CN102253662A - 基于多蚁群优化的半导体生产线排程方法 - Google Patents

基于多蚁群优化的半导体生产线排程方法 Download PDF

Info

Publication number
CN102253662A
CN102253662A CN2011100890828A CN201110089082A CN102253662A CN 102253662 A CN102253662 A CN 102253662A CN 2011100890828 A CN2011100890828 A CN 2011100890828A CN 201110089082 A CN201110089082 A CN 201110089082A CN 102253662 A CN102253662 A CN 102253662A
Authority
CN
China
Prior art keywords
ant
bottleneck
production line
workpiece
scheduling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100890828A
Other languages
English (en)
Inventor
李莉
乔非
王锦良
吴海锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN2011100890828A priority Critical patent/CN102253662A/zh
Publication of CN102253662A publication Critical patent/CN102253662A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于多蚁群优化的用于半导体生产线排程方法。确定半导体生产线的瓶颈加工区域,设备的平均利用率超过70%的加工区域均视为瓶颈加工区域;设蚁群的个数为瓶颈加工区域的数目,初始化多蚁群系统;各个蚁群系统并行搜索各瓶颈加工区域的排程方案;将每个加工区域的排程方案按照工序加工顺序约束整合为一个针对所有瓶颈加工区域的排程方案,并以该方案和工序加工顺序为约束,推导出其他非瓶颈区域的排程方案,从而获得整个半导体生产线的排程方案;判断是否满足程序终止条件,如果满足,则输入性能最优的排程方案;否则,使用目前性能最优的排程方案更新蚁群的信息素,引导新一轮的搜索过程。本发明对解决半导体生产线优化调度难题具有重要的实用价值,对提高我国半导体企业的生产管理水平具有重要的指导意义。

