CN102248235B - Device and method for detecting discharge state in electric spark linear cutting work gap - Google Patents
Device and method for detecting discharge state in electric spark linear cutting work gap Download PDFInfo
- Publication number
- CN102248235B CN102248235B CN2011101331544A CN201110133154A CN102248235B CN 102248235 B CN102248235 B CN 102248235B CN 2011101331544 A CN2011101331544 A CN 2011101331544A CN 201110133154 A CN201110133154 A CN 201110133154A CN 102248235 B CN102248235 B CN 102248235B
- Authority
- CN
- China
- Prior art keywords
- module
- signal
- threshold value
- cpld
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title abstract description 21
- 238000010892 electric spark Methods 0.000 title 1
- 238000005070 sampling Methods 0.000 claims abstract description 49
- 238000012545 processing Methods 0.000 claims abstract description 42
- 238000002955 isolation Methods 0.000 claims abstract description 29
- 238000003754 machining Methods 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims description 33
- 239000007769 metal material Substances 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 229910010293 ceramic material Inorganic materials 0.000 claims description 6
- 238000009763 wire-cut EDM Methods 0.000 claims 6
- 210000001367 artery Anatomy 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 claims 1
- 230000004069 differentiation Effects 0.000 claims 1
- 238000009760 electrical discharge machining Methods 0.000 claims 1
- 239000012467 final product Substances 0.000 claims 1
- 230000005622 photoelectricity Effects 0.000 claims 1
- 230000036278 prepulse Effects 0.000 claims 1
- 210000003462 vein Anatomy 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 abstract description 8
- 101100464782 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CMP2 gene Proteins 0.000 description 22
- 101100464779 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CNA1 gene Proteins 0.000 description 22
- 230000015556 catabolic process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 5
- 101100522356 Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) PUL1 gene Proteins 0.000 description 4
- 101100522357 Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) PUL2 gene Proteins 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000003708 edge detection Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000282312 Proteles Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
本发明涉及一种电火花线切割加工间隙放电状态检测装置与方法,属于电火花加工技术领域。该装置的差分采样模块通过信号传输电缆与电火花机床的两极相连,差分采样模块的信号输出端与阈值比较模块的信号输入端连接,阈值比较模块的信号输出端与光电隔离模块的信号输入端连接,CPLD状态判别和处理模块的第一信号输入端与光电隔离模块的信号输出端连接,上位机的信号输出端通过CPLD程序下载电缆与CPLD状态判别和处理模块的第二信号输入端连接。所述阈值比较模块通过集成比较器将采样的间隙电压信号和设定的三个阈值进行比较,并将比较的结果送入光电隔离模块。本发明可用于电火花线切割加工机床的间隙脉冲放电状态检测。
The invention relates to a device and method for detecting gap discharge state in electric discharge wire cutting machining, and belongs to the technical field of electric discharge processing. The differential sampling module of the device is connected to the two poles of the electric discharge machine tool through a signal transmission cable, the signal output terminal of the differential sampling module is connected to the signal input terminal of the threshold value comparison module, and the signal output terminal of the threshold value comparison module is connected to the signal input terminal of the photoelectric isolation module Connection, the first signal input end of the CPLD state discrimination and processing module is connected with the signal output end of the photoelectric isolation module, and the signal output end of the host computer is connected with the second signal input end of the CPLD state discrimination and processing module through the CPLD program download cable. The threshold comparison module compares the sampled gap voltage signal with the three preset thresholds through an integrated comparator, and sends the comparison result to the photoelectric isolation module. The invention can be used for detecting the gap pulse discharge state of electric discharge wire cutting machine tools.
Description
技术领域 technical field
本发明涉及一种电火花线切割加工间隙放电状态检测装置与方法,属于电火花加工技术领域。 The invention relates to a device and method for detecting gap discharge state in electric discharge wire cutting machining, and belongs to the technical field of electric discharge processing.
背景技术 Background technique
电火花加工是通过工具电极和工件之间脉冲性火花放电来蚀除工件材料,以达到对零件的尺寸、形状及表面质量预定的加工要求。电火花加工方法不受工件的材料硬度、强度等机械性能的限制,同时具有宏观切削力小等优点,因此特别适合加工难加工材料及复杂形状工件加工,在航空、航天、模具等领域有着广泛的应用。 EDM is to etch the material of the workpiece through the pulsed spark discharge between the tool electrode and the workpiece, so as to meet the predetermined processing requirements for the size, shape and surface quality of the part. The EDM method is not limited by the mechanical properties of the workpiece such as hardness and strength, and has the advantages of small macroscopic cutting force. Therefore, it is especially suitable for processing difficult-to-machine materials and complex-shaped workpieces. It has a wide range of applications in aviation, aerospace, molds and other fields. Applications.
