CN102251064A - Method for improving high-aluminum slag fluidity in blast furnace ironmaking process - Google Patents
Method for improving high-aluminum slag fluidity in blast furnace ironmaking process Download PDFInfo
- Publication number
- CN102251064A CN102251064A CN 201110190772 CN201110190772A CN102251064A CN 102251064 A CN102251064 A CN 102251064A CN 201110190772 CN201110190772 CN 201110190772 CN 201110190772 A CN201110190772 A CN 201110190772A CN 102251064 A CN102251064 A CN 102251064A
- Authority
- CN
- China
- Prior art keywords
- boron
- blast furnace
- slag
- iron
- iron ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002893 slag Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910052782 aluminium Inorganic materials 0.000 title description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 126
- 229910052796 boron Inorganic materials 0.000 claims abstract description 73
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910052742 iron Inorganic materials 0.000 claims abstract description 61
- 239000012141 concentrate Substances 0.000 claims abstract description 33
- 238000003723 Smelting Methods 0.000 claims abstract description 27
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 238000002844 melting Methods 0.000 claims abstract description 24
- 230000008018 melting Effects 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims description 5
- 239000002994 raw material Substances 0.000 abstract description 21
- 239000008188 pellet Substances 0.000 abstract description 8
- 238000006477 desulfuration reaction Methods 0.000 abstract description 3
- 230000023556 desulfurization Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract description 2
- 239000004744 fabric Substances 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000292 calcium oxide Substances 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- -1 sintered ore Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明一种改善高炉炼铁过程中高铝渣流动性的方法,包括以下步骤:首先,在高炉炼铁过程中利用含硼铁精矿部分代替铁矿粉,将占质量百分比分别为8-27%的含Fe>50%、B2O3<10%的含硼铁精矿、8-15%的溶剂、2.5-4.5%的燃料和53-82%的铁矿粉制成混合料,将混合料运到烧结机进行布烧结,烧结后进行破碎、筛分、冷却得到粒度在5mm~50mm的含硼烧结矿,将占含铁原料中75-100%的含硼烧结矿和0-25%的铁矿石和/或球团矿混合投入高炉由此可将高炉渣的熔化性温度保持在1250℃~1350℃,且可有效改善高炉炼铁过程中高铝渣流动性;采用上述方法实现了含硼铁精矿中硼和铁的分离;既能够开发利用我国储量大且价格便宜的硼铁矿,又能够解决部分高炉由高铝渣冶炼带来的炉渣粘稠,铁水脱硫效果差的问题。
The present invention is a method for improving the fluidity of high-alumina slag in the process of blast furnace ironmaking, which comprises the following steps: firstly, in the process of blast furnace ironmaking, use boron-containing iron ore concentrate to partially replace iron ore powder, and the mass percentages are respectively 8-27 % containing Fe>50%, B 2 O 3 <10% boron-containing iron ore concentrate, 8-15% solvent, 2.5-4.5% fuel and 53-82% iron ore powder to make a mixture. The mixture is transported to the sintering machine for cloth sintering. After sintering, it is crushed, screened, and cooled to obtain boron-containing sinter with a particle size of 5mm-50mm. The boron-containing sinter and 0-25% of the iron-containing raw materials will account for % iron ore and/or pellets are mixed into the blast furnace so that the melting temperature of the blast furnace slag can be maintained at 1250 ° C ~ 1350 ° C, and the fluidity of the high alumina slag in the blast furnace ironmaking process can be effectively improved; the above method is used to achieve Separation of boron and iron in boron-containing iron concentrate; it can not only develop and utilize boron-iron ore with large reserves and low price in China, but also solve the problem of sticky slag and poor desulfurization effect of molten iron caused by high-alumina slag smelting in some blast furnaces .
Description
技术领域 technical field
本发明属于炼铁领域,涉及利用硼铁矿代替部分铁矿石入高炉进行高炉冶炼,从而改善高炉炼铁过程中高炉渣尤其是高铝渣流动性的方法。 The invention belongs to the field of ironmaking, and relates to a method for improving the fluidity of blast furnace slag, especially high-aluminum slag, in the blast furnace ironmaking process by using boronite to replace part of iron ore in a blast furnace for blast furnace smelting.