Description

基于多蚁群优化的半导体生产线排程方法
技术领域
本发明涉及一种基于多蚁群优化的用于半导体生产线排程方法。
背景技术
在采用流水线车间加工的生产系统中,一个传送系统沿着工作台运送WIP,在每个工作台处,完成WIP的一道不同工序。从理论上,WIP在从头到尾加工行进期间中访问各个工作台一次。半导体生产线与使用流水线车间加工的大多数生产系统不同。在半导体生产线中,WIP在加工行进过程中有可能数次访问同一个工作台,WIP要经历数次清洗、氧化、沉积、喷涂金属、蚀刻、离子注入及脱膜等工序,直到完成半导体产品。
图1给出一种简化的多产品半导体生产线SL1。在该模型中,利用三个工作台W1、W2、W3制造两种产品A、B。工作台W1有两台设备E11、E12,工作台W2有两台设备E21、E22,工作台W3有一台设备E33。按照设备的加工程序,每个设备前最多具有加工程序数目个缓冲区,在此半导体生产线模型中,每个设备的缓冲区最多有2个,分别为S111、S112、S121、S122、S211、S212、S221、S222、S331、S332。不同完成状态下的WIP被放在缓冲区中以供相应的设备加工。在该模型中,产品在加工过程中数次访问同一个工作台,例如,产品类型A在完成加工退出半导体生产线SL1之前,访问工作站W1、W2、W3各两次。典型地,一般的半导体生产线可利用上百台工作台或设备制造十余种甚至数百种产品,每种产品需要数百道加工工序。
从图1中可以看出,在半导体生产线运行期间的任何特定时刻,设备E11、E12、E21、E22、E33处的缓冲区可含有两种产品不同完成阶段下的各式各样的WIP。然而,各设备的资源是有限的,因此,各WIP必须竞争各设备的有限资源。
由于设备资源的有限特性及WIP之间对资源的竞争,缓冲区中的WIP为等待得到设备加工要消耗整个制造时间中的部分时间。这样,使用半导体生产线制造一类产品所需的时间明显地大于该给定类型的产品在各设备上的加工时间的总和。在工业条件下,WIP在制造过程中在缓冲区等待所消耗的时间可能超过该产品总制造时间的百分之八十。通常,把制造某产品所需的实际时间称为该产品的生产周期时间。与其相比,把完成该产品的每道工序的实际加工时间的总和称为理论生产周期时间。产品的生产周期时间与其理论生产周期时间的比率被称为产品的生产周期时间倍增因子,或称为实际对理论比率。
近来,半导体制造工业界普遍要求提高生产管理水平,以尽量降低产品生产周期。目前,一座12英寸技术的晶圆制造厂的成本约为数十亿美元。随着将来半导体器件尺寸的缩小以及为制造下一代半导体器件需要的新的复杂而昂贵的技术,该成本预计只会增加。为了回收建设这种工厂的成本,非常需要工厂以及时的方式达到高产量,从而确保建造该工厂的公司能够利用与他们现有的市场机会一样的市场机会(电子工业中机会的易失特性反映在电子产品的平均产品寿命约为六个月的这一事实上)。通过相对于理论生产周期时间缩短产品平均生产周期时间,可以提高产品产量、降低产品成本、减少对污染的暴露、减少用于维护工作的无利润资本、加快样品制造并缩短对市场力(例如需求增大/减小)的响应时间。生产周期时间方差上的减小可以获得能力的改善以满足产品发送的约定日期。最好同时达到平均生产周期时间和生产周期时间方差两方面的减少。
另外,随着半导体厂商的日益增加,市场竞争日益激烈。能否满足用户的按期交货要求也成为半导体厂商能否在市场上立足的重要因素。准时交货率的满足得到了人们前所未有的重视。
半导体工业界已做出几种尝试,以便减少半导体生产线的平均生产周期时间以及生产周期时间方差并提高准时交货能力。
在美国专利“半导体生产线推式调度方法(Push-type scheduling for semiconductor fabrication)”(申请号:6714830)中,Browning与Raymond提出了一种为在瓶颈加工设备前排队等待加工的WIP确定加工优先级的方法。首先,为每个WIP确定下一次回到该设备之前或完成所有加工的所需完成的加工工序在该瓶颈设备的下游加工设备上是否存在确定的加工轨迹。如果存在确定的加工轨迹,就让这些加工设备为该WIP预留加工时间,然后再将此WIP投入加工。这样可以避免瓶颈设备的下游设备中出现瓶颈。如果存在多个WIP具有确定的加工轨迹,按照排队或优先级的方法确定WIP投入生产线的次序。这种方法实现起来比较麻烦,并且在生产线上存在着大量的WIP,为每个WIP都确定其加工轨迹很费时,并且生产线是高度不确定的,设备故障非常频繁,所有这些都会打乱已有的计划。
在美国专利“用于集成电路工件动态分派的制造方法与系统(Manufacturing method and system for dynamic dispatching of integrated circuit wafer lots)”(编号:5889673)中,Pan Yirn-Sheng和Tseng Horng-Huei提出了将设备前等待加工的WIP中下一步即将使用的加工设备负载较低的WIP的优先级提高优先加工的方法。该方法只是尽量保证设备具有合适的负载,但是并没有考虑WIP的交货期限制以及设备占用情况。
在美国专利“用于半导体制造工厂动态分派的方法与系统(Method and system for dynamic dispatching in semiconductor manufacturing plants)”(编号:5612886)中,Weng Yi-Cherng提出了基于看板思想的,同时考虑WIP优先级与排队时间的调度方法。该方法在思想上接近常用的FIFO(即先入先出策略),该方法在WIP较少的情况下,是具有比较好的性能的。但当WIP水平较高的情况下,该策略的性能明显不如其他的调度方法。而在实际的半导体生产线上,常常具有较高的WIP水平。
在美国专利“基于优先级的半导体集群设备调度方法与装置(Method and apparatus for priority based scheduling of wafer processing within a multiple chamber semiconductor wafer processing tool)” (编号:5928389)中,Jevtic提出了一种基于优先级的调度方法,该方法根据设备的可用能力动态改变工件的加工优先级,根据优先级确定工件的加工顺利。该方法只考虑了特定设备WIP的移动方式,未考虑生产线调度。
在美国专利“带有多臂机器人的半导体集群设备调度方法与装置(Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot)”(编号:6074443)中,Venkatesh与Jevtic调度器为集群设备中的每个工具指定优先级,然后根据此优先级实现工件在工具间的流动,优先级是按照最小加工时间原则确定的。该方法只考虑了特定设备中WIP的移动方式,未考虑生产线调度。
在美国专利“半导体集群设备排程方法与装置(Method and apparatus for sequencing wafers in a multiple chamber, semiconductor wafer processing system)”(编号: 6122566)中,Nguyen与Levi提出了一种实时多任务控制机制来预测下一步将要加工的工件,如果工具空闲,则工件被移送给工具;如果工具占用,工件被缓存。该方法只考虑了特定设备中WIP的移动方式,未考虑生产线调度。
在美国专利“半导体工具工件调度系统与方法置(System and method for scheduling manufacturing jobs for a semiconductor manufacturing tool)”(编号: 7269469)中,Shi等提出了一种监控工件在缓冲区的位置以保证在正确时间加工的方法,该方法只考虑了特定设备中WIP的移动方式,未考虑生产线调度。
