CN102249612A - 无钢筋无收缩的桥面铺装c40水泥混凝土 - Google Patents

无钢筋无收缩的桥面铺装c40水泥混凝土 Download PDF

Info

Publication number
CN102249612A
CN102249612A CN201110127024XA CN201110127024A CN102249612A CN 102249612 A CN102249612 A CN 102249612A CN 201110127024X A CN201110127024X A CN 201110127024XA CN 201110127024 A CN201110127024 A CN 201110127024A CN 102249612 A CN102249612 A CN 102249612A
Authority
CN
China
Prior art keywords
deck paving
cement concrete
concrete
free
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110127024XA
Other languages
English (en)
Inventor
牟廷敏
熊国斌
范碧琨
郑斌
林小军
梁健
何勇
许建杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Department of Transportation Highway Planning Prospecting and Design Research Institute
Original Assignee
Sichuan Department of Transportation Highway Planning Prospecting and Design Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Department of Transportation Highway Planning Prospecting and Design Research Institute filed Critical Sichuan Department of Transportation Highway Planning Prospecting and Design Research Institute
Priority to CN201110127024XA priority Critical patent/CN102249612A/zh
Publication of CN102249612A publication Critical patent/CN102249612A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

无钢筋无收缩的桥面铺装C40水泥混凝土,旨在取消桥面铺装层的钢筋网片,实现山区桥梁桥面铺装分幅施工。该桥面铺装C40水泥混凝土每立方米的配合比为:水160kg、水泥280kg、粉煤灰100kg、砂793kg、石1052kg、聚丙烯腈纤维0~0.8kg、钢纤维0~40kg、减水剂0.7~0.8kg、减缩剂0~0.1kg。本发明的有益效果是,取消桥面铺装层的钢筋网片,实现山区桥梁桥面铺装分幅施工,提高工程质量,减少施工环节,节约施工工期,节约成本。