背景技术 Background technique
我国硼资源比较丰富,约占世界硼矿储量的16%,大多数以硼铁矿的形式存在,主要成分有:Fe 27%~30%,B2O3 6%~7.5%,MgO 20%~24%,SiO2 10%~14%,其B2O3的储量占全国总储量的58%。硼铁矿组成复杂,多元素共生,且铁和硼的镶布非常细,必须经过选矿才能使用。 China's boron resources are relatively rich, accounting for about 16% of the world's boron ore reserves, most of which exist in the form of boronite, the main components are: Fe 27% ~ 30%, B 2 O 3 6% ~ 7.5%, MgO 20% ~ 24%, SiO 2 10% ~ 14%, and its B 2 O 3 reserves account for 58% of the country's total reserves. Boronite has a complex composition, multi-element symbiosis, and the iron and boron inlays are very fine, so it must be beneficiated before it can be used.
硼铁矿经选矿后可以得到硼精矿(B2O3>10%)和含硼铁精矿(Fe>50%、B2O3<10%),由于含硼铁精矿中硼的富集程度不够,不能作为含硼原料提硼。若作为含铁原料直接进入高炉冶炼,会使高炉能耗增高,炉渣性能不稳定,给冶炼带来诸多问题。因此,硼铁矿资源的开发利用仍有待研究。 After beneficiation of boron iron ore, boron concentrate (B 2 O 3 >10%) and boron-containing iron concentrate (Fe>50%, B 2 O 3 <10%) can be obtained. The degree of enrichment is not enough to extract boron as a boron-containing raw material. If it is directly smelted in the blast furnace as an iron-containing raw material, the energy consumption of the blast furnace will be increased, and the performance of the slag will be unstable, which will bring many problems to the smelting. Therefore, the development and utilization of boronite resources still needs to be studied.
另一方面,在现今的高炉炼铁生产中,含铁原料日渐短缺,进口矿石大量投入使用;为了节能降焦,高炉也在不断追求高喷煤量。但进口矿(如澳矿、印度矿)和喷吹的煤粉都会带入高炉大量的Al2O3,使高炉渣中Al2O3大量增加而变成高铝渣。 On the other hand, in today's blast furnace ironmaking production, iron-containing raw materials are increasingly in short supply, and a large number of imported ores are put into use; in order to save energy and reduce coke, blast furnaces are also constantly pursuing high coal injection rates. However, imported ore (such as Australian ore, Indian ore) and injected coal powder will bring a large amount of Al 2 O 3 into the blast furnace, which will greatly increase Al 2 O 3 in the blast furnace slag and turn it into high-alumina slag.
熔化性温度偏高就是高铝渣面临的最主要的问题。在对一些钢厂的高铝渣进行测定后,其结果显示,Al2O3在高炉渣中的含量达到15%时,其熔化性温度大于1360℃,有些甚至达到1380℃;若渣中的Al2O3含量达到17%,其熔化性温度则接近1400℃。此时就容易出现冶炼能耗高,炉况不顺,炉渣粘稠且脱硫能力下降等问题。 High melting temperature is the most important problem faced by high aluminum slag. After measuring the high-aluminum slag of some steel mills, the results show that when the content of Al 2 O 3 in the blast furnace slag reaches 15%, its melting temperature is higher than 1360°C, and some even reach 1380°C; The Al 2 O 3 content reaches 17%, and its melting temperature is close to 1400°C. At this time, problems such as high smelting energy consumption, unsatisfactory furnace conditions, viscous slag and decreased desulfurization capacity are prone to occur.
发明内容 Contents of the invention
为了解决上述问题,本发明的目的是提供一种将含硼铁精矿作为部分含铁原料加入高炉中进行冶炼,从而改善高炉炼铁过程中高炉渣尤其是高铝渣流动性的方法。 In order to solve the above problems, the object of the present invention is to provide a method of adding boron-containing iron concentrate as part of the iron-containing raw material into a blast furnace for smelting, thereby improving the fluidity of blast furnace slag, especially high-alumina slag, in the blast furnace ironmaking process.
本发明的技术方案是:一种改善高炉炼铁过程中高铝渣流动性的方法。 The technical scheme of the invention is: a method for improving the fluidity of high-alumina slag in the blast furnace ironmaking process.
