米结构。从而利用同一装置方便地制备不同类型的微纳复合周期结构,弥补了现有激光干涉技术花样单调、缺乏灵活性的不足。控制电子快门2的开合时间调节光的照射时间,调节格兰棱镜4确定主光路的光束偏振方向,旋转半波片3调节主光路的光束能量。调节半波片10、17和22分别改变三束光A、B、C的偏振方向,在不同的偏振组合下可以得到不同的干涉强度和偏振分布。三光束干涉烧蚀样品后能够得到不同类型的微纳复合周期结构。
本发明飞秒激光束制备微纳复合周期结构的装置的使用过程说明如下:以三光束干涉装置为例,参见附图1,调节第二半波片10、第三半波片17和第四半波片22,改变三束光的偏振方向。样品24采用β相偏硼酸钡(BBO)晶体,调节第一半波片3使激光能量减小至BBO晶体的破坏阈值以下,观察BBO晶体后的和频信号测量三光束脉冲间的时间差。通过调节第一延时光路系统8和第二延时光路系统20使三光束A、B、C的飞秒脉冲同时到达样品。更换样品24为半导体或电介质,在不同的偏振组合下,调节电子快门2的开合时间以确定激光的照射时间,调节第一半波片3和第一格兰棱镜4的组合以确定光束的能量大小,照射样品进行微纳复合周期结构的制备。
参见附图3,以波长为800nm、脉冲宽度为40fs,重复频率为1kHz的掺钛蓝宝石激光照射ZnO晶体为例,附图3是三种不同的偏振组合下,飞秒激光三光束干涉照射ZnO晶体后得到的微纳复合周期结构。附图3中(a)、(b)单束光的激光能量密度为0.37J/cm2,经40个脉冲照射;(c)、(d)单束光的激光能量密度为0.38J/cm2,经100个脉冲照射;(e)、(f)单束光的激光能量密度为0.2J/cm2,经500个脉冲照射。(a)、(c)、(e)中左下角的插图为三种偏振组合。附图3(a)、(b)中的三束光的偏振方向相同(如(a)中左下角插图所示)。样品表面呈现出二维周期排布的烧蚀斑点,这是由三光束干涉的强度周期分布引起的。每个烧蚀斑上嵌入有短周期的纳米条纹,条纹周期为180nm,条纹排列方向与激光偏振方向垂直。附图3(c)、(d)中的三束光的偏振方向相互成120°夹角(如(c)中左下角插图所示)。样品表面除了呈现出二维周期排布的凸起的烧蚀斑外,每个烧蚀斑点上还嵌有圆环状的短周期纳米条纹结构。纳米条纹方向的改变以及纳米颗粒的形成是由偏振组合的变化所引起。附图3(e)、(f)中三束光的偏振方向相互成60°夹角(如(e)中左下角插图所示)。样品表面呈现出二维周期排布的凸起的烧蚀斑,其上的纳米条纹呈辐射状排布,纳米条纹方向的改变是由偏振组合变化引起的。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种飞秒激光束制备微纳复合周期结构的方法,其特征在于,步骤如下:
步骤一、由飞秒激光光源(1)发出激光束;
步骤二、通过电子快门(2)调节所述激光束的照射时间;
步骤三、通过第一半波片(3)及格兰棱镜(4)的组合调节所述激光束的能量和偏振方向;
步骤四、将所述激光束分成能量相等的多束光;
步骤五、通过延时光路系统使所述多束光同步;
步骤六、所述多束光通过多个半波片调节各自偏振方向;
步骤七、所述多束光通过多个会聚透镜共焦到样品(24)上;
步骤八、所述多束光干涉烧蚀所述样品(24)得到微纳复合周期结构。
2.根据权利要求1所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:经过所述步骤三以后,所述激光束再经过第一全反光镜(5)反射至第一分束片(6)后分成A、D两束光,两光束能量之比为1:2,反射光束A经第二全反光镜(7)反射至第一延时光路系统(8),出射光经第三全反光镜(9)反射后并经第二半波片(10)和第一会聚透镜(11)照射在所述样品(24)上,透射光束D被第四全反光镜(12)反射,经第二分束片(13)再次分为能量相同的两束光B、C,光束C经第五全反光镜(14)、第六全反光镜(15)和第七全反光镜(16)反射后,经第三半波片(17)和第二会聚透镜(18)照射在所述样品(24)上,光束B经第八全反光镜(19)反射至第二延时光路系统(20),出射光经第九全反光镜(21)反射后,经第四半波片(22)和第三会聚透镜(23)照射在样品(24),所述三束光A、B、C在所述样品(24)上共焦。