在金属材料的电火花加工过程中,极间电压信号反应了加工过程中脉冲放电情况,这与电火花加工的效率和精度密切相关。当脉冲放电为火花放电状态时,间隙两端电压由空载电压经过一段时间的击穿延时,间隙发生击穿,间隙两端电压由空载电压下降为放电维持电压。在电火花线切割加工中,由于电极丝和工件存在相对运动,一般认为不存在稳定电弧放电现象。但在实际加工过程中,存在没有击穿延时的放电现象,这种放电状态为偏短路的不稳定电弧放电状态。它表明此时间隙排屑困难,加工状态差,所以在电火花线切割加工过程中,需要将这种放电状态和含有击穿延时的火花放电状态区分出来。因此在金属材料的电火花线切割加工中,间隙脉冲放电状态分为:空载,火花放电,不稳定电弧放电和短路。 During the EDM process of metal materials, the inter-electrode voltage signal reflects the pulse discharge during the machining process, which is closely related to the efficiency and accuracy of EDM. When the pulse discharge is in the state of spark discharge, the voltage at both ends of the gap is delayed from the no-load voltage for a period of breakdown, and the gap breaks down, and the voltage at both ends of the gap drops from the no-load voltage to the discharge maintenance voltage. In wire electric discharge machining, due to the relative motion between the electrode wire and the workpiece, it is generally believed that there is no stable arc discharge phenomenon. However, in the actual processing process, there is a discharge phenomenon without breakdown delay, and this discharge state is an unstable arc discharge state with partial short circuit. It shows that the gap chip removal is difficult and the processing state is poor at this time. Therefore, in the process of WEDM, it is necessary to distinguish this discharge state from the spark discharge state with breakdown delay. Therefore, in wire electric discharge machining of metal materials, gap pulse discharge states are divided into: no-load, spark discharge, unstable arc discharge and short circuit.
电火花加工技术一般用来加工导电材料,现有的辅助电极法可以实现利用电火花技术加工绝缘陶瓷,其原理是在工件表面附加导电层,利用放电过程中形成的导电膜构成辅助电极实现放电加工。在绝缘陶瓷的电火花线切割加工过程中,当导电膜形成差时,此时导电膜厚度小,电阻大,出现间隙高电压放电现象。当间隙放电电压高于加工金属时的维持电压,将此时的火花放电状态称为高阻火花状态,此时的短路状态称为高阻短路状态。当导电膜形成良好时,此时导电膜厚度大,电阻小,间隙放电电压近似等于加工金属时的维持电压,将此时的火花放电状态称为低阻火花状态,此时的短路状态称为低阻短路状态。因此,在绝缘陶瓷电火花线切割加工中,间隙放电状态被分为五种,分别是空载、高阻火花、低阻火花、高阻短路和低阻短路状态。 EDM technology is generally used to process conductive materials. The existing auxiliary electrode method can realize the use of EDM technology to process insulating ceramics. The principle is to add a conductive layer to the surface of the workpiece, and use the conductive film formed during the discharge process to form an auxiliary electrode to achieve discharge. processing. In the WEDM process of insulating ceramics, when the formation of the conductive film is poor, the thickness of the conductive film is small, the resistance is large, and the gap high-voltage discharge phenomenon occurs. When the gap discharge voltage is higher than the maintenance voltage when processing metal, the spark discharge state at this time is called a high-resistance spark state, and the short-circuit state at this time is called a high-resistance short-circuit state. When the conductive film is well formed, the thickness of the conductive film is large, the resistance is small, and the gap discharge voltage is approximately equal to the maintenance voltage during metal processing. The spark discharge state at this time is called the low-resistance spark state, and the short-circuit state at this time is called Low resistance short circuit condition. Therefore, in the WEDM of insulating ceramics, the gap discharge state is divided into five types, which are no-load, high-resistance spark, low-resistance spark, high-resistance short-circuit and low-resistance short-circuit state.