在中国专利“基于最小闲滞时间思想的可再入生产线加工的调度方法” (编号:CN 1230267A)中,P.R.库玛尔与瑞.M.理查德森提出了一种为设备前缓冲区中每个WIP生成闲滞变量,选择闲滞变量最小的WIP优先加工的方法。该方法存在以下几个不足。首先,只考虑了降低WIP的加工周期,但却没有考虑交货期的限制,因为即使是同种产品,其交货期可能也是不同的,从而可能造成准时交货率的下降;其次,没有考虑半导体生产设备的加工特性,许多半导体加工设备的加工程序发生变化时,要引起较长的准备时间,从而造成加工周期的延长与设备利用率的下降。
在中国专利“用于调度半导体批次的系统” (编号: CN101361075)中,迪克斯坦等提供了一种用于在多个工具之间调度多个半导体批次的系统。该系统包括调度服务器管理器以及调度综合器和显示设备。调度综合器和显示设备向管理器传递调度请求并且从管理器接收调度列表。该管理器查询多个半导体批次的处理状态并且显示调度列表以响应处理状态。调度列表包括与处理状态有关的相关原因和/或代码。该方法通过查询批次的状态与既定的调度列表完成批次调度,不具备优化功能。
在中国专利“基于Petri网与免疫算法的半导体生产线建模与优化调度方法” (编号: CN101493857)中,吴启迪等提供了一种基于Petri网与免疫算法的半导体生产线优化调度方法。该方法利用Petri网对半导体生产线进行建模:路径调度模型;设备组调度模型和设备调度模型;免疫算法作为调度策略嵌入到Petri网模型中。通过Petri网模型,可以描述半导体制造系统所有可能的行为,如工件加工、设备故障、批处理和有缺陷的晶圆返工等。免疫算法的染色体可以直接从Petri网模型的搜索节点中构造出来,每条染色体的每个基因记录了每个设备组的调度策略。通过对Petri网模型的仿真,得到一个较好的染色体,从而生成一个次优的调度策略。优点是降低了模型的复杂性、提高了模型和调度算法的可重用性,缺点是对调度策略集合的选择具有一定的依赖性。
在中国专利“半导体制造系统的重调度决策系统” (编号:  CN101424919)中,张洁等提供了一种半导体制造领域的半导体制造系统的重调度决策系统。系统中,GUI 模块负责与用户和其他模块进行交互;模糊神经网络决策模块获得半导体制造系统的生产状态和干扰信息数据,进行半导体制造系统的重调度决策处理,并将重调度决策处理的信息结果输出到模糊神经网络参数训练模块和GUI模块。模糊神经网络参数训练模块对模糊神经网络决策模块的模糊化层的中心值、宽度值参数和输出层的连接权值参数进行训练处理,提高了半导体制造系统的重调度决策的准确性。
在中国专利“ 基于信息素的用于半导体生产线的动态调度方法” (编号:  CN1734382)中,吴启迪等提供了一种基于信息素的用于半导体生产线的动态调度方法。该调度方法的实施步骤为:首先,为每个WIP存储信息素变量,该变量与该WIP的交货期、待加工工序对设备的占用时间、WIP 各工序的净加工时间以及WIP的生产周期倍增因子相关;其次,为每个设备存储信息素变量,该变量与设备负载相关,然后,把多个 WIP的信息素变量以及相关的设备的信息素变量进行综合,为每个 WIP生成一个选择变量;最后,根据该方法,对多个WIP比较选择变量以选择多个WIP中的一个用于在该设备上加工。该调度方法可以同时改善生产或制造系统的多个性能指标,包括短期性能指标以及长期性能指标。
纵观目前已有的半导体生产线调度方面的专利,主要针对半导体生产线的特定加工区域;在针对半导体生产线调度的专利中,主要采取基于规则的方法,或者采取智能方法选取规则的组合的方法,尚未发现直接使用智能优化方法获得半导体生产线的排程方案的专利。
发明内容
本发明的目的在于提出一种基于多蚁群优化的半导体生产线排程方法。该方法提供计划时段内半导体生产线中的各设备加工多个WIP的调度方案,这些WIP都安置在设备的缓冲区中或者在计划时段内投入半导体生产线,并且可加工成多种产品类型中的一种。
基于多蚁群优化的半导体生产线排程方法包括以下步骤(如图2所示):首先,确定半导体生产线的瓶颈加工区域,这里,设备的平均利用率超过70%的加工区域均视为瓶颈加工区域;然后,设蚁群的个数为瓶颈加工区域的数目,即每个瓶颈加工区域使用一个蚁群搜索该区域的排程方案;接下来,初始化多蚁群系统(包括各蚁群系统的蚂蚁的个数、各蚁群系统的待调度任务集、各蚁群系统的初始信息素值、多蚁群系统的搜索终止条件);然后,各个蚁群系统并行搜索各瓶颈加工区域的排程方案;接下来,将每个加工区域的排程方案按照工序加工顺序约束整合为一个针对所有瓶颈加工区域的排程方案,并以该方案和工序加工顺序为约束,推导出其他非瓶颈区域的排程方案,从而获得整个半导体生产线的排程方案;判断是否满足程序终止条件,如果满足,则输入性能最优的排程方案;否则,使用目前性能最优的排程方案更新蚁群的信息素,引导新一轮的搜索过程。
以上决策过程的具体计算流程如下。
步骤1:确定半导体生产线的瓶颈区域,对于非批加工瓶颈区域,采取ACO-1算法搜索排程方案;对于批加工区域,采取ACO-2算法搜索排程方案;
步骤2:与MES通讯,获取WIP信息与投料信息,确定计划时段内待调度任务集:
Figure 2011100890828100002DEST_PATH_IMAGE001
.                (1)
其中:
- 工件
Figure 362164DEST_PATH_IMAGE003
在调度决策时刻的正在加工工序或待调度工序
Figure 343895DEST_PATH_IMAGE004
-如果工件
Figure 664280DEST_PATH_IMAGE003
是紧急工件,
Figure 378158DEST_PATH_IMAGE005
;否则,
Figure 43714DEST_PATH_IMAGE006
Figure 563557DEST_PATH_IMAGE007
- 工件
Figure 800765DEST_PATH_IMAGE003
在计划时段内预计完成的最后一道工序,如果工件
Figure 13441DEST_PATH_IMAGE003
是紧急工件,;否则,
Figure 902211DEST_PATH_IMAGE009
是半导体生产线的WIP平均移动步数,可以由MES中的历史数据统计得到。
Figure 518448DEST_PATH_IMAGE011
是工件
Figure 69515DEST_PATH_IMAGE003
的生产周期倍增因子,即平均加工周期与净加工时间的比值;
将上述任务根据加工流程信息,分配到每个加工区域,即为各加工区域的待调度任务集。
步骤3:建立各蚁群算法的搜索空间。对于ACO-1,搜索空间的节点数为
Figure 715783DEST_PATH_IMAGE012
(N为待调度任务数,M为瓶颈加工区域设备数); 对于ACO-2,搜索空间的节点数为
Figure 363802DEST_PATH_IMAGE013
(N为待调度任务数,M为瓶颈加工区域设备数,B为设备的最大加工批量)。
步骤4:多蚁群初始化:包括蚁群的个数、各蚁群的蚂蚁个数、终止条件与节点之间弧的初始信息素。
l       蚁群的个数为瓶颈加工区域的个数;
l       各蚁群的蚂蚁个数按经验设为10;
l       终止条件包括2个:一是最大迭代次数,二是连续两次最优解的改进小于给定值;
l       节点之间弧的初始信息素为
                  (2)
其中,
Figure 458108DEST_PATH_IMAGE015
代表搜索空间的节点对,
Figure 61128DEST_PATH_IMAGE016
表示一个很小的正数。
步骤5:每个蚁群随机指定一个蚂蚁开始搜索过程,获得本瓶颈加工区域的排程方案。
ACO-1中的蚂蚁选择下一个节点的概率为
Figure 65118DEST_PATH_IMAGE017
                (3)
           