Description

无钢筋无收缩的桥面铺装C40水泥混凝土
技术领域
本发明涉及钢筋混凝土桥梁桥面铺装混凝土,特别涉及一种用于铺设整平层的无钢筋无收缩的桥面C40水泥混凝土。
背景技术
简支钢筋混凝土桥梁的水泥混凝土桥面铺装整平层,目前一般是采用普通水凝混凝土配置Φ8~12mm的钢筋网片形成钢筋混凝土铺装层。该方法存在如下缺点,钢筋网片起防止混凝土收缩作用,但因运输混凝土通道需要,钢筋网片无法设置在整平层中间;山区桥梁多为分幅、分线桥梁,混凝土必须通过桥面梁上运输;整平层与钢筋混凝土桥面梁体结合不好等缺点。因此,造成山区钢筋混凝土桥梁桥面铺装病害多、工期长、设备投入大。虽然采取了多配钢筋网、提高混凝土等级、对桥面梁体表面要求处理等措施,但对技术性能贡献不大,且成本很高。
发明内容
本发明所要解决的技术问题是提供一种无钢筋无收缩的桥面铺装C40水泥混凝土,能取消桥面铺装层的钢筋网片,实现山区桥梁桥面铺装分幅施工,且有利于提高工程质量。
本发明解决其技术问题所采用的技术方案如下:
本发明的无钢筋无收缩的桥面铺装C40水泥混凝土,其特征是:该桥面铺装C40水泥混凝土每立方米的配合比为:水160kg、水泥280kg、粉煤灰100kg、砂793kg、石1052kg、聚丙烯腈纤维0~0.8kg、钢纤维0~40kg、减水剂0.7~0.8kg、减缩剂0~0.1kg。
本发明的有益效果是,取消桥面铺装层的钢筋网片,实现山区桥梁桥面铺装分幅施工,提高工程质量,减少施工环节,节约施工工期,节约成本。
附图说明
图1是本发明无钢筋无收缩的桥面铺装C40水泥混凝土的收缩曲线对照图。
具体实施方式
本发明主要从以下三个方面对现有桥面铺装C40水泥混凝土一进行了改进。
一、添加减缩剂和聚丙烯腈纤维
混凝土的干燥收缩是由于毛细孔中水形成的弯液面而产生的附加压力ΔP造成的,而决定ΔP的是三个变量σ、θ和r,r是由混凝土组成材料的成分及配合比决定的,σ和θ与浸润在毛细孔中的液体有关,纯水的表面张力是72N/m,非常高,如果能把它降到35N/m,那么收缩应力就相应减小一半,减缩剂就是因此而诞生的,它是这样一类物质:在强碱性的环境中能大幅度降低水的表面张力,当然,它不能对水泥颗粒有强烈的吸附,也不能有太强的引气性能。另一方面,由水和减缩剂组成的溶液粘度增加,使得接触角θ增大,从而也能进一步降低混凝土的收缩应力。
减缩剂对C40水泥混凝土的影响试验结果见表1和图1所示。
表1- -水泥混凝土桥面铺装配合比(kg/m3)
图1中,曲线1、曲线2和曲线3分别是表1中编号1、编号1和编号3所列配合比的收缩曲线。
减水剂采用马贝聚羧酸高效减水剂,固含量为30%,减水率27%。
减缩剂采用江苏省建筑科学研究院的产品SBT-SRA(1)型。
掺加减缩剂后明显减少混凝土的收缩,90d收缩率降低33.3%;与聚丙烯腈纤维复掺后,效果更加明显,90d收缩率降低47.6%。
二、掺加矿物掺合料
桥面铺装C40混凝土的矿物掺合料,一般采用工业用废渣粉煤灰作为掺合材料,其对混凝土的体积稳定性影响显著,采用表1中编号3的配合比作为基准配合比,分别研究粉煤灰掺量为10%、20%和30%对混凝土体积稳定性的影响。
表2- -不同粉煤灰掺量C40混凝土干燥收缩率(×10-4)
Figure BDA0000061620800000031
由表2可以看出,粉煤灰掺量对混凝土干燥收缩的影响很大,随着粉煤灰掺量的增加,混凝土的干燥收缩率减小,与不掺粉煤灰的混凝土相比,混凝土总的干燥收缩率明显低于不掺粉煤灰的混凝土。
表3- -不同粉煤灰掺量C40混凝土自收缩率(×10-4)
  粉煤灰掺量(%)   1d   3d   7d   14d   28d   60d
  0   0.67   0.97   1.17   1.28   1.38   1.43
  10   0.61   0.88   1.08   1.22   1.28   1.35
  20   0.53   0.82   0.99   1.17   1.23   1.26
  30   0.48   0.79   0.94   1.14   1.19   1.22
由表3可以看出随着粉煤灰掺量的增加,高性能混凝土的自收缩显著减少。
三、添加钢纤维
在C40混凝土中添加钢纤维,可以提高桥面铺装结构层的弯曲韧性和抗疲劳的能力,通过对比试验,其主要结果如表4所示。
表4- -C40桥面混凝土的弯曲韧性
Figure BDA0000061620800000041
由表4可知,复掺纤维后的弯曲韧性指数较纯水泥提高了15倍,较聚丙烯纤维混凝土提高了8倍,韧性效果良好。
钢纤维对桥面铺装层的抗疲劳性能的作用显著,通过不同配合比的疲劳试验成果(表5)可以看出,其作用显著。
表5- -C40混凝土疲劳性能试验
Figure BDA0000061620800000042
四、采用塑料薄膜覆盖
桥面铺装混凝土浇注完成后,采用塑料薄膜养护。可以使新浇注的水泥混凝土实现饱水、湿养等目标,减少混凝土干燥收缩。

Claims (3)

1.无钢筋无收缩的桥面铺装C40水泥混凝土,其特征是:该桥面铺装C40水泥混凝土每立方米的配合比为:水160kg、水泥280kg、粉煤灰100kg、砂793kg、石1052kg、聚丙烯腈纤维0~0.8kg、钢纤维0~40kg、减水剂0.7~0.8kg、减缩剂0~0.1kg。
2.如权利要求1所述的无钢筋无收缩的桥面铺装C40水泥混凝土,其特征是:所述桥面铺装C40水泥混凝土每立方米的配合比为:水160kg、水泥280kg、粉煤灰100kg、砂793kg、石1052kg、聚丙烯腈纤维0.8kg、钢纤维40kg、减水剂0.8kg、减缩剂0.1kg。
3.如权利要求1或2所述的无钢筋无收缩的桥面铺装C40水泥混凝土,其特征是:所述减水剂采用马贝聚羧酸高效减水剂,固含量为30%,减水率27%。
CN201110127024XA 2011-05-17 2011-05-17 无钢筋无收缩的桥面铺装c40水泥混凝土 Pending CN102249612A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110127024XA CN102249612A (zh) 2011-05-17 2011-05-17 无钢筋无收缩的桥面铺装c40水泥混凝土