目前的电火花线切割加工机床,一般只对间隙的平均电压进行检测,并以此为参考值决定当前伺服进给速度的大小。当间隙平均电压高于参考值时,则加快进给,当间隙平均电压低于参考值时,工作台停止进给,进入等待,当检测到的短路达到一定数量,则控制工作台伺服回退。这种间隙状态检测方法能够近似反映当前间隙放电状态,但由于间隙平均电压是由各种放电状态的电压平均构成,并不能对单个脉冲放电状态进行检测,所以平均电压法含有不确定的因素,不能实现对间隙实时和精确监控,有可能会恶化加工效果。特别是对于绝缘陶瓷电火花线切割加工,由于存在高阻放电状态,间隙的平均电压高,采用平均电压检测法会加快进给速度,而这将导致加工效果恶化甚至不能加工,此时平均电压检测法失效。 The current wire electric discharge machine tool generally only detects the average voltage of the gap, and uses this as a reference value to determine the current servo feed speed. When the average voltage of the gap is higher than the reference value, the feed is accelerated; when the average voltage of the gap is lower than the reference value, the workbench stops feeding and enters the waiting state; when the detected short circuit reaches a certain number, the servo of the workbench is controlled to retreat . This gap state detection method can approximately reflect the current gap discharge state, but since the gap average voltage is composed of the average voltage of various discharge states, it cannot detect a single pulse discharge state, so the average voltage method contains uncertain factors. Real-time and accurate monitoring of the gap cannot be realized, and the processing effect may be deteriorated. Especially for wire electric discharge machining of insulating ceramics, due to the existence of high-resistance discharge state, the average voltage of the gap is high, and the average voltage detection method will speed up the feed speed, which will cause the processing effect to deteriorate or even fail to process. At this time, the average voltage The detection method fails.
发明内容 Contents of the invention
本发明的目的在于提供一种电火花线切割加工放电状态检测装置,该检测装置通过实时采样每个脉冲的间隙电压,通过判断间隙电压所处的区间以及对间隙击穿信号的检测,在脉宽结束时判断出当前脉冲放电状态,并对脉冲状态信息进行统计处理,推测出间隙的加工状态,以此作为伺服控制的依据。 The object of the present invention is to provide a discharge state detection device for wire electric discharge machining. At the end of the width, the current pulse discharge state is judged, and the pulse state information is statistically processed to infer the processing state of the gap, which is used as the basis for servo control.
本发明是通过以下技术方案实现的: The present invention is achieved through the following technical solutions:
电火花线切割加工间隙放电状态检测装置,包括差分采样模块、阈值比较模块、光电隔离模块、CPLD判别和处理模块、上位机、PCI104总线电缆、CPLD程序下载电缆和信号传输电缆,差分采样模块通过信号传输电缆与电火花机床的两极相连,差分采样模块的信号输出端与阈值比较模块的信号输入端连接,阈值比较模块的信号输出端与光电隔离模块的信号输入端连接,CPLD状态判别和处理模块的第一信号输入端与光电隔离模块的信号输出端连接,CPLD状态判别和处理模块的信号输出端通过PCI104总线电缆与上位机的信号输入端连接,上位机的信号输出端通过CPLD程序下载电缆与CPLD状态判别和处理模块的第二信号输入端连接。所述阈值比较模块通过集成比较器将采样的间隙电压信号和设定的三个阈值进行比较,并将比较的结果送入光电隔离模块;阈值比较模块三个比较器的阈值设置分别对应阈值Vef1,Vef2,Vef3,在金属材料的电火花加工中,阈值Vef3设定为3~5V,阈值Vef2设置为略小于金属脉冲放电维持电压值,阈值Vef1设置为略低于空载电压;在绝缘陶瓷材料的电火花线切割加工中,只需要调整阈值Vef2即可,阈值Vef2设置为略大于金属脉冲放电维持电压值, Vef3设置为3V,Vef2设置为40V,Vef1设置为70V。 Gap discharge state detection device for WEDM, including differential sampling module, threshold value comparison module, photoelectric isolation module, CPLD discrimination and processing module, host computer, PCI104 bus cable, CPLD program download cable and signal transmission cable, differential sampling module through The signal transmission cable is connected to the two poles of the EDM machine tool, the signal output terminal of the differential sampling module is connected to the signal input terminal of the threshold value comparison module, the signal output terminal of the threshold value comparison module is connected to the signal input terminal of the photoelectric isolation module, and the CPLD status is judged and processed The first signal input terminal of the module is connected with the signal output terminal of the photoelectric isolation module, the signal output terminal of the CPLD state discrimination and processing module is connected with the signal input terminal of the host computer through the PCI104 bus cable, and the signal output terminal of the host computer is downloaded through the CPLD program The cable is connected with the second signal input end of the CPLD state discrimination and processing module. The threshold comparison module compares the sampled gap voltage signal with the three thresholds set by the integrated comparator, and sends the comparison result to the photoelectric isolation module; the threshold settings of the three comparators of the threshold comparison module correspond to the threshold V respectively. ef1 , V ef2 , V ef3 , in the electric discharge machining of metal materials, the threshold V ef3 is set to 3~5V, the threshold V ef2 is set to be slightly lower than the value of the metal pulse discharge sustaining voltage, and the threshold V ef1 is set to be slightly lower than the empty voltage. Carrying voltage; in wire electric discharge machining of insulating ceramic materials, only the threshold V ef2 needs to be adjusted, and the threshold V ef2 is set to be slightly larger than the metal pulse discharge sustaining voltage value, V ef3 is set to 3V, V ef2 is set to 40V, V ef1 is set to 70V.