本发明包括以下步骤:首先,在高炉炼铁过程中利用含硼铁精矿部分代替铁矿粉,将占质量百分比为8-27%的含Fe>50%、B2O3<10%的含硼铁精矿、占质量百分比为8-15%的溶剂、占质量百分比为2.5-4.5%的燃料和占质量百分比为53-82%的铁矿粉制成混合料,将混合料运到烧结机进行布料、点火、烧结;将制成的烧结矿进行破碎、筛分、冷却得到粒度在5mm~50mm的符合高炉冶炼要求的含硼烧结矿,备用; The invention includes the following steps: firstly, in the process of blast furnace ironmaking, use boron-containing iron ore concentrate to partially replace iron ore powder, and account for 8-27% of the mass percentage to contain Fe > 50%, B 2 O 3 < 10% Boron-containing iron concentrate, 8-15% by mass solvent, 2.5-4.5% by mass fuel and 53-82% by mass iron ore powder are made into a mixture, and the mixture is transported to The sintering machine carries out material distribution, ignition, and sintering; the sintered ore is crushed, screened, and cooled to obtain boron-containing sintered ore with a particle size of 5mm to 50mm that meets the requirements of blast furnace smelting, and is ready for use;
其次,将占投入高炉中含铁原料的含硼烧结矿75-100%,占0-25%的铁矿石和/或球团矿混合入高炉冶炼,由此可将高炉渣的熔化性温度保持在1250℃~1350℃,且可有效改善高炉炼铁过程中高铝渣流动性。 Secondly, 75-100% of the boron-containing sintered ore and 0-25% of the boron-containing sintered ore put into the blast furnace are mixed into the blast furnace for smelting, so that the melting temperature of the blast furnace slag can be maintained At 1250℃~1350℃, it can effectively improve the fluidity of high-alumina slag in the process of blast furnace ironmaking.
炉渣的熔化性温度与渣中的硼含量(B)%的对应关系要通过实验来确定:取高炉的原渣配入不同梯度量B2O3进行粘度测定实验,确定熔化性温度,即可得到不同熔化性温度与渣中的硼含量(B)%的对应关系。这样就可以根据不同的高炉对炉渣熔化性温度的要求不同,推断出渣中需要的硼含量(B)%。实验结果还显示,高炉渣的熔化性温度在1250℃~1350℃的适当范围时,渣中的硼含量(B)%应控制在0.5%~1.5%。 The corresponding relationship between the melting temperature of the slag and the boron content (B)% in the slag should be determined through experiments: the raw slag of the blast furnace is mixed with different gradients of B 2 O 3 for viscosity measurement experiments, and the melting temperature can be determined. The corresponding relationship between different melting temperatures and the boron content (B)% in slag was obtained. In this way, the boron content (B)% required in the slag can be deduced according to the different requirements of different blast furnaces for the melting temperature of the slag. The experimental results also show that when the melting temperature of blast furnace slag is in the appropriate range of 1250°C to 1350°C, the boron content (B)% in the slag should be controlled at 0.5% to 1.5%.
