CN102257665A - 无盒式sofc堆和装配方法 - Google Patents

无盒式sofc堆和装配方法 Download PDF

Info

Publication number
CN102257665A
CN102257665A CN2009801510136A CN200980151013A CN102257665A CN 102257665 A CN102257665 A CN 102257665A CN 2009801510136 A CN2009801510136 A CN 2009801510136A CN 200980151013 A CN200980151013 A CN 200980151013A CN 102257665 A CN102257665 A CN 102257665A
Authority
CN
China
Prior art keywords
heap
sofc
interconnection
current path
interconnection plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801510136A
Other languages
English (en)
Inventor
K.D.梅因哈德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of CN102257665A publication Critical patent/CN102257665A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5605Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by transferring coherence or polarization from a spin species to another, e.g. creating magnetization transfer contrast [MTC], polarization transfer using nuclear Overhauser enhancement [NOE]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5607Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reducing the NMR signal of a particular spin species, e.g. of a chemical species for fat suppression, or of a moving spin species for black-blood imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56527Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Fuel Cell (AREA)

Abstract

一种无盒式SOFC组件和用于创建此类组件的方法。SOFC堆其特征在于电隔离的堆电流路径,其允许堆的框架部分之间的焊接互连。在一个实施方式中,电隔离电流路径包括利用绝缘密封将互连板密封到互连板框架的步骤。这使得能够将电流路径部分与结构框架相隔离并且使得能够将电池框架焊接在一起。