Figure 790497DEST_PATH_IMAGE018
           
Figure 316157DEST_PATH_IMAGE019
ACO-2中的蚂蚁选择下一个节点的概率为
 
Figure 286649DEST_PATH_IMAGE020
            (4)
            
Figure 846943DEST_PATH_IMAGE021
Figure 973250DEST_PATH_IMAGE022
Figure 314102DEST_PATH_IMAGE023
其中:
Figure 258924DEST_PATH_IMAGE024
是任务表
Figure 237507DEST_PATH_IMAGE025
中的任一节点;
Figure 39109DEST_PATH_IMAGE026
是蚂蚁选中的与
Figure 913973DEST_PATH_IMAGE024
使用相同设备的上一节点;
Figure 922828DEST_PATH_IMAGE024
的加工时间;
Figure 468298DEST_PATH_IMAGE029
是由
Figure 754923DEST_PATH_IMAGE026
切换到
Figure 206633DEST_PATH_IMAGE024
发生的整定时间;是启发式因子,代表对设备的占用和设备间的相对负载;
Figure 980444DEST_PATH_IMAGE031
是加工
Figure 286661DEST_PATH_IMAGE026
的设备选中
Figure 804230DEST_PATH_IMAGE024
后的负载;
Figure 330151DEST_PATH_IMAGE032
是设备
Figure 958579DEST_PATH_IMAGE033
的负载;
Figure 614907DEST_PATH_IMAGE034
是代表信息素浓度与启发式因子的相对重要性。
步骤6:按照工序顺序约束将各瓶颈加工区域的排程方案重新整合为统一的瓶颈加工区域排程方案。
步骤7:以瓶颈加工区域排程方案和工件加工顺序为约束,推导非瓶颈加工区域的排程方案,则获得半导体生产线的排程方案,计算该方案的目标值,储存当前最优值。
步骤8:判断是否满足程序终止条件。如满足,转步骤10;否则,转步骤9。
步骤9:使用排程方案更新信息素
Figure 365694DEST_PATH_IMAGE035
                    (5)
Figure 549551DEST_PATH_IMAGE036
,  
Figure 545451DEST_PATH_IMAGE037
其中,
Figure 763943DEST_PATH_IMAGE038
是信息素挥发因子;
Figure 187096DEST_PATH_IMAGE039
是工件
Figure 858249DEST_PATH_IMAGE041
在计划时段内的移动步数;
Figure 890796DEST_PATH_IMAGE042
是设备
Figure 527576DEST_PATH_IMAGE033
在计划时段内的利用率;
Figure 557849DEST_PATH_IMAGE043
是所有瓶颈加工区域内设备总台数;
Figure 297657DEST_PATH_IMAGE044
分别是工件
Figure 133895DEST_PATH_IMAGE041
的权值和工序交货延迟,
Figure 326979DEST_PATH_IMAGE045
Figure 91935DEST_PATH_IMAGE046
 分别是
Figure 98199DEST_PATH_IMAGE047
的完工时间与交货期,
Figure 738128DEST_PATH_IMAGE048
Figure 349500DEST_PATH_IMAGE049
 是工件
Figure 783893DEST_PATH_IMAGE041
的总净加工时间,是工序
Figure 325001DEST_PATH_IMAGE051
Figure 289414DEST_PATH_IMAGE052
的净加工时间之合。转步骤5。
步骤10:输出当前最优排程方案作为调度方案。
本发明方法构建在企业的MES系统之外,并与MES集成,任务集与上述决策相关信息均可取自MES系统,通过设置方法的参数并将获得的其他数值按照本方法进行计算,就可以获得计划时段内半导体生产线中的各设备加工多个WIP的调度方案。
本发明提供的排程方法可在任何时刻以任何一组该系统的初始条件状态应用于多种产品类型的生产或制造系统中。
本发明提供的排程方法利用能从生产或制造系统得到的数据,该方法可实施于生产调度或性能预测系统。
本发明提供的排程方法是稳定的、鲁棒性的,并且适应采用该方法的生产或制造系统中的变化。
本发明提供的排程方法可根据需要优化指定的生产或制造系统的多个性能指标,特别是通过提高系统的流片率与瓶颈设备利用率,以获得准时交货率、生产率、平均生产周期时间以及生产周期时间的标准方差等性能的改进。
本发明提供的排程方法可以根据要优化的性能指标,来相应地改变目标值的表示方式,对方法的求解流程不发生影响,可以方便地实现方法的重用。
总之,本发明提供了切实可行的半导体生产线智能化排程方法,该方法对解决半导体生产线优化调度难题具有重要的实用价值,对提高我国半导体企业的生产管理水平具有重要的指导意义。
附图说明
图1是半导体生产线系统的方块图,其中不同完成阶段下的不同产品类型的WIP在多个设备处竞争有限的资源,例如加工时间。
图2是本发明的排程方法的决策流程。
图3是本发明的排程方法的实施例图。
具体实施方式
下面通过实施例结合附图3进一步说明本发明。
附图3给出了一个半导体生产线的简化模型Mini-Fab。该模型包括3个设备群(M 1 M 2 M 3 ),其中:M 1 有两台可互替设备(M a M b ),模拟半导体生产线的扩散加工区,是批加工设备;M 2 有两台可互替设备(M a M b ),模拟半导体生产线的离子注入加工区,是非批加工设备;M 3 有一台设备(M e ),模拟半导体生产线的光刻加工区,是非批加工设备。在该模型上完成加工的工件的加工流程完全相同,包括6个加工步骤,分别在M 1 M 2 M 3 上完成加工,具体加工流程可参见附图3,不同工件的相同工序在批加工设备处(即M a M b )可并批加工。采用本发明提出的基于多蚁群优化的排程方法的具体计算流程如下。
步骤1:确定Mini-Fab的瓶颈区域,假定该模型的瓶颈加工区域为M 1 (即M a M b )和M 3 (即M e )。
步骤2:与MES通讯,获取WIP信息与投料信息,确定计划时段内待调度任务集。假定Mini-Fab需要调度的任务为2个工件(
Figure 396173DEST_PATH_IMAGE053
)的全部工序,即
Figure 16510DEST_PATH_IMAGE054
调度由零初始时刻开始,即线上没有WIP,由于考虑完成工件的所有工序加工,因此移动步数相同,设备利用率与完工时间相关(设备利用率=设备加工时间/完工时间),需要优化的目标体现为最小化交货延迟与最小化完工时间。
步骤3:根据工件的加工流程,可确定瓶颈加工区域M 1 M 3 的待调度任务集
Figure 234127DEST_PATH_IMAGE055
M 1 M 3 分别调用算法ACO-2与ACO-1获得各自的排程方案。ACO-1与ACO-2的搜索空间分别为
Figure 380943DEST_PATH_IMAGE056
步骤4:多蚁群初始化:包括蚁群的个数、各蚁群的蚂蚁个数、终止条件与节点之间弧的初始信息素。
l       蚁群的个数为瓶颈加工区域的个数,即2个;
l       各蚁群的蚂蚁个数按经验设为10;
l       终止条件包括2个:一是最大迭代次数100次,二是连续两次最优解的改进小于0.001;
l       节点之间弧的初始信息素为
              (2)
其中,
Figure 500657DEST_PATH_IMAGE015
代表搜索空间
Figure 516106DEST_PATH_IMAGE058
的节点对。
步骤5:每个蚁群随机指定一个蚂蚁开始搜索过程,获得本瓶颈加工区域的排程方案。假定M 3 调用算法ACO-1获得的排程方案为
Figure 455112DEST_PATH_IMAGE059
M 1 调用算法ACO-2获得的排程方案为
步骤6:按照工序顺序约束将各瓶颈加工区域的排程方案重新整合为统一的瓶颈加工区域排程方案,即
Figure 295340DEST_PATH_IMAGE061
步骤7:以瓶颈加工区域排程方案和工件加工顺序为约束,推导非瓶颈加工区域的排程方案,则获得半导体生产线的排程方案,
Figure 120339DEST_PATH_IMAGE062
计算该方案的目标值,储存当前最优值。
步骤8:判断是否满足程序终止条件。如满足,转步骤10;否则,转步骤9。
步骤9:使用排程方案用公式(5)更新信息素。转步骤5。
步骤10:输出当前最优排程方案作为调度方案。
 