上述方法已经能够根据高炉所需的炉渣熔化型温度确定渣中的硼含量(B)%。硼的来源是含硼铁精矿,由于含硼铁精矿是硼铁矿经过选矿后得到的粒度很细的矿粉,不可能直接作为高炉原料来使用,因此要将含硼铁精矿配入烧结原料中与铁矿粉混合制成烧结矿,其配入量要经过进一步的计算推倒得到。以下是根据含硼铁精矿成分和高炉冶炼参数推导出的配入烧结原料(包括铁矿粉、溶剂、燃料等)中的含硼铁精矿的百分比的计算公式: The above method has been able to determine the boron content (B)% in the slag according to the slag melting temperature required by the blast furnace. The source of boron is boron-containing iron concentrate. Since boron-containing iron concentrate is fine-grained ore powder obtained after boron ore is processed, it is impossible to use it directly as a blast furnace raw material. Therefore, boron-containing iron concentrate must be mixed with Put it into the sintering raw material and mix it with iron ore powder to make sintered ore, and its dosage should be obtained through further calculation. The following is the formula for calculating the percentage of boron-containing iron concentrate mixed into sintering raw materials (including iron ore powder, solvent, fuel, etc.) derived from the composition of boron-containing iron concentrate and blast furnace smelting parameters:
公式① Formula ①
其中:——配入烧结原料中的含硼铁精矿的百分比 in: ——The percentage of boron-containing iron ore concentrate mixed into sintering raw materials
——含硼铁精矿中B2O3的百分含量 ——The percentage content of B 2 O 3 in boron-containing iron concentrate
k——高炉的渣铁比 k——The slag-iron ratio of the blast furnace
——高炉的平均入炉品位 ——The average furnace grade of the blast furnace
(B)%——渣中所需要的硼含量 (B)% - the required boron content in slag
wS——烧结矿占入炉含铁原料(包括烧结矿、球团矿和铁矿石)的百分比 w S ——The percentage of sintered ore in the iron-containing raw materials (including sintered ore, pellets and iron ore)
通过公式①就可以由渣中的硼含量(B)%求出含硼铁精矿的配入。将(B)%的合理取值范围0.5%~1.5%带入上述公式中,依据普通高炉的相关参数推导出工业生产中配入烧结原料(包括铁矿粉、溶剂、燃料等)中的含硼铁精矿的百分比应为8%~27%。 According to the formula ①, the proportion of boron-containing iron concentrate can be calculated from the boron content (B)% in the slag. Put the reasonable value range of (B)% 0.5%~1.5% into the above formula, and deduce the content of sintering raw materials (including iron ore powder, solvent, fuel, etc.) in industrial production according to the relevant parameters of ordinary blast furnaces. The percentage of ferroboron concentrate should be 8% to 27%.
本发明的原理是:利用B2O3能在SiO2-CaO-MgO-Al2O3体系中产生低熔点矿物,使整个体系的熔化性温度降低,从而使硼在高铝渣中起到了助熔剂的作用,改善高铝渣的流动性,尤其在降低高炉渣熔化性温度方面能达到显著的效果;另一方面,在高炉炼铁工艺中,炉渣的熔化性温度应该维持在一个适当的范围内,普通高炉渣的熔化性温度一般为1250℃~1350℃,由此决定了硼在高铝渣中的含量也要限定范围。 The principle of the present invention is: using B 2 O 3 can produce low-melting point minerals in the SiO 2 -CaO-MgO-Al 2 O 3 system, so that the melting temperature of the whole system can be reduced, so that boron can play a role in the high-alumina slag. The role of flux can improve the fluidity of high-alumina slag, especially in reducing the melting temperature of blast furnace slag; on the other hand, in the blast furnace ironmaking process, the melting temperature of slag should be maintained at an appropriate Within the range, the melting temperature of ordinary blast furnace slag is generally 1250°C to 1350°C, which determines that the content of boron in high-alumina slag should also be limited.
本发明的有益效果是:采用上述方法实现了含硼铁精矿中硼和铁的分离。这样既能够开发利用我国储量大且价格便宜的硼铁矿,又能够解决部分高炉由高铝渣冶炼带来的炉渣粘稠,铁水脱硫效果差的问题,达到了一举两得的效果。 The beneficial effect of the present invention is that the separation of boron and iron in the boron-containing iron concentrate is realized by adopting the above method. This can not only develop and utilize ferric boron ore with large reserves and low price in my country, but also solve the problems of sticky slag and poor desulfurization effect of molten iron caused by smelting high-alumina slag in some blast furnaces, achieving the effect of killing two birds with one stone.
附图说明 Description of drawings
图1为本发明的逻辑结构框图。 Fig. 1 is a logical structural block diagram of the present invention.
图2为本发明的实施例1的熔渣的粘度随温度的变化曲线示意图。 Fig. 2 is a schematic diagram of the change curve of the viscosity of the molten slag with temperature in Example 1 of the present invention.
具体实施方式 Detailed ways
下面列出一些具体实施例对本发明的技术方案做进一步说明。 Some specific examples are listed below to further illustrate the technical solution of the present invention.
本发明的实施例通过在某钢厂的烧结厂和高炉上进行工业实验得到。 The embodiment of the present invention is obtained by carrying out industrial experiments on a sintering plant and a blast furnace of a certain steel factory.