3.根据权利要求2所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:所述的三束光A、B、C的空间分布呈正三角形。
4.根据权利要求3所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:通过调节所述第二半波片(10)、所述第三半波片(17)和所述第四半波片(22)使所述三束光A、B、C的偏振方向相同。
5.根据权利要求3所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:通过调节所述第二半波片(10)、所述第三半波片(17)和所述第四半波片(22)使所述三束光A、B、C的偏振方向相互成120°夹角。
6.根据权利要求3所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:通过调节所述第二半波片(10)、所述第三半波片(17)和所述第四半波片(22)使所述三束光A、B、C的偏振方向相互成60°夹角。
7.根据权利要求1至6中任一项所述的飞秒激光束制备微纳复合周期结构的方法,其特征在于:所述飞秒激光光源(1)的波长为800nm、脉冲宽度为40fs、重复频率为1kHz的掺钛蓝宝石激光,所述样品(24)为ZnO晶体。
8.一种飞秒激光束制备微纳复合周期结构的装置,包括飞秒激光光源(1)、飞秒激光光源(1)发出激光束,在激光束的光路上,依次设置电子快门(2)、第一半波片(3)、格兰棱镜(4)、第一全反光镜(5)、第一分束片(6),所述第一分束片(6)将激光束分成A、D两束光,两束光能量之比为1:2,在反射光束A的光路上依次设置第二全反光镜(7)、第一延时光路系统(8)、第三全反光镜(9)、第二半波片(10)和第一会聚透镜(11),使光束A照射在样品(24)上;在透射光束D的光路上依次设置第四全反光镜(12)、第二分束片(13),将光束D分为能量相同的两束光B、C;在光束C的光路上依次设置第五全反光镜(14)、第六全反光镜(15)、第七全反光镜(16)、第三半波片(17)和第二会聚透镜(18),使光束C照射在样品(24)上;在光束B的光路上依次设置第八全反光镜(19)、第二延时光路系统(20)、第九全反光镜(21)、第四半波片(22)和第三会聚透镜(23),使光束B照射在样品(24),所述三束光A、B、C在样品(24)上共焦。
9.根据权利要求8所述的飞秒激光束制备微纳复合周期结构的装置,其特征在于:所述三束光的空间分布为正三角形。
10.根据权利要求8所述的飞秒激光束制备微纳复合周期结构的装置,其特征在于:所述飞秒激光光源(1)是波长为800nm、脉冲宽度为40fs,重复频率为1kHz的掺钛蓝宝石激光,所述样品(24)为ZnO晶体。
CN2011101691395A 2011-06-22 2011-06-22 飞秒激光束制备微纳复合周期结构的方法及装置 Pending CN102259826A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101691395A CN102259826A (zh) 2011-06-22 2011-06-22 飞秒激光束制备微纳复合周期结构的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101691395A CN102259826A (zh) 2011-06-22 2011-06-22 飞秒激光束制备微纳复合周期结构的方法及装置