本发明提供的排程方法提供一种用于调度半导体生产线中各设备WIP加工的方法。每个WIP代表采用半导体生产线制造的多种产品类型中的一种产品,此外,本发明也可用于单种产品类型中的所有WIP。该方法利用多蚁群优化方法,为在各设备处等待加工的WIP与计划区域内新投入生产线WIP生成调度方案,该方案确定了WIP的加工顺序与加工时段。
具体地,一旦启动该方法,首先与MES通讯,获得线上WIP与计划区域内投料工件;然后设置方法所需参数,开始寻优过程,获得半导体生产线的排程方案。
对于特定的单产品制造系统,本发明已利用对半导体制造厂提供的各工业数据组进行仿真测试,并且显示出本发明的排程方法对于标准FIFO策略,每日平均MOVEMENT平均改进百分率增加改进为3-4%,瓶颈加工区域设备利用率平均改进百分率增加改进为8-10%。这样的改进程度是本发明的典型性能水平。

Claims (1)

1.一种基于多蚁群优化的半导体生产线排程方法,其特征在于具体步骤如下:
步骤1:确定半导体生产线的瓶颈区域,对于非批加工瓶颈区域,采取ACO-1算法搜索排程方案;对于批加工区域,采取ACO-2算法搜索排程方案;
步骤2:与MES通讯,获取WIP信息与投料信息,确定计划时段内待调度任务集:
Figure 471469DEST_PATH_IMAGE001
.                (1)
其中:
- 工件
Figure 907577DEST_PATH_IMAGE003
在调度决策时刻的正在加工工序或待调度工序
Figure 972485DEST_PATH_IMAGE004
-如果工件
Figure 116110DEST_PATH_IMAGE003
是紧急工件,
Figure 342692DEST_PATH_IMAGE005
;否则,
Figure 708951DEST_PATH_IMAGE006
Figure 938069DEST_PATH_IMAGE007
- 工件
Figure 378278DEST_PATH_IMAGE003
在计划时段内预计完成的最后一道工序,如果工件是紧急工件,
Figure 193098DEST_PATH_IMAGE008
;否则,
Figure 520623DEST_PATH_IMAGE010
是半导体生产线的WIP平均移动步数,由MES中的历史数据统计得到;
Figure 850192DEST_PATH_IMAGE011
是工件
Figure 925464DEST_PATH_IMAGE003
的生产周期倍增因子,即平均加工周期与净加工时间的比值;
将上述任务根据加工流程信息,分配到每个加工区域,即为各加工区域的待调度任务集;
步骤3:建立各蚁群算法的搜索空间;对于ACO-1,搜索空间的节点数为
Figure 434068DEST_PATH_IMAGE012
,N为待调度任务数,M为瓶颈加工区域设备数; 对于ACO-2,搜索空间的节点数为
Figure 911186DEST_PATH_IMAGE013
,N为待调度任务数,M为瓶颈加工区域设备数,B为设备的最大加工批量;
步骤4:多蚁群初始化:包括蚁群的个数、各蚁群的蚂蚁个数、终止条件与节点之间弧的初始信息素;
(a) 蚁群的个数为瓶颈加工区域的个数;
(b) 各蚁群的蚂蚁个数按经验设为10;
(c) 终止条件包括2个:一是最大迭代次数,二是连续两次最优解的改进小于给定值;
(d) 节点之间弧的初始信息素为
Figure 479833DEST_PATH_IMAGE014
                   (2)
其中,
Figure 980084DEST_PATH_IMAGE015
代表搜索空间的节点对,
Figure 790914DEST_PATH_IMAGE016
表示一个很小的正数;
步骤5:每个蚁群随机指定一个蚂蚁开始搜索过程,获得本瓶颈加工区域的排程方案;
ACO-1中的蚂蚁选择下一个节点的概率为
Figure 561686DEST_PATH_IMAGE017
                (3)
           