本发明的实施例需采用的实验设备是东北大学生产的RTW-[h1] 型熔体物性综合测定仪进行炉渣粘度测定,并且测定时通氩气保护。 The experimental equipment that the embodiment of the present invention needs to adopt is the RTW-[h1] type melt physical property comprehensive measuring instrument that Northeastern University produces to carry out slag viscosity measurement, and lead argon protection during measurement.
在进行工业实验之前,此高炉冶炼所生产的高炉渣的主要成分为含SiO2 33.15%,CaO 39.17%,MgO 7.24%,Al2O3 16.29%。由于Al2O3的含量达到了16%以上,故可以看作是高铝渣。经实验测得其熔化性温度为1365℃。工业实验的方案是用含硼铁精矿替代部分铁矿粉作为烧结原料,其他工艺基本不变。 Before the industrial experiment, the main components of the blast furnace slag produced by this blast furnace smelting were SiO 2 33.15%, CaO 39.17%, MgO 7.24%, Al 2 O 3 16.29%. Since the content of Al 2 O 3 reaches more than 16%, it can be regarded as high aluminum slag. Its melting temperature is measured to be 1365°C by experiments. The plan of the industrial experiment is to replace part of the iron ore powder with boron-containing iron concentrate as the sintering raw material, and the other processes are basically unchanged.
实例1: Example 1:
先利用振动筛筛选含硼铁精矿,确保其粒度都在10mm以下;将过筛后的含硼铁精矿与其他的烧结原料利用圆盘给料机进行配矿,配比为:含硼铁精矿9%、铁矿粉78%、燃料3.5%(主要为焦粉)、溶剂9.5%(包括石灰石2.2%、白云石2.1%、生石灰5.2%);将配好的料运到圆筒混料机中加水进行一混和二混;将混合料运到烧结机进行布料、点火、烧结;将制成的烧结矿进行破碎、筛分、冷却得到粒度在5mm~50mm的符合高炉冶炼要求的含硼烧结矿。 First use the vibrating screen to screen the boron-containing iron concentrate to ensure that its particle size is below 10mm; use the disc feeder to blend the boron-containing iron concentrate after screening with other sintering raw materials, and the ratio is: boron-containing 9% iron concentrate, 78% iron ore powder, 3.5% fuel (mainly coke powder), 9.5% solvent (including 2.2% limestone, 2.1% dolomite, 5.2% quicklime); transport the prepared materials to the cylinder Add water to the mixer for primary mixing and secondary mixing; transport the mixture to the sintering machine for distribution, ignition, and sintering; crush, sieve, and cool the sintered ore to obtain sintered ore with a particle size of 5mm to 50mm that meets the requirements of blast furnace smelting. Boron-containing sinter.
含硼烧结矿要与少量球团矿配合投入到高炉中进行冶炼,在入炉的含铁原料中含硼烧结矿占85%,球团矿占15%。高炉冶炼其他操作均按照正常冶炼进行。在冶炼参数稳定后,取高炉渣进行实验研究。 The boron-containing sinter should be put into the blast furnace together with a small amount of pellets for smelting. The boron-containing sinter accounts for 85% and the pellet accounts for 15% of the iron-containing raw materials put into the furnace. Other blast furnace smelting operations are carried out in accordance with normal smelting. After the smelting parameters were stabilized, the blast furnace slag was taken for experimental research.
在实验室中,取高炉渣140g放入熔体物性综合测定仪中加热到1520℃化渣、搅匀,在冷却过程中连续测定熔渣的粘度,最终作出熔渣的粘度随温度的变化曲线,粘度曲线与45o切线的切点对应的温度为1310℃即是该熔渣的熔化性温度(见附图2)。由此可见,若在工业生产中配入的含硼铁精矿占烧结原料的百分比为9%时,炉渣的熔化性温度约为1345℃。 In the laboratory, take 140g of blast furnace slag and put it into a melt physical property comprehensive measuring instrument, heat it to 1520°C to dissolve the slag, stir it evenly, measure the viscosity of the molten slag continuously during the cooling process, and finally draw the change curve of the viscosity of the molten slag with temperature , The temperature corresponding to the tangent point between the viscosity curve and the 45o tangent is 1310°C, which is the melting temperature of the slag (see Figure 2). It can be seen that if the proportion of boron-containing iron ore concentrate in industrial production accounts for 9% of the sintering raw materials, the melting temperature of the slag is about 1345°C.