Description

无盒式SOFC堆和装配方法
关于对在联邦资助的研究和开发下所做发明的权利的声明
利用由美国能源部颁发的合同DE-AC0576RLO1830下的政府支持做出本发明。政府具有本发明中的某些权利。
要求优先权
本申请要求2008年12月19日提交的临时专利申请号61/139,427的优先权,通过引用将其内容合并于此。
技术领域
本发明通常涉及燃料电池,更特别地涉及固态氧化物燃料电池(SOFC)组件。
背景技术
大部分平面固态氧化物燃料电池利用模块化盒式系统。此类系统的示例在美国专利号7,306,872中找到。在该配置中,对具有金属互连板和金属电池安装板的金属薄板组件进行配置,使得当它们在它们的周边处接合以形成盒时,板之间的腔导致其可以包含气体流,该气体流对在盒子内附接到安装板的燃料电池子组件供料。在该燃料电池子组件之外,通过开孔来对互连板和电池安装板打孔以形成烟道型歧管,用于向阳极供给燃料气体并且向阴极供给空气,以及用于排放来自于堆的相应气体。燃料电池子组件通过绝缘玻璃密封附接至安装板并且与安装板绝缘。安装板包括通孔,通过该通孔可接触优选为阴极的电极之一,并且导电互连元件通过该通孔延伸以与堆中下一相邻盒的外表面接触。安装板和互连板中的阳极通孔由垫圈分离,使得盒是不可压缩的。该垫圈包括允许燃料气体从阳极供应烟道流入盒中阳极气体通道的通孔。
在装配来自于多个盒的燃料电池堆时,一个盒的安装板通过外围绝缘玻璃密封附接至下一相邻盒的互连板并且与该互连板绝缘,该外围绝缘玻璃密封环绕从安装板中央通孔延伸的互连接。因此,每个盒依靠与其互连接的接触在第一方向上处于相邻电池的电势,并且依靠外围绝缘玻璃密封在相反方向上与相邻的电池绝缘。因此,盒是电串联连接的并且通过堆装配工艺固有地形成供应和排放歧管。
虽然该工艺允许当独立的盒被发现不可操作时对其独立地测试并且进行更换。但是该方法和配置具有各种问题。首先,为了设备工作,必须对盒一起测试、布置并密封。然而,在热循环期间玻璃密封的失效是个问题。这些玻璃密封倾向于具有低粘接强度,并且通常位于盒的周围以及围绕气体进排口(porting)部分。这些区域也是在热循环期间通常发生最大压力的地方。在这些位置中,不能用导电材料替换玻璃,因为其绝缘性质是防止盒短路所需的。因此,需要的是提供增加的强度和耐用性而维持适当电接触的设备、系统或配置。本发明提供这些优势。
本发明的附加优势和新颖特征将在下文被记载,并且容易根据此处记载的描述和说明而明了本发明的附加优势和新颖特征。因而,本发明的以下描述将被视作本发明的示范而不视作以任何方式的限制。
发明内容
本发明是无盒式SOFC组件(cassette less SOFC assembly)和用于创建此类组件的方法。该SOFC堆其特征在于电隔离的堆电流路径,该电流路径允许堆的框架部分之间的焊接互连。在一个实施方式中,电隔离电流路径包括利用绝缘密封将互连板密封到互连板框架的步骤。这使得能够将电流路径部分与结构框架相隔离并且使得能够将电池框架焊接在一起。在某些实施方式中,互连网丝被定位在该电流路径内以维持阴极/阳极与互连接之间的电连接。
该SOFC堆配置提供堆电流路径与气体进排口的电隔离,并且允许通过利用新颖配置的增加,在该新颖配置中,互连板框架部分具有进排口部分,而另一部分用于导电(互连接)。这两个部分就像窗框一样利用绝缘密封粘接在一起,并且典型SOCF燃料电池的电池因此将堆导电路径与进排口分离。然后,这些预装配的部分可以在堆中被激光焊接在一起,并且不再需要利用绝缘密封将盒密封在一起。由于这些通常脆弱的区域是焊接的而不是玻璃密封的,所以增加了堆的鲁棒性和强度。此外,本发明提供堆高度尺寸的一致性,该一致性在现有技术玻璃密封步骤期间不会出现。结果是无盒式SOFC堆相比于现有技术中存在的其他系统具有出众的强度、耐用性和制造简易性。
前述摘要的目的在于使得美国专利商标局和一般性公众-尤其是科学家、工程师以及本领域中不熟悉专利或法律术语或措辞的从业者-能够从粗略的检视中很快地确定本申请技术公开的性质和本质。该摘要既不旨在限定由权利要求书衡量的本申请的发明,也不旨在以任何方式对本发明的范围进行限制。
附图说明
图1是现有技术实施方式的示意性组件视图。
图2是本发明一个实施方式的示意性组件视图。
具体实施方式
以下描述包括本发明的一个实施方式。根据本发明的该描述将清楚,本发明不限于这些示出的实施方式,而是本发明还包括对其的各种修改和实施方式。因此,应将本描述看作示范性而非限制性。虽然易于对本发明进行各种修改和替代构造,但是应该理解,不存在将本发明限制到具体公开形式的意图,而是相反,本发明覆盖落在如由权利要求书限定的本发明的精神和范围内的修改、替代构造和等同物。
图1示出了SOFC燃料堆的现有技术配置。在此类配置中,阳极支撑的电池附接至钢电池框架,该钢电池框架继而焊接到金属互连板。在使用中,将整个金属结构加电到阳极的电势。这些独立单元或盒(通常它们是被这么称呼的)在重复单元中装配到一起以形成堆来获得期望的性能。
为了防止短路,必须分离以及电隔离这些独立的金属盒,从而防止电池之间的电短路。当前这通常利用粘接的玻璃或压缩绝缘密封来实现。然而,各种因素-包括这些密封的形状、与燃料和氧化剂歧管的接近性、以及热与燃料和氧化剂的成分-可以使得这些密封失效。此外,这些密封不仅必须充当绝缘装置而且还充当结构性装置以将堆保持在一起。因此,设备的机械结构部分上的张力可以向密封传输并且使得这些密封失效。虽然已经尝试了各种材料和配方,但是很难找到执行这两个任务的材料。
图2示出了利用修正配置的本发明,该替代配置克服了存在于前述现有技术配置中的劣势。在该实施方式中,利用绝缘密封26将互连板22密封到互连板框架24。绝缘密封26(在该情况中是玻璃,但是也可以利用陶瓷或其他绝缘材料)确保了当对互连板加电时互连板框架24不加电。由于互连框架24是电隔离的,所以可以将它们直接焊接到电池框架28,并且无需在电池框架28的各部分之间插入绝缘密封26。电池框架28和互连板框架24因此可以直接焊接或否则永久地连接,从而提供增加的结构强度。
互连网丝32也与框架电分离并且位于框架限定的窗口部分内,从而在电池分区的阳极34或阴极36与互连接22之间维持适当的电接触,从而维持堆电流路径30并且允许设备操作。虽然在本实施方式中示出并描述了互连网丝32,但是应该清楚地理解本发明不限于此,而是可以根据用户的特定需求和需要来多样地替代地实行。
该配置提供相对于现有技术实施方式的各种优势。本发明利用明显更少的电绝缘密封量、将该密封材料定位在远离很可能发生失效的进排口入口的位置,并且直接焊接燃料电池堆的框架部分,因此为总体配置提供了增加并加强的结构强度,而且还进一步降低了设备绝缘密封部分上的压力和张力。这导致增加了强度和可靠性并且提供了相对于现有技术实施方式的各种其他优势。
在该配置中,部件不再被制造为盒。堆中玻璃密封区域的量将显著降低,并且存在的密封被定位成远离进排口,因此降低了失效的可能性。由于大部分高热压力位于进排口附近,所以利用激光焊接替代进排口附近的玻璃增强了堆的鲁棒性。该新密封结构创建了环绕电池的全焊接单片钢结构,其比旧的堆设计更强并且更不易失效。此外,该结构和燃料堆形成方法将消除在玻璃密封步骤期间发生的堆高度的尺寸改变。虽然利用该配置存在各种优势,但是一个缺点在于不可能通过将电压引线附接至电池的外部(如当前对利用盒形成的堆实现的那样)来监视独立的电池电压。
虽然已经示出并描述了本发明的各种优选实施方式,但是应该清楚地理解本发明不限于此,而是可以多样地具体化以在以下权利要求书的范围内实现。根据上述描述,应该理解可以进行各种改变而不脱离如由以下权利要求书限定的本发明的精神和范围。