电火花线切割加工间隙放电状态检测方法,包括如下步骤: A detection method for gap discharge state in wire electric discharge machining, comprising the following steps:
利用集成运算放大器采用差分运算的方式将间隙电压信号采集到检测装置,并接入阈值比较模块; Use the integrated operational amplifier to collect the gap voltage signal to the detection device by means of differential operation, and connect it to the threshold comparison module;
所述阈值比较模块通过集成比较器将采样的间隙电压信号和设定的三个阈值进行比较,并将比较的结果送入光电隔离模块; The threshold comparison module compares the sampled gap voltage signal with the three preset thresholds through an integrated comparator, and sends the comparison result to the photoelectric isolation module;
所述光电隔离模块通过光电耦合器将比较结果经光电隔离送入CPLD状态判别和处理模块; The photoelectric isolation module sends the comparison result to the CPLD state discrimination and processing module through photoelectric isolation;
所述CPLD状态判别和处理模块对输入的信号进行处理,通过对间隙电压号的检测和对输入信号进行逻辑运算,判断出当前脉冲的放电状态,并通过PCI104总线电缆传送到上位机;首先在脉宽期间,通过对输入信号是否存在下降沿来检测间隙是否发生击穿,并对各输入信号进行逻辑运算,判别脉冲放电状态,然后通过采样控制脉冲实现在脉宽即将结束时进行状态输出,并利用状态保持模块将状态信息一直保持到脉间结束,以此实现对间隙放电状态的判别; The CPLD state discrimination and processing module processes the input signal, and judges the discharge state of the current pulse by detecting the gap voltage number and carrying out logical operation on the input signal, and transmits it to the upper computer through the PCI104 bus cable; During the pulse width period, whether there is a falling edge in the input signal is used to detect whether the gap is broken down, and the logic operation is performed on each input signal to judge the pulse discharge state, and then the state output is realized when the pulse width is about to end by sampling the control pulse. And use the state holding module to keep the state information until the end of the pulse interval, so as to realize the discrimination of the gap discharge state;
所述上位机获取每个脉冲的放电状态信息,并进行统计处理,推断出此时间隙的加工状态,为控制系统的运行提供依据。 The host computer obtains the discharge state information of each pulse, and performs statistical processing to infer the processing state of the gap at this time, providing a basis for the operation of the control system.
本发明的有益效果主要包括: The beneficial effects of the present invention mainly include:
1、检测装置采用CPLD进行状态判别和处理,CPLD承担了主要的状态判别工作,由于CPLD为在线可编程模块,因此整个检测装置具有非常大的柔性。 1. The detection device uses CPLD for state discrimination and processing. CPLD undertakes the main state discrimination work. Since CPLD is an online programmable module, the entire detection device has great flexibility.
2、检测装置可以实现对每个脉冲放电状态进行判别,能够获得更全面的间隙状态信息,并且间隙放电状态检测装置能够区分无击穿延时的不稳定电弧放电状态,有利于更准确地判断当前的间隙加工状态,因此装置具有实时性好,精确且稳定等优点。 2. The detection device can realize the discrimination of each pulse discharge state, and can obtain more comprehensive gap state information, and the gap discharge state detection device can distinguish the unstable arc discharge state without breakdown delay, which is conducive to more accurate judgment The current gap processing state, so the device has the advantages of good real-time performance, accuracy and stability.
3、检测装置既可以用于金属材料的电火花线切割加工,也能够用于绝缘陶瓷材料的电火花线切割加工,只需通过调整阈值即可实现,因此装置具有操作便利和适用范围广的优点。 3. The detection device can be used not only for wire electric discharge processing of metal materials, but also for wire electric discharge processing of insulating ceramic materials. It can be realized only by adjusting the threshold value, so the device has the advantages of convenient operation and wide application range. advantage.