实例2: Example 2:
先利用振动筛筛选含硼铁精矿,确保其粒度都在10mm以下;将过筛后的含硼铁精矿与其他的烧结原料利用圆盘给料机进行配矿,配比为:含硼铁精矿17%、铁矿粉70%、燃料3.5%(主要为焦粉)、溶剂9.5%(包括石灰石2.2%、白云石2.1%、生石灰5.2%);将配好的料运到圆筒混料机中加水进行一混和二混;将混合料运到烧结机进行布料、点火、烧结;将制成的烧结矿进行破碎、筛分、冷却得到粒度在5mm~50mm的符合高炉冶炼要求的含硼烧结矿。 First use the vibrating screen to screen the boron-containing iron concentrate to ensure that its particle size is below 10mm; use the disc feeder to blend the boron-containing iron concentrate after screening with other sintering raw materials, and the ratio is: boron-containing 17% iron concentrate, 70% iron ore powder, 3.5% fuel (mainly coke powder), 9.5% solvent (including 2.2% limestone, 2.1% dolomite, 5.2% quicklime); transport the prepared materials to the cylinder Add water to the mixer for primary mixing and secondary mixing; transport the mixture to the sintering machine for distribution, ignition, and sintering; crush, sieve, and cool the sintered ore to obtain sintered ore with a particle size of 5mm to 50mm that meets the requirements of blast furnace smelting. Boron-containing sinter.
含硼烧结矿要与少量球团矿配合投入到高炉中进行冶炼,在入炉的含铁原料中含硼烧结矿占85%,球团矿占15%。高炉冶炼其他操作均按照正常冶炼进行。在冶炼参数稳定后,取高炉渣进行实验研究。 The boron-containing sinter should be put into the blast furnace together with a small amount of pellets for smelting. The boron-containing sinter accounts for 85% and the pellet accounts for 15% of the iron-containing raw materials put into the furnace. Other blast furnace smelting operations are carried out in accordance with normal smelting. After the smelting parameters were stabilized, the blast furnace slag was taken for experimental research.
在实验室中,取高炉渣140g放入熔体物性综合测定仪中加热到1520℃化渣、搅匀,在冷却过程中连续测定熔渣的粘度,最终作出熔渣的粘度随温度的变化曲线,粘度曲线与45o切线的切点对应的温度为1310℃即是该熔渣的熔化性温度。由此可见,若在工业生产中配入的含硼铁精矿占烧结原料的百分比为17%时,炉渣的熔化性温度降低到1310℃。 In the laboratory, take 140g of blast furnace slag and put it into a melt physical property comprehensive measuring instrument, heat it to 1520°C to dissolve the slag, stir it evenly, measure the viscosity of the molten slag continuously during the cooling process, and finally draw the change curve of the viscosity of the molten slag with temperature , The temperature corresponding to the tangent point of the viscosity curve and the 45o tangent is 1310°C, which is the melting temperature of the slag. It can be seen that if the boron-containing iron ore concentrate added in industrial production accounts for 17% of the sintering raw materials, the melting temperature of the slag will drop to 1310°C.
实例3: Example 3:
先利用振动筛筛选含硼铁精矿,确保其粒度都在10mm以下;将过筛后的含硼铁精矿与其他的烧结原料利用圆盘给料机进行配矿,配比为:含硼铁精矿24%、铁矿粉63%、燃料3.5%(主要为焦粉)、溶剂9.5%(包括石灰石2.2%、白云石2.1%、生石灰5.2%);将配好的料运到圆筒混料机中加水进行一混和二混;将混合料运到烧结机进行布料、点火、烧结;将制成的烧结矿进行破碎、筛分、冷却得到粒度在5mm~50mm的符合高炉冶炼要求的含硼烧结矿。 First use the vibrating screen to screen the boron-containing iron concentrate to ensure that its particle size is below 10mm; use the disc feeder to blend the boron-containing iron concentrate after screening with other sintering raw materials, and the ratio is: boron-containing 24% iron concentrate, 63% iron ore powder, 3.5% fuel (mainly coke powder), 9.5% solvent (including 2.2% limestone, 2.1% dolomite, 5.2% quicklime); transport the prepared materials to the cylinder Add water to the mixer for primary mixing and secondary mixing; transport the mixture to the sintering machine for distribution, ignition, and sintering; crush, sieve, and cool the sintered ore to obtain sintered ore with a particle size of 5mm to 50mm that meets the requirements of blast furnace smelting. Boron-containing sinter.