Figure 799770DEST_PATH_IMAGE018
           
Figure 787317DEST_PATH_IMAGE019
ACO-2中的蚂蚁选择下一个节点的概率为
 
Figure 655302DEST_PATH_IMAGE020
            (4)
            
Figure 44695DEST_PATH_IMAGE021
Figure 125784DEST_PATH_IMAGE022
Figure 164409DEST_PATH_IMAGE023
其中:是任务表中的任一节点;是蚂蚁
Figure 276536DEST_PATH_IMAGE027
选中的与使用相同设备的上一节点;
Figure 832730DEST_PATH_IMAGE028
的加工时间;
Figure 262979DEST_PATH_IMAGE029
是由
Figure 695098DEST_PATH_IMAGE026
切换到
Figure 975906DEST_PATH_IMAGE024
发生的整定时间;
Figure 336743DEST_PATH_IMAGE030
是启发式因子,代表
Figure 70212DEST_PATH_IMAGE024
对设备的占用和设备间的相对负载;
Figure 40442DEST_PATH_IMAGE031
是加工
Figure 677222DEST_PATH_IMAGE026
的设备选中
Figure 707495DEST_PATH_IMAGE024
后的负载;
Figure 429726DEST_PATH_IMAGE032
是设备
Figure 265964DEST_PATH_IMAGE033
的负载;
Figure 813708DEST_PATH_IMAGE034
是代表信息素浓度与启发式因子的相对重要性;
步骤6:按照工序顺序约束将各瓶颈加工区域的排程方案重新整合为统一的瓶颈加工区域排程方案;
步骤7:以瓶颈加工区域排程方案和工件加工顺序为约束,推导非瓶颈加工区域的排程方案,则获得半导体生产线的排程方案,计算该方案的目标值,储存当前最优值;
步骤8:判断是否满足程序终止条件;如满足,转步骤10;否则,转步骤9;
步骤9:
Figure 14882DEST_PATH_IMAGE035
                    (5)
Figure 224409DEST_PATH_IMAGE036
,  
Figure 864337DEST_PATH_IMAGE037
其中,
Figure 210130DEST_PATH_IMAGE038
是信息素挥发因子;是工件
Figure 715247DEST_PATH_IMAGE040
在计划时段内的移动步数;
Figure 394752DEST_PATH_IMAGE041
是设备
Figure 296849DEST_PATH_IMAGE033
在计划时段内的利用率;
Figure 902143DEST_PATH_IMAGE042
是所有瓶颈加工区域内设备总台数;
Figure 18086DEST_PATH_IMAGE043
分别是工件的权值和工序交货延迟,
Figure 490841DEST_PATH_IMAGE044
Figure 971763DEST_PATH_IMAGE045
 分别是
Figure 876134DEST_PATH_IMAGE046
的完工时间与交货期,
Figure 333660DEST_PATH_IMAGE047
Figure 774131DEST_PATH_IMAGE048
 是工件
Figure 658911DEST_PATH_IMAGE040
的总净加工时间,
Figure 988261DEST_PATH_IMAGE049
是工序
Figure 813260DEST_PATH_IMAGE050
Figure 544455DEST_PATH_IMAGE051
的净加工时间之合;
转步骤5;
步骤10:输出当前最优排程方案作为调度方案。
CN2011100890828A 2011-04-11 2011-04-11 基于多蚁群优化的半导体生产线排程方法 Pending CN102253662A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100890828A CN102253662A (zh) 2011-04-11 2011-04-11 基于多蚁群优化的半导体生产线排程方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100890828A CN102253662A (zh) 2011-04-11 2011-04-11 基于多蚁群优化的半导体生产线排程方法

Publications (1)

Publication Number Publication Date
CN102253662A true CN102253662A (zh) 2011-11-23

Family

ID=44980969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100890828A Pending CN102253662A (zh) 2011-04-11 2011-04-11 基于多蚁群优化的半导体生产线排程方法

Country Status (1)