附图说明:Description of drawings:
图1是电火花线切割加工脉冲放电状态波形判别图,其中:图a)是金属材料电火花线切割加工波形判别图,金属材料在进行电火花加工过程中,脉冲放电状态有空载、火花、不稳定电弧和短路状态,CMP1、CMP2和CMP3是CPLD的三个输入信号,Vef1,Vef2,Vef3是设置的三个阈值;图b)是绝缘陶瓷电火花线切割加工波形判别图,在绝缘陶瓷电火花线切割加工过程中,脉冲放电状态有空载、高阻火花、低阻火花、高阻短路和低阻短路状态,CMP1、CMP2和CMP3是CPLD的三个输入信号,Vef1、Vef2和Vef3是设置的三个阈值; Figure 1 is the waveform discriminant diagram of pulse discharge state in wire electric discharge machining, in which: Figure a) is the waveform discriminant diagram of wire electric discharge machining of metal materials. , unstable arc and short circuit state, CMP1, CMP2 and CMP3 are the three input signals of CPLD, V ef1 , V ef2 , V ef3 are the three thresholds set; Figure b) is the waveform discrimination diagram of insulating ceramic wire cutting , in the process of wire electric discharge cutting of insulating ceramics, the pulse discharge state has no load, high resistance spark, low resistance spark, high resistance short circuit and low resistance short circuit state, CMP1, CMP2 and CMP3 are the three input signals of CPLD, V ef1 , V ef2 and V ef3 are the three thresholds set;
图2是电火花线切割加工间隙放电状态检测装置的结构示意图,其中:标号1表示电火花加工机床,标号2表示信号传输电缆,标号3表示差分采样模块,标号4表示阈值比较模块,标号5表示光电隔离模块,标号6表示CPLD状态判别和处理模块,标号7表示PCI104总线电缆,标号8表示上位机,标号9表示CPLD程序下载电缆;
Fig. 2 is a structural schematic diagram of a gap discharge state detection device for wire electric discharge machining, wherein: label 1 indicates an electric discharge machine tool,
图3是电火花线切割加工间隙放电状态检测装置电路原理示意图; Fig. 3 is a schematic diagram of the circuit principle of the detection device for gap discharge state in wire electric discharge machining;
图4是电火花线切割加工间隙放电状态检测装置的CPLD内部电路程序示意图; Fig. 4 is a schematic diagram of the CPLD internal circuit program of the wire electric discharge machining gap discharge state detection device;
图5是CPLD内部电路程序SERVO程序块的电路结构示意图; Fig. 5 is the schematic diagram of the circuit structure of the CPLD internal circuit program SERVO program block;
图6是金属材料电火花线切割加工CPLD程序仿真波形图; Fig. 6 is a CPLD program simulation waveform diagram of wire electric discharge machining of metal materials;
图7是绝缘陶瓷材料电火花线切割加工CPLD程序仿真波形图。 Fig. 7 is a simulation waveform diagram of a CPLD program for wire electric discharge machining of insulating ceramic materials.
具体实施方式:Detailed ways:
下面将结合附图对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述实施例。 The present invention will be described in further detail below in conjunction with the accompanying drawings: the present embodiment is implemented under the premise of the technical solution of the present invention, and detailed implementation methods and specific operation processes have been provided, but the protection scope of the present invention is not limited to the following Example. the
如图2所示,本实施例所涉及的电火花间隙放电状态检测装置,包括信号传输电缆2、差分采样模块3、阈值比较模块4、光电隔离模块5、CPLD(复杂可编程逻辑器件)状态判别和处理模块6、PCI104总线电缆7、上位机8以及CPLD程序下载电缆9。连接方式如下:差分采样模块3通过信号传输电缆2与电火花机床1的两极相连,差分采样模块3的信号输出端与阈值比较模块4的信号输入端连接,阈值比较模块4的信号输出端与光电隔离模块5的信号输入端连接,CPLD状态判别和处理模块6的第一信号输入端与光电隔离模块5的信号输出端连接,CPLD状态判别和处理模块6的信号输出端通过PCI104总线电缆7与上位机8的信号输入端连接,上位机8的信号输出端通过CPLD程序下载电缆9与CPLD状态判别和处理模块6的第二信号输入端连接。
As shown in Figure 2, the spark gap discharge state detection device involved in this embodiment includes a
其主要原理是当电火花加工机床两极间隙电压信号通过信号传输电缆输入到差分采样模块,差分采样模块采集电火花机床两极的电压信号,并将其转换成检测装置供电电源电压以下的电压信号,阈值比较模块将此电压信号与所设阈值进行比较,获取当前电压所处区间,比较的结果经光电隔离模块输入CPLD中,CPLD在脉宽期间实时跟踪输入的电压信号,根据脉宽期间电压信号所处的幅值区间和信号是否存在下降沿,当脉宽结束时,判断出此脉冲的放电状态,判断的结果经由PCI104总线送往上位机存储,并进行统计处理,为伺服控制系统提供伺服依据。上位机上存储了CPLD的内部程序,可以通过在线编程的方式经由JTAG型CPLD程序下载电缆下载到CPLD中。 The main principle is that when the voltage signal of the pole gap of the EDM machine tool is input to the differential sampling module through the signal transmission cable, the differential sampling module collects the voltage signal of the two poles of the EDM machine tool and converts it into a voltage signal below the power supply voltage of the detection device. The threshold comparison module compares the voltage signal with the set threshold to obtain the range of the current voltage. The comparison result is input into the CPLD through the photoelectric isolation module. The CPLD tracks the input voltage signal in real time during the pulse width. According to the voltage signal during the pulse width Whether there is a falling edge in the amplitude range and the signal, when the pulse width ends, the discharge state of the pulse is judged, and the judgment result is sent to the host computer for storage through the PCI104 bus, and statistical processing is performed to provide servo control system for the servo control system. in accordance with. The internal program of CPLD is stored on the host computer, which can be downloaded to CPLD through the JTAG type CPLD program download cable through online programming.