Claims (10)

1. 一种用于构造无盒式SOFC堆的方法,其特征在于电隔离堆电流路径并且焊接所述堆的框架部分。
2. 根据权利要求1所述的方法,其中电隔离电流路径的所述步骤包括利用绝缘密封将互连板密封到互连板框架的步骤。
3. 根据权利要求2所述的方法,其中所述绝缘密封是玻璃密封。
4. 根据权利要求2所述的方法,还包括将所述互连板框架焊接到电池框架的步骤。
5. 根据权利要求4所述的方法,还包括将互连网丝插入所述电流路径内以维持电连接的步骤。
6. 一种SOFC堆,其特征在于具有限定堆电流流通路径的焊接金属框架的燃料堆,所述堆电流流通路径中设有电隔离的电部件。
7. 根据权利要求6所述的SOFC堆,其中所述电流流通路径内的互连板通过绝缘密封与互连板框架电隔离。
8. 根据权利要求6所述的SOFC堆,其中所述电部件包括阳极和阴极。
9. 根据权利要求8所述的SOFC堆,其中所述电部件还包括互连网丝。
10. 一种无盒式SOFC堆。
CN2009801510136A 2008-12-19 2009-12-18 无盒式sofc堆和装配方法 Pending CN102257665A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13942708P 2008-12-19 2008-12-19
US61/139427 2008-12-19
US12/640280 2009-12-17
US12/640,280 US8889303B2 (en) 2008-12-19 2009-12-17 Cassette less SOFC stack and method of assembly
PCT/US2009/068777 WO2010071820A1 (en) 2008-12-19 2009-12-18 Cassette less sofc stack and method of assembly

Publications (1)

Publication Number Publication Date
CN102257665A true CN102257665A (zh) 2011-11-23

Family

ID=42079009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801510136A Pending CN102257665A (zh) 2008-12-19 2009-12-18 无盒式sofc堆和装配方法

Country Status (6)