含硼烧结矿要与少量球团矿配合投入到高炉中进行冶炼,在入炉的含铁原料中含硼烧结矿占85%,球团矿占15%。高炉冶炼其他操作均按照正常冶炼进行。在冶炼参数稳定后,取高炉渣进行实验研究。 The boron-containing sinter should be put into the blast furnace together with a small amount of pellets for smelting. The boron-containing sinter accounts for 85% and the pellet accounts for 15% of the iron-containing raw materials put into the furnace. Other blast furnace smelting operations are carried out in accordance with normal smelting. After the smelting parameters were stabilized, the blast furnace slag was taken for experimental research.
在实验室中,取高炉渣140g放入熔体物性综合测定仪中加热到1520℃化渣、搅匀,在冷却过程中连续测定熔渣的粘度,最终作出熔渣的粘度随温度的变化曲线,粘度曲线与45o切线的切点对应的温度为1310℃即是该熔渣的熔化性温度。由此可见,若在工业生产中配入的含硼铁精矿占烧结原料的百分比为24%时,炉渣的熔化性温度可降低到1270℃。 In the laboratory, take 140g of blast furnace slag and put it into a melt physical property comprehensive measuring instrument, heat it to 1520°C to dissolve the slag, stir it evenly, measure the viscosity of the molten slag continuously during the cooling process, and finally draw the change curve of the viscosity of the molten slag with temperature , The temperature corresponding to the tangent point of the viscosity curve and the 45o tangent is 1310°C, which is the melting temperature of the slag. It can be seen that if the proportion of boron-containing iron ore concentrate in industrial production accounts for 24% of the sintering raw materials, the melting temperature of the slag can be reduced to 1270°C.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110190772 CN102251064A (en) | 2011-07-08 | 2011-07-08 | Method for improving high-aluminum slag fluidity in blast furnace ironmaking process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110190772 CN102251064A (en) | 2011-07-08 | 2011-07-08 | Method for improving high-aluminum slag fluidity in blast furnace ironmaking process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102251064A true CN102251064A (en) | 2011-11-23 |
Family
ID=44978632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110190772 Pending CN102251064A (en) | 2011-07-08 | 2011-07-08 | Method for improving high-aluminum slag fluidity in blast furnace ironmaking process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102251064A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103276126A (en) * | 2013-06-05 | 2013-09-04 | 北京科技大学 | Method for improving liquidity of high titanium slag in blast furnace smelting vanadium titano-magnetite |
TWI563095B (en) * | 2015-05-05 | 2016-12-21 | China Steel Corp | Method for controlling a blast furnace having high aluminum slag |
CN106834574A (en) * | 2017-02-24 | 2017-06-13 | 本钢板材股份有限公司 | One kind is colded pressing boracic pelletizing blast furnace prepurging solvent and its preparation, application method |
CN109439820A (en) * | 2018-11-29 | 2019-03-08 | 安徽工业大学 | A kind of blast furnace process raw material and its smelting process |
CN110453024A (en) * | 2019-09-19 | 2019-11-15 | 攀钢集团攀枝花钢铁研究院有限公司 | Boracic slag system containing manganese for blast furnace process |
CN111638155A (en) * | 2020-05-25 | 2020-09-08 | 北京科技大学 | Ore blending structure evaluation method based on granulation quasi-particle sintering behavior |
CN115418424A (en) * | 2022-09-29 | 2022-12-02 | 攀钢集团攀枝花钢铁研究院有限公司 | A blowing method for improving the performance of vanadium-titanium ore smelting high-titanium slag |
-
2011
- 2011-07-08 CN CN 201110190772 patent/CN102251064A/en active Pending
Non-Patent Citations (4)
Title |
---|
《炼铁技术通讯》 20021231 杨熙鹏等 烧结配加含硼铁精矿试验研究与生产实践 第2-5页 1 , 第8期 * |
《烧结球团》 19960731 赵庆杰等 烧结和球团添加含硼铁精矿的研究 第20-23页 1 第21卷, 第4期 * |
《烧结球团》 20091031 李洪革等 硼铁精矿作为造块节能添加剂的试验研究 第10-12页 1 第34卷, 第5期 * |
《矿冶工程》 20040229 李永清等 含硼铁精矿作为烧结矿含硼添加剂的探索 第47-48、50页 1 第24卷, 第1期 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103276126A (en) * | 2013-06-05 | 2013-09-04 | 北京科技大学 | Method for improving liquidity of high titanium slag in blast furnace smelting vanadium titano-magnetite |