图3为本具体实施方式提供的电火花间隙放电状态检测装置的电路原理图,所用的绘图软件为Protel DXP2004。包括差分采样模块,阈值比较模块,光电隔离模块,CPLD状态判别和处理模块。 Fig. 3 is the circuit schematic diagram of the spark gap discharge state detection device provided by this specific embodiment, and the drawing software used is Protel DXP2004. Including differential sampling module, threshold comparison module, photoelectric isolation module, CPLD state discrimination and processing module.
具体的,差分采样模块(U1)为集成运放LF357N,机床正极与R1、R3串联接入U1的反相输入端2端,机床负极与R2、R4串联接入U1的同相输入端3端,U1的同相输入端3端与R5串联接模拟地,U1的输出端6端与R7串联接入U1的反相输入端2端。C9和C21并联后接入U1的正电源输入端和模拟地之间,起到去耦的作用。C10和C20并联后接入U1的负电源输入端和模拟地之间,起到去耦的作用。
Specifically, the differential sampling module (U1) is an integrated operational amplifier LF357N, the positive pole of the machine tool is connected in series with the inverting
阈值比较模块(U4和U5)为集成比较器LM393AN,U1的输出端6端与R8串联接入U4A的反相输入端2端,U1的输出端6端与R10串联接入U4B的反相输入端6端,U1的输出端6端与R14串联接入U5A的反相输入端2端。R9和电位计R23串联接入+15V和模拟地之间,电位计R23的输出端2端接入U4A的同相输入端3端。R11和电位计R24串联接入+15V和模拟地之间,电位计R24的输出端2端接入U4B的同相输入端5端。R15和电位计R25串联接入+15V和模拟地之间,电位计R25的输出端2端接入U5A的同相输入端3端。U4A的输出端1端与R12串联后接+5V,U4B的输出端7端与R13串联后接+5V,U5A的输出端1端与R16串联后接+5V。
The threshold comparison module (U4 and U5) is an integrated comparator LM393AN. The
光电隔离模块(U7,U8和U9)为高速光耦6N137,U4A的输出端1端与R17串联接入U7的2端,U5A的输出端1端与R18串联接入U8的2端,U4B的输出端7端与R17串联接入U9的2端。U7的3端接模拟地,U8的3端接模拟地,U9的3端接模拟地。U7的8端接数字电路供电电源正极VCC,U7的5端接数字地,U7的8端和5端之间接入C13,U7的6端串联R20接入U7的8端。U8的8端接数字电路供电电源正极VCC,U8的5端接数字地,U8的8端和5端之间接入C14,U8的6端串联R21接入U8的8端。U9的8端接数字电路供电电源正极VCC,U9的5端接数字地,U9的8端和5端之间接入C15,U9的6端串联R22接入U9的8端。
The photoelectric isolation module (U7, U8 and U9) is a high-speed optocoupler 6N137. The output terminal 1 of U4A is connected to the
CPLD判别和处理模块(U6)为EPM7064SLC44-10型CPLD,U3为反相器74AC14B,U2为OSC 25MHz有源晶振,P1为JTAG下载端子,G1为排阻。U6的33端与U7的6端相连,U6的34端与U8的6端相连,U6的36端与U9的6端相连,U6的37端与外部脉宽结束信号相连。U6的16端、17端、18端、19端和20端为输出端,与PCI104总线相连。U6的10端、22端、30端和42端接数字地,U6的3端,15端,23端和35端接电源VCC。P1的1端与U6的32端相连,P1的3端与U6的38端相连,P1的5端与U6的13端相连,P1的7端和9端与U6的7端相连,P1的2端和10端接数字地,P1的4端接VCC。U2的2端接数字地,U2的3端接U3A的1端,U2的4端接VCC。U3A的2端接U6的43端。
CPLD discrimination and processing module (U6) is EPM7064SLC44-10 CPLD, U3 is inverter 74AC14B, U2 is OSC 25MHz active crystal oscillator, P1 is JTAG download terminal, G1 is exclusion.