Publications (1)

Publication Number Publication Date
CN102259826A true CN102259826A (zh) 2011-11-30

Family

ID=45006701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101691395A Pending CN102259826A (zh) 2011-06-22 2011-06-22 飞秒激光束制备微纳复合周期结构的方法及装置

Country Status (1)

Country Link
CN (1) CN102259826A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798930A (zh) * 2012-09-07 2012-11-28 厦门大学 基于全息干涉术的光子晶体制造装置
CN102922128A (zh) * 2012-11-05 2013-02-13 天津大学 一种基于预调制激光快速制备周期性波纹结构的方法
CN103286453A (zh) * 2013-05-10 2013-09-11 上海电机学院 飞秒激光束制备非对称微纳复合周期花样的系统及方法
CN103447693A (zh) * 2013-07-18 2013-12-18 上海电机学院 一种微米纳米复合周期结构的制备方法
CN103706947A (zh) * 2013-11-14 2014-04-09 中国科学技术大学 一种周期形貌可调谐的微纳米结构表面大面积制备方法及加工系统
CN103852975A (zh) * 2012-11-30 2014-06-11 长春理工大学 一种激光干涉纳米光刻制备双重周期纳米结构的方法
CN104209652A (zh) * 2013-05-31 2014-12-17 中自高科(苏州)光电有限公司 一种控制飞秒激光诱导晶硅表面微纳结构形态的方法
CN105055050A (zh) * 2015-08-05 2015-11-18 长春理工大学 表面图案化制备低摩擦高硬度人工髋关节球头的方法
CN103852975B (zh) * 2012-11-30 2016-11-30 长春理工大学 一种激光干涉纳米光刻制备双重周期纳米结构的方法
CN106964908A (zh) * 2017-05-26 2017-07-21 广东工业大学 一种激光微孔加工系统
CN108326451A (zh) * 2018-02-08 2018-07-27 中国科学院西安光学精密机械研究所 一种飞秒激光薄膜微群孔高效制造方法
CN109865939A (zh) * 2019-01-22 2019-06-11 华东师范大学 一种双飞秒激光束柱透镜汇聚干涉制备大面积周期微纳结构的装置
CN109926712A (zh) * 2019-04-22 2019-06-25 上海电机学院 一种飞秒激光双光束干涉制备周期纳米结构的装置和方法
CN112108759A (zh) * 2020-09-04 2020-12-22 西安交通大学 一种基于飞秒激光大幅面微纳制造的双光束干涉系统
CN113511625A (zh) * 2021-04-28 2021-10-19 广州大学 一种胖瘦条纹结构及其制备方法
CN113654656A (zh) * 2021-10-18 2021-11-16 之江实验室 一种基于三光束干涉的光束漂移检测装置与方法
WO2021256994A1 (en) * 2020-06-19 2021-12-23 National University Of Singapore Apparatus and method for patterning a nanostructure in a target material
CN118308690A (zh) * 2024-06-07 2024-07-09 国科大杭州高等研究院 一种辐射冷却涂层结构及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431483A (zh) * 2003-01-27 2003-07-23 中国科学院上海光学精密机械研究所 超快过程的探测装置
CN1758075A (zh) * 2005-11-04 2006-04-12 中国科学院上海光学精密机械研究所 制备纳米光栅的装置和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431483A (zh) * 2003-01-27 2003-07-23 中国科学院上海光学精密机械研究所 超快过程的探测装置
CN1758075A (zh) * 2005-11-04 2006-04-12 中国科学院上海光学精密机械研究所 制备纳米光栅的装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊平新 等: "三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构", 《物理学报》 *
贾鑫: "飞秒激光制备半导体表面纳米周期结构", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798930A (zh) * 2012-09-07 2012-11-28 厦门大学 基于全息干涉术的光子晶体制造装置
CN102798930B (zh) * 2012-09-07 2014-08-27 厦门大学 基于全息干涉术的光子晶体制造装置
CN102922128A (zh) * 2012-11-05 2013-02-13 天津大学 一种基于预调制激光快速制备周期性波纹结构的方法
CN103852975A (zh) * 2012-11-30 2014-06-11 长春理工大学 一种激光干涉纳米光刻制备双重周期纳米结构的方法
CN103852975B (zh) * 2012-11-30 2016-11-30 长春理工大学 一种激光干涉纳米光刻制备双重周期纳米结构的方法
CN103286453A (zh) * 2013-05-10 2013-09-11 上海电机学院 飞秒激光束制备非对称微纳复合周期花样的系统及方法
CN104209652A (zh) * 2013-05-31 2014-12-17 中自高科(苏州)光电有限公司 一种控制飞秒激光诱导晶硅表面微纳结构形态的方法
CN104209652B (zh) * 2013-05-31 2016-05-04 中自高科(苏州)光电有限公司 一种控制飞秒激光诱导晶硅表面微纳结构形态的方法
CN103447693A (zh) * 2013-07-18 2013-12-18 上海电机学院 一种微米纳米复合周期结构的制备方法
CN103706947A (zh) * 2013-11-14 2014-04-09 中国科学技术大学 一种周期形貌可调谐的微纳米结构表面大面积制备方法及加工系统
CN103706947B (zh) * 2013-11-14 2015-10-28 中国科学技术大学 一种周期形貌可调谐的微纳米结构表面大面积制备方法及加工系统
CN105055050A (zh) * 2015-08-05 2015-11-18 长春理工大学 表面图案化制备低摩擦高硬度人工髋关节球头的方法
CN106964908A (zh) * 2017-05-26 2017-07-21 广东工业大学 一种激光微孔加工系统
CN106964908B (zh) * 2017-05-26 2019-01-01 广东工业大学 一种激光微孔加工系统
CN108326451A (zh) * 2018-02-08 2018-07-27 中国科学院西安光学精密机械研究所 一种飞秒激光薄膜微群孔高效制造方法
CN109865939A (zh) * 2019-01-22 2019-06-11 华东师范大学 一种双飞秒激光束柱透镜汇聚干涉制备大面积周期微纳结构的装置
CN109926712A (zh) * 2019-04-22 2019-06-25 上海电机学院 一种飞秒激光双光束干涉制备周期纳米结构的装置和方法
WO2021256994A1 (en) * 2020-06-19 2021-12-23 National University Of Singapore Apparatus and method for patterning a nanostructure in a target material
CN112108759A (zh) * 2020-09-04 2020-12-22 西安交通大学 一种基于飞秒激光大幅面微纳制造的双光束干涉系统
CN113511625A (zh) * 2021-04-28 2021-10-19 广州大学 一种胖瘦条纹结构及其制备方法
CN113511625B (zh) * 2021-04-28 2023-05-26 广州大学 一种胖瘦条纹结构及其制备方法
CN113654656A (zh) * 2021-10-18 2021-11-16 之江实验室 一种基于三光束干涉的光束漂移检测装置与方法
CN113654656B (zh) * 2021-10-18 2022-02-11 之江实验室 一种基于三光束干涉的光束漂移检测装置与方法
CN118308690A (zh) * 2024-06-07 2024-07-09 国科大杭州高等研究院 一种辐射冷却涂层结构及其制备工艺
CN118308690B (zh) * 2024-06-07 2024-09-10 国科大杭州高等研究院 一种辐射冷却涂层结构及其制备工艺