Country Link
CN (1) CN102253662A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123486A (zh) * 2013-01-19 2013-05-29 渤海大学 初始工件带有释放时间的返工工件重调度的分段插入算法
CN103246938A (zh) * 2013-04-25 2013-08-14 中山大学 基于自适应蚁群优化的弹性车间调度技术
CN103399549A (zh) * 2013-07-31 2013-11-20 无锡中科泛在信息技术研发中心有限公司 基于有约束的最小生成树的半导体封装测试细日投料控制方法
CN103439885A (zh) * 2013-07-26 2013-12-11 同济大学 半导体生产线优化调度装置
CN104244605A (zh) * 2014-09-03 2014-12-24 东莞市诸葛流智能系统有限公司 一种提高smt贴片生产效率和设备使用率的方法
CN104252654A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 设备断供排程系统及方法
CN104571006A (zh) * 2014-11-19 2015-04-29 广东工业大学 基于蚁群算法并考虑时差电价的铝型材车间能耗优化方法
CN104850923A (zh) * 2014-02-13 2015-08-19 中芯国际集成电路制造(上海)有限公司 半导体生产仿真系统
CN105182946A (zh) * 2015-09-30 2015-12-23 沈阳建筑大学 一种具有改机操作的制造车间的排产优化方法
CN106154992A (zh) * 2015-03-31 2016-11-23 西门子公司 生产系统及生产系统的控制方法
CN106970604A (zh) * 2017-05-15 2017-07-21 安徽大学 一种基于蚁群算法的多目标工件调度算法
CN108256778A (zh) * 2018-01-31 2018-07-06 北京仿真中心 一种基于机器学习和平行仿真的高级计划与排程方法
CN108665139A (zh) * 2018-04-03 2018-10-16 安徽大学 一种基于蚁群算法的工件调度方法及装置
CN108985617A (zh) * 2018-07-11 2018-12-11 广东人励智能工程有限公司 一种基于智能制造的产品生产流程调度方法及系统
CN109034667A (zh) * 2018-09-05 2018-12-18 昆明理工大学 一种五金模具生产过程的优化调度方法
CN109426890A (zh) * 2017-08-28 2019-03-05 力晶科技股份有限公司 从多维变量推算生产力、排程优先级、优化配置的方法
CN110597218A (zh) * 2019-10-18 2019-12-20 天津开发区精诺瀚海数据科技有限公司 一种基于柔性化调度的排程优化方法
CN111919183A (zh) * 2018-05-10 2020-11-10 应用材料公司 用于排程半导体后端工厂的方法
CN112131761A (zh) * 2020-11-25 2020-12-25 晶芯成(北京)科技有限公司 基于群体智能算法的工厂派工方法及系统
CN112766655A (zh) * 2020-12-30 2021-05-07 青岛奥利普自动化控制系统有限公司 自动化排产方法、装置、设备及计算机可读存储介质
CN113064388A (zh) * 2021-02-24 2021-07-02 同济大学 一种半导体生产线的调度优化方法及装置
CN113359648A (zh) * 2021-07-01 2021-09-07 哈尔滨理工大学 相同设备上虚拟调整时长的综合调度算法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189687A (ja) * 1996-10-21 1998-07-21 Applied Materials Inc マルチチャンバ半導体ウェハ処理システム内の優先順位に基づくウェハ処理スケジューリング方法及びその装置
US5889673A (en) * 1996-12-27 1999-03-30 Vanguard International Semiconductor Corporation Manufacturing method and system for dynamic dispatching of integrated circuit wafer lots
EP1128246A2 (en) * 2000-02-28 2001-08-29 Canon Kabushiki Kaisha Push-type scheduling for semiconductor fabrication
CN1734382A (zh) * 2005-06-10 2006-02-15 同济大学 基于信息素的用于半导体生产线的动态调度方法
CN101236572A (zh) * 2007-01-30 2008-08-06 北京大学 一种半导体器件模型自适应参数提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189687A (ja) * 1996-10-21 1998-07-21 Applied Materials Inc マルチチャンバ半導体ウェハ処理システム内の優先順位に基づくウェハ処理スケジューリング方法及びその装置
US5889673A (en) * 1996-12-27 1999-03-30 Vanguard International Semiconductor Corporation Manufacturing method and system for dynamic dispatching of integrated circuit wafer lots
EP1128246A2 (en) * 2000-02-28 2001-08-29 Canon Kabushiki Kaisha Push-type scheduling for semiconductor fabrication
CN1734382A (zh) * 2005-06-10 2006-02-15 同济大学 基于信息素的用于半导体生产线的动态调度方法
CN101236572A (zh) * 2007-01-30 2008-08-06 北京大学 一种半导体器件模型自适应参数提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《清华大学学报(自然科学版)》 20071231 李莉 晶圆加工生产线蚁群优化排程方法 第1890-1894页 1 第47卷, 第S2期 *
《计算机工程与应用》 20091231 邓可邓 基于蚁群算法的半导体生产线调度方法研究 第198-201页 1 第45卷, 第12期 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123486B (zh) * 2013-01-19 2016-04-13 渤海大学 初始工件带有释放时间的返工工件重调度的分段插入方法
CN103123486A (zh) * 2013-01-19 2013-05-29 渤海大学 初始工件带有释放时间的返工工件重调度的分段插入算法
CN103246938A (zh) * 2013-04-25 2013-08-14 中山大学 基于自适应蚁群优化的弹性车间调度技术
CN104252654A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 设备断供排程系统及方法
CN103439885A (zh) * 2013-07-26 2013-12-11 同济大学 半导体生产线优化调度装置
CN103439885B (zh) * 2013-07-26 2016-08-17 同济大学 半导体生产线优化调度装置
CN103399549B (zh) * 2013-07-31 2015-10-28 无锡中科泛在信息技术研发中心有限公司 基于有约束的最小生成树的半导体封装测试细日投料控制方法
CN103399549A (zh) * 2013-07-31 2013-11-20 无锡中科泛在信息技术研发中心有限公司 基于有约束的最小生成树的半导体封装测试细日投料控制方法
CN104850923A (zh) * 2014-02-13 2015-08-19 中芯国际集成电路制造(上海)有限公司 半导体生产仿真系统
CN104850923B (zh) * 2014-02-13 2018-11-23 中芯国际集成电路制造(上海)有限公司 半导体生产仿真系统
CN104244605A (zh) * 2014-09-03 2014-12-24 东莞市诸葛流智能系统有限公司 一种提高smt贴片生产效率和设备使用率的方法
CN104244605B (zh) * 2014-09-03 2017-03-22 东莞市诸葛流智能系统有限公司 一种提高smt贴片生产效率和设备使用率的方法
CN104571006A (zh) * 2014-11-19 2015-04-29 广东工业大学 基于蚁群算法并考虑时差电价的铝型材车间能耗优化方法
CN106154992A (zh) * 2015-03-31 2016-11-23 西门子公司 生产系统及生产系统的控制方法
CN105182946A (zh) * 2015-09-30 2015-12-23 沈阳建筑大学 一种具有改机操作的制造车间的排产优化方法
CN105182946B (zh) * 2015-09-30 2017-09-12 沈阳建筑大学 一种具有改机操作的制造车间的排产优化方法
CN106970604A (zh) * 2017-05-15 2017-07-21 安徽大学 一种基于蚁群算法的多目标工件调度算法
CN106970604B (zh) * 2017-05-15 2019-04-30 安徽大学 一种基于蚁群算法的多目标工件调度算法
CN109426890A (zh) * 2017-08-28 2019-03-05 力晶科技股份有限公司 从多维变量推算生产力、排程优先级、优化配置的方法
CN109426890B (zh) * 2017-08-28 2021-09-07 力晶积成电子制造股份有限公司 从多维变量推算生产力、排程优先级、优化配置的方法
CN108256778A (zh) * 2018-01-31 2018-07-06 北京仿真中心 一种基于机器学习和平行仿真的高级计划与排程方法
CN108256778B (zh) * 2018-01-31 2021-09-10 北京仿真中心 一种基于机器学习和平行仿真的高级计划与排程方法
CN108665139A (zh) * 2018-04-03 2018-10-16 安徽大学 一种基于蚁群算法的工件调度方法及装置
CN108665139B (zh) * 2018-04-03 2021-12-17 安徽大学 一种基于蚁群算法的工件调度方法及装置
CN111919183A (zh) * 2018-05-10 2020-11-10 应用材料公司 用于排程半导体后端工厂的方法
CN108985617B (zh) * 2018-07-11 2021-07-13 广东人励智能工程有限公司 一种基于智能制造的产品生产流程调度方法及系统
CN108985617A (zh) * 2018-07-11 2018-12-11 广东人励智能工程有限公司 一种基于智能制造的产品生产流程调度方法及系统
CN109034667A (zh) * 2018-09-05 2018-12-18 昆明理工大学 一种五金模具生产过程的优化调度方法
CN109034667B (zh) * 2018-09-05 2022-04-12 昆明理工大学 一种五金模具生产过程的优化调度方法
CN110597218B (zh) * 2019-10-18 2020-10-16 天津开发区精诺瀚海数据科技有限公司 一种基于柔性化调度的排程优化方法
CN110597218A (zh) * 2019-10-18 2019-12-20 天津开发区精诺瀚海数据科技有限公司 一种基于柔性化调度的排程优化方法
CN112131761A (zh) * 2020-11-25 2020-12-25 晶芯成(北京)科技有限公司 基于群体智能算法的工厂派工方法及系统
CN112766655A (zh) * 2020-12-30 2021-05-07 青岛奥利普自动化控制系统有限公司 自动化排产方法、装置、设备及计算机可读存储介质
CN112766655B (zh) * 2020-12-30 2023-07-14 青岛奥利普奇智智能工业技术有限公司 自动化排产方法、装置、设备及计算机可读存储介质
CN113064388A (zh) * 2021-02-24 2021-07-02 同济大学 一种半导体生产线的调度优化方法及装置
CN113359648A (zh) * 2021-07-01 2021-09-07 哈尔滨理工大学 相同设备上虚拟调整时长的综合调度算法
CN113359648B (zh) * 2021-07-01 2022-12-09 哈尔滨理工大学 相同设备上虚拟调整时长的综合调度方法