图4为本具体实施方式提供的电火花间隙放电状态检测装置的CPLD内部电路程序图,所用的程序开发软件为Quartus II 7.0。输入CLK为芯片U6的43端,输入End_pulse为芯片的37端,输入CMP1为U6的33端,输入CMP2为U6的34端,输入CMP3为U6的36端。输出Spark/Spark_H为U6的19端,输出Spark_L为U6的18端,输出Open为U6的20端,输出Arc/Short_H为U6的17端,输出Short/Short_L为U6的16端。
Fig. 4 is the CPLD internal circuit program diagram of the spark gap discharge state detection device provided by this specific embodiment, and the program development software used is Quartus II 7.0. Input CLK is terminal 43 of chip U6, input End_pulse is terminal 37 of the chip, input CMP1 is terminal 33 of U6, input CMP2 is terminal 34 of U6, and input CMP3 is terminal 36 of U6. Output Spark/Spark_H is U6 terminal 19, output Spark_L is
CPLD内部电路程序包含四大模块,分别是间隙击穿检测模块,逻辑判断模块,状态采样控制模块和状态保持模块。 The internal circuit program of CPLD includes four modules, which are gap breakdown detection module, logic judgment module, state sampling control module and state holding module.
具体的,对于间隙击穿检测模块:从图1所示的电火花加工放电状态波形判别图中可以看到,当间隙发生击穿现象时,CMP1或CMP2在CMP 3高电平期间存在下降沿,因此可以在CMP3高电平期间,通过对CMP1和CMP2下降沿的检测实现对间隙击穿信号的检测。间隙击穿检测模块包含两部分,分别是CMP1下降沿检测模块DFF寄存器Inst33和CMP2下降沿检测模块DFF寄存器Inst1。PUL1输出一直为低电平,当输入CMP1在CMP3高电平期间存在下降沿,PUL1输出高电平并一直保持到脉宽结束。PUL2输出一直为低电平,当输入CMP2在CMP3高电平期间存在下降沿,PUL2输出高电平并一直保持到脉宽结束。利用CMP3作为两个寄存器的清零信号,在CMP3低电平期间,即脉间期间,间隙击穿检测模块清零,等待下一个脉宽。 Specifically, for the gap breakdown detection module: it can be seen from the electric discharge machining discharge state waveform discrimination diagram shown in Figure 1 that when the gap occurs, there is a falling edge of CMP1 or CMP2 during the high level of CMP3 , so the gap breakdown signal can be detected by detecting the falling edges of CMP1 and CMP2 during the high level period of CMP3. The gap breakdown detection module consists of two parts, which are the DFF register Inst33 of the CMP1 falling edge detection module and the DFF register Inst1 of the CMP2 falling edge detection module. The output of PUL1 is always low level. When the input CMP1 has a falling edge during the high level period of CMP3, PUL1 outputs high level and remains until the end of the pulse width. The output of PUL2 is always low level, when input CMP2 has a falling edge during the high level period of CMP3, PUL2 outputs high level and remains until the end of the pulse width. Use CMP3 as the clearing signal of the two registers. During the low level period of CMP3, that is, between pulses, the gap breakdown detection module is cleared and waits for the next pulse width.
逻辑判断模块:二输入与门Inst5、Inst6、Inst11,三输入与门Inst13、Inst14、Inst15和非门Inst8、Inst10、Inst12、Inst16构成CMP3高电平期间的逻辑判断模块。 Logic judgment module: Two-input AND gates Inst5, Inst6, Inst11, three-input AND gates Inst13, Inst14, Inst15 and NOT gates Inst8, Inst10, Inst12, Inst16 form a logic judgment module during the high level of CMP3.