Country Link
US (1) US8889303B2 (zh)
EP (1) EP2368287A1 (zh)
KR (1) KR20110114584A (zh)
CN (1) CN102257665A (zh)
CA (1) CA2746329A1 (zh)
WO (1) WO2010071820A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127085A1 (zh) * 2012-03-02 2013-09-06 中国科学院宁波材料技术与工程研究所 一种阳极支撑平板式固体氧化物燃料电池无压电堆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385851B (zh) * 2009-07-03 2013-02-11 Iner Aec Executive Yuan 固態氧化物燃料電池及其製作方法
KR102149078B1 (ko) 2017-07-26 2020-08-27 주식회사 엘지화학 연료전지 스택 구조
US20210249668A1 (en) * 2020-02-11 2021-08-12 Phillips 66 Company Solid oxide fuel cell frame assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166053A1 (en) * 2001-11-21 2006-07-27 Badding Michael E Solid oxide fuel cell assembly with replaceable stack and packet modules
CN1842934A (zh) * 2003-08-25 2006-10-04 康宁股份有限公司 带有具保护涂层的部件的固体氧化物燃料电池装置及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565749A (en) * 1984-12-26 1986-01-21 Ford Aerospace & Communications Corporation Lightweight bipolar metal-gas battery
US6803136B2 (en) * 2000-04-10 2004-10-12 Hybrid Power Generation Systems, Llc Stacking and manifolding of unitized solid oxide fuel cells
US20030096147A1 (en) * 2001-11-21 2003-05-22 Badding Michael E. Solid oxide fuel cell stack and packet designs
US7306872B2 (en) 2004-12-30 2007-12-11 Delphi Technologies, Inc. Modular fuel cell cassette for forming a solid-oxide fuel cell stack
US20060172141A1 (en) 2005-01-27 2006-08-03 Xinyu Huang Joints and methods of making and using

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166053A1 (en) * 2001-11-21 2006-07-27 Badding Michael E Solid oxide fuel cell assembly with replaceable stack and packet modules
CN1842934A (zh) * 2003-08-25 2006-10-04 康宁股份有限公司 带有具保护涂层的部件的固体氧化物燃料电池装置及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127085A1 (zh) * 2012-03-02 2013-09-06 中国科学院宁波材料技术与工程研究所 一种阳极支撑平板式固体氧化物燃料电池无压电堆

Also Published As

Publication number Publication date
KR20110114584A (ko) 2011-10-19
CA2746329A1 (en) 2010-06-24
WO2010071820A1 (en) 2010-06-24
US8889303B2 (en) 2014-11-18
US20100159300A1 (en) 2010-06-24
EP2368287A1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
EP2732498B1 (en) Sofc stack with temperature adapted compression force means
KR101903863B1 (ko) 연료 전지 및 그 제조 방법
EP2732499B1 (en) Sofc stack with temperature adapted compression force means
CN102326278B (zh) 具有新颖结构的可充电电池组
JP2011108652A (ja) バッテリ・パック、自動車、バッテリ・パックの補強方法、及びバッテリ・パックの形成方法
US20070111068A1 (en) Compliant feed tubes for planar solid oxide fuel cell systems
CN106104855B (zh) 包括具有容座结构的电压感测部件的电池模块
CN109075281B (zh) 包括电极端子连接板的电池组
JP2013157191A (ja) セルスタック装置および燃料電池装置
JP2012230875A (ja) 固体酸化物形燃料電池及びその製造方法
CN102257665A (zh) 无盒式sofc堆和装配方法
CN108736040A (zh) 垫圈及使用了该垫圈的燃料电池组
JP6452809B2 (ja) 燃料電池発電単位および燃料電池スタック
JP6273233B2 (ja) 電気化学反応セルスタックの製造方法
JP2009283146A (ja) 燃料電池
JP2022515948A (ja) 燃料電池スタック、燃料電池スタックを製造するための方法および燃料電池スタックを作動させるための方法
JP5675437B2 (ja) 燃料電池スタック
JP3111166B2 (ja) 燃料電池
WO2016175231A1 (ja) 燃料電池スタック
JP2009245622A (ja) 燃料電池モジュールおよびその輸送方法
JP6893127B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7132287B2 (ja) 電気化学反応セルスタック
JP5571748B2 (ja) 平板型固体酸化物形燃料電池
JP2018014246A (ja) 電気化学反応単位および電気化学反応セルスタック
WO2023193873A1 (en) Electrochemical cell assembly with recessed plate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123