Similar Documents

Publication Publication Date Title
CN102253662A (zh) 基于多蚁群优化的半导体生产线排程方法
CN103439885B (zh) 半导体生产线优化调度装置
Sarin et al. A survey of dispatching rules for operational control in wafer fabrication
CN103439886B (zh) 一种半导体生产线自适应动态调度装置
CN100386702C (zh) 基于信息素的用于半导体生产线的动态调度方法
Johri Practical issues in scheduling and dispatching in semiconductor wafer fabrication
Mönch et al. Production planning and control for semiconductor wafer fabrication facilities: modeling, analysis, and systems
CN100416577C (zh) 用于掩模版的智能自动化管理的方法和系统
Veeger et al. Predicting cycle time distributions for integrated processing workstations: an aggregate modeling approach
Suer et al. Evaluation of manufacturing cell loading rules for independent cells
Chiang et al. Modeling, scheduling, and performance evaluation for wafer fabrication: a queueing colored Petri-net and GA-based approach
Yoon et al. A multiagent-based decision-making system for semiconductor wafer fabrication with hard temporal constraints
US7257502B1 (en) Determining metrology sampling decisions based on fabrication simulation
Fu et al. Batch production scheduling for semiconductor back-end operations
Wang et al. Job dispatch control for production lines with overlapped time window constraints
CN112257909B (zh) 一种面向组批卫星快速测试的多层架构调度方法
CN116090676B (zh) 一种基于多目标优化的aps排产方法及aps排产系统
Zhou et al. A pull/push concept for toolgroup workload balance in wafer fab
Rotondo et al. Sequencing optimisation for makespan improvement at wet-etch tools
Varadarajan et al. A survey of dispatching rules for operational control in wafer fabrication
Yang et al. Multiobjective lot scheduling and dynamic OHT routing in a 300-mm wafer fab
Hung et al. Sensitivity search for the rescheduling of semiconductor photolithography operations
Huang et al. A pre-dispatching vehicle method for a diffusion area in a 300 mm wafer fab
Li et al. ACO-based scheduling for a single batch processing machine in semiconductor manufacturing
Shr et al. Load Balancing Among Photolithography Machines in the Semiconductor Manufacturing System.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123