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110127024XA CN102249612A (zh) 2011-05-17 2011-05-17 无钢筋无收缩的桥面铺装c40水泥混凝土

Publications (1)

Publication Number Publication Date
CN102249612A true CN102249612A (zh) 2011-11-23

Family

ID=44977236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110127024XA Pending CN102249612A (zh) 2011-05-17 2011-05-17 无钢筋无收缩的桥面铺装c40水泥混凝土

Country Status (1)

Country Link
CN (1) CN102249612A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626438A (zh) * 2013-11-27 2014-03-12 天森建设有限公司 抗裂高强石灰石资源全利用混凝土
CN104591633A (zh) * 2015-01-12 2015-05-06 中国地质大学(武汉) 一种聚丙烯腈纤维抗渗混凝土的制造方法
CN106977156A (zh) * 2017-04-13 2017-07-25 天津金隅混凝土有限公司 高强高性能混凝土及其制备方法
CN117431828A (zh) * 2023-12-19 2024-01-23 北京新桥技术发展有限公司 一种桥梁整平层、桥梁,及建造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999888A (zh) * 2006-12-30 2007-07-18 易志坚 碾压柔性纤维水泥混凝土作为基层的路面结构及施工方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999888A (zh) * 2006-12-30 2007-07-18 易志坚 碾压柔性纤维水泥混凝土作为基层的路面结构及施工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626438A (zh) * 2013-11-27 2014-03-12 天森建设有限公司 抗裂高强石灰石资源全利用混凝土
CN103626438B (zh) * 2013-11-27 2015-09-02 天森建设有限公司 抗裂高强石灰石资源全利用混凝土
CN104591633A (zh) * 2015-01-12 2015-05-06 中国地质大学(武汉) 一种聚丙烯腈纤维抗渗混凝土的制造方法
CN106977156A (zh) * 2017-04-13 2017-07-25 天津金隅混凝土有限公司 高强高性能混凝土及其制备方法
CN117431828A (zh) * 2023-12-19 2024-01-23 北京新桥技术发展有限公司 一种桥梁整平层、桥梁,及建造方法

Similar Documents

Publication Publication Date Title
Mechtcherine et al. Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study
Mohamed Influence of nano materials on flexural behavior and compressive strength of concrete
Chindaprasirt et al. Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash
Adesina et al. Influence of glass powder on the durability properties of engineered cementitious composites
CN100534743C (zh) 现代混凝土配制方法及现代混凝土配合比
Tayeh et al. Influence of sand grain size distribution and supplementary cementitious materials on the compressive strength of ultrahigh-performance concrete
CN103922662A (zh) 超高性能水泥基复合材料
CN104909624A (zh) 一种高韧性混凝土组合物
Aswathy et al. Behaviour of self compacting concrete by partial replacement of fine aggregate with coal bottom ash
Gradinaru et al. Investigations on the mechanical properties of concrete with sheep wool fibers and fly ash
CN102249612A (zh) 无钢筋无收缩的桥面铺装c40水泥混凝土
CN104926237A (zh) 一种低胶材纤维自密实混凝土及其制备方法
CN108191315B (zh) 一种利用滩砂制备的混凝土
Mukilan et al. Crimped and hooked end steel fibre impacts on self compacting concrete
Rajamane et al. Fly ash as a sand replacement material in concrete-A study
Titiksh et al. Utilizing pond ash as fine aggregates in sustainable green concrete pavement–A case study
CN110510948A (zh) 一种高性能轻骨料混凝土及其制备方法
Shaji et al. Strength characteristics of crumb rubber incorporated self-compacting concrete
Impa et al. Experimentation on triple-blended concrete with manufactured sand replaced by granulated blast furnace slag for fine aggregates
Isaia et al. A statistical approach of binary and ternary concrete mixtures with mineral additions
Prasad et al. A Study on the Properties of Concrete with Coconut Fiber, Steel Fiber and Polypropylene Fiber.
Hachim et al. The effect of different types of aggregate and additives on the properties of self-compacting lightweight concrete
Qasim et al. A study of durable and reliable reactive powder concrete containing rice husk fibers
Cheewaket et al. Effect of Fly Ash on Chloride Penetration and Compressive Strength of Reclycled and Natural Aggregate Concrete under 5-year Exposure in Marine Environment
Alsaffar et al. Performance of Reactive Powder Underwater Concrete: An Experimental and Statistical Investigation of Physico-Mechanical Characteristics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111123