Similar Documents

Publication Publication Date Title
CN102259826A (zh) 飞秒激光束制备微纳复合周期结构的方法及装置
CN103286453A (zh) 飞秒激光束制备非对称微纳复合周期花样的系统及方法
CN103071930B (zh) 一种飞秒激光直写制备微孔阵列的系统与方法
CN103862171A (zh) 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
CN109926712A (zh) 一种飞秒激光双光束干涉制备周期纳米结构的装置和方法
CN110058340B (zh) 一种液晶偏振光栅制备方法
CN107505695B (zh) 结构光照明装置及其产生条纹结构光的方法
CN104209652B (zh) 一种控制飞秒激光诱导晶硅表面微纳结构形态的方法
US20080137189A1 (en) Conversion of the polarization of light via a composite half-wave plate
CN106773545B (zh) 利用变角度曝光制备复合周期的多级结构的方法及应用
KR102688206B1 (ko) 광 발생 장치, 광 발생 장치를 구비하는 노광 장치, 노광 시스템, 광 발생 방법, 및 노광 포토 레지스트 제조 방법
CN102798930B (zh) 基于全息干涉术的光子晶体制造装置
CN104977757A (zh) 一种偏振艾里液晶模板、制备方法和产生系统
US9174385B2 (en) Method and device for spatially periodic modification of a substrate surface
CN103447693A (zh) 一种微米纳米复合周期结构的制备方法
CN114019690B (zh) 产生任意阶光学涡旋阵列和带缺陷有限光晶格的光学系统
Umhofer et al. Refractive and diffractive laser beam shaping optics: High end components for material processing
CN206464696U (zh) 基于达曼光栅和反射镜的多光束激光干涉微纳加工装置
CN108983443A (zh) 一种产生无衍射光学涡旋晶格的超颖表面及其设计方法
CN108107498A (zh) 一种基于旋转晶向的非线性位相梯度超表面
CN203825297U (zh) 一种产生参数可调近似无衍射栅型结构光的光学系统
CN105700073A (zh) 一种表面等离激元单向耦合和分束器件及制备方法
CN202351515U (zh) 一种用于产生周期性局域空心光束的新型轴棱锥
CN103913129A (zh) 一种产生宽测量区域近似无衍射结构光的光学系统
Jia et al. Fabrication of complex micro/nanopatterns on semiconductors by the multi-beam interference of femtosecond laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111130