CN103276126B (en) * | 2013-06-05 | 2015-04-08 | 北京科技大学 | Method for improving liquidity of high titanium slag in blast furnace smelting vanadium titano-magnetite |
TWI563095B (en) * | 2015-05-05 | 2016-12-21 | China Steel Corp | Method for controlling a blast furnace having high aluminum slag |
CN106834574A (en) * | 2017-02-24 | 2017-06-13 | 本钢板材股份有限公司 | One kind is colded pressing boracic pelletizing blast furnace prepurging solvent and its preparation, application method |
CN109439820A (en) * | 2018-11-29 | 2019-03-08 | 安徽工业大学 | A kind of blast furnace process raw material and its smelting process |
CN110453024A (en) * | 2019-09-19 | 2019-11-15 | 攀钢集团攀枝花钢铁研究院有限公司 | Boracic slag system containing manganese for blast furnace process |
CN111638155A (en) * | 2020-05-25 | 2020-09-08 | 北京科技大学 | Ore blending structure evaluation method based on granulation quasi-particle sintering behavior |
CN111638155B (en) * | 2020-05-25 | 2022-05-13 | 北京科技大学 | Ore blending structure evaluation method based on granulation quasi-particle sintering behavior |
CN115418424A (en) * | 2022-09-29 | 2022-12-02 | 攀钢集团攀枝花钢铁研究院有限公司 | A blowing method for improving the performance of vanadium-titanium ore smelting high-titanium slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104480299B (en) | Method for preparing sintered ores by adding waste slag to chromium-containing-type vanadium-titanium magnetite concentrates | |
CN103045859B (en) | A kind of chromite fine ore sintering processing method produced for stainless steel | |
CN106480307B (en) | Method for improving homogeneity of sinter | |
CN102251064A (en) | Method for improving high-aluminum slag fluidity in blast furnace ironmaking process | |
CN101862703B (en) | Separation-smelting combined method for producing iron ore concentrate from oolitic lean hematite | |
CN102127636B (en) | Method for preparing low-SiO2 high-performance sinter ore | |
CN109652643B (en) | High-quality sinter for COREX smelting reduction ironmaking process and preparation method thereof | |
CN102102146B (en) | Sintering method using high-aluminum refractory limonite | |
CN105331805B (en) | The method for preparing ferric manganese ore composite sinter | |
CN108070713B (en) | Iron ore sintering method using light-burned magnesium balls | |
CN102108438B (en) | Method for producing pellets from laterite-nickel ore | |
CN105219953B (en) | A kind of ferric manganese ore powder sintering matches somebody with somebody the method for ore deposit | |
CN102181630A (en) | Method for using paigeite powder in sintering | |
CN103374635B (en) | Blast furnace slag recycling method | |
CN102978384B (en) | Method for using steel slags during sintering | |
CN103882224B (en) | A kind of manifold type sintering method of low-grade laterite nickel ore | |
CN101967570A (en) | Method for producing ferro-nickel alloy from red soil nickel ore | |
CN103276202B (en) | Metal grained iron and aluminium oxide production method by utilization of high-ferro bauxite | |
CN103572043B (en) | The production method of low basicity sinter | |
CN103757165B (en) | A kind of high-iron bauxite blast-furnace smelting has valency constituent element method of comprehensive utilization | |
CN106480308B (en) | Method for reducing burnup of sintered solid | |
CN106399608A (en) | Method for improving blast furnace smelting efficiency of high-aluminum iron ore with high-reactivity coke | |
CN103695634B (en) | A kind of low-grade laterite nickel ore semi-molten state produces the method for Rhometal | |
CN103146914B (en) | Cold-pressed high-strength fluorite pellet binder and use method thereof | |
Wang et al. | Properties of boron-rich slag separated from boron-bearing iron concentrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111123 |