状态采样控制模块:非门Inst34,SELECT_PUL程序块,DFF寄存器Inst2与二输入与门Inst19、Inst20、Inst21、Inst22、Inst23构成状态采样控制模块,End_Pulse为脉宽即将结束时的状态采样控制信号。由于间隙电压信号从信号传输电缆进入检测装置,经过差分采样,比较环节,光电隔离处理进入CPLD,将产生1-2μs的整体传输延时,因此可以利用电源的主振信号作为End_Pulse信号。当End_Pulse信号存在下降沿,表明此时开始采样PUL1、PUL2、Inst13、Inst5和Inst6的输出,并将采样结果保持0.8μs。SELECT_PUL程序块用来设置采样脉冲长度为0.8μs,其中SLE_PUL为采样脉冲的上升沿,END_PUL为采样脉冲的结束信号,将这两个信号输入DFF寄存器中,便获得了0.8μs的采样脉冲。通过五个二输入与门采样PUL1、PUL2、Inst13、Inst5和Inst6的输出。 State sampling control module: NOT gate Inst34, SELECT_PUL program block, DFF register Inst2 and two-input AND gates Inst19, Inst20, Inst21, Inst22, Inst23 form a state sampling control module, and End_Pulse is the state sampling control signal when the pulse width is about to end. Since the gap voltage signal enters the detection device from the signal transmission cable, and enters the CPLD through differential sampling, comparison, and photoelectric isolation processing, an overall transmission delay of 1-2μs will be generated, so the main oscillator signal of the power supply can be used as the End_Pulse signal. When the End_Pulse signal has a falling edge, it indicates that the output of PUL1, PUL2, Inst13, Inst5, and Inst6 is sampled at this time, and the sampling result is held for 0.8 μs. The SELECT_PUL program block is used to set the sampling pulse length to 0.8μs, where SLE_PUL is the rising edge of the sampling pulse, and END_PUL is the end signal of the sampling pulse. Input these two signals into the DFF register to obtain a 0.8μs sampling pulse. The outputs of PUL1, PUL2, Inst13, Inst5, and Inst6 are sampled through five two-input AND gates.
状态保持模块:5路SERVO程序块构成状态保持模块,用于保持状态采样控制模块的5路输出,图5是SERVO程序块的电路结构图。状态采样控制模块采样的各路输出作为状态信息,传输进入SERVO程序块,利用DFF寄存器Inst1进行保持,并一直保持到下一个脉宽来临。DFF 寄存器Inst用来提供清零信号,ENABLE与外部CMP3相连,当下一个脉宽来临时,ENABLE信号由低至高,前一个状态采样信息被清除。2us_CON用来在采样控制信号来临时清除清零信号,准备进行状态保持。5路SERVO的输出,在每个脉冲期间,只有此脉冲放电状态对应的输出存在高电平,其余四路输出一直为低,这样便实现了区分脉冲放电状态。在金属的电火花加工中,输出Spark/Spark_H对应火花状态输出,输出Spark_L无意义,输出Open对应空载状态输出,输出Arc/Short_H对应不稳定电弧状态输出,输出Short/Short_L对应短路状态输出。在绝缘陶瓷的电火花线切割加工中,输出Spark/Spark_H对应高阻火花状态输出,输出Spark_L对应低阻火花状态输出,输出Open对应空载状态输出,输出Arc/Short_H对应高阻短路状态输出,输出Short/Short_L对应低阻短路状态输出。 State holding module: 5 SERVO program blocks form a state holding module, which is used to hold 5 outputs of the state sampling control module. Figure 5 is a circuit structure diagram of the SERVO program block. The output of each channel sampled by the state sampling control module is used as state information, which is transmitted into the SERVO program block and kept by the DFF register Inst1 until the next pulse width comes. The DFF register Inst is used to provide a clear signal, and ENABLE is connected to the external CMP3. When the next pulse width comes, the ENABLE signal changes from low to high, and the previous state sampling information is cleared. 2us_CON is used to clear the clear signal when the sampling control signal comes, and prepare for state maintenance. For the output of the 5-way SERVO, during each pulse period, only the output corresponding to the pulse discharge state has a high level, and the other four outputs are always low, so that the pulse discharge state can be distinguished. In metal EDM, the output Spark/Spark_H corresponds to the spark state output, the output Spark_L is meaningless, the output Open corresponds to the no-load state output, the output Arc/Short_H corresponds to the unstable arc state output, and the output Short/Short_L corresponds to the short circuit state output. In the WEDM of insulating ceramics, the output Spark/Spark_H corresponds to the high-impedance spark state output, the output Spark_L corresponds to the low-impedance spark state output, the output Open corresponds to the no-load state output, and the output Arc/Short_H corresponds to the high-impedance short-circuit state output. The output Short/Short_L corresponds to the low-impedance short-circuit state output.
下面通过具体的实施例对电火花间隙放电状态检测的过程作进一步说明: The process of spark gap discharge state detection is further described below by specific embodiments:
实施例1 金属材料的电火花线切割加工 Embodiment 1 Wire electric discharge machining of metal materials
硬件电路和CPLD内部电路如图2-5所述,只需要调整Vef1,Vef2,Vef3三个阈值即可。相应的阈值设定值是相对空载电压而言的,阈值比较模块三个比较器的阈值设置分别对应阈值Vef1,Vef2,Vef3,但其值等于Vef1,Vef2,Vef3乘以差分采样模块的采样比例。阈值Vef3设定为3~5V,它的作用是区分每个脉冲的脉宽和脉间,控制检测程序只在脉宽期间对放电状态进行判别,在脉间期间不判别状态,防止产生误判断。阈值Vef2设置为略小于金属脉冲放电维持电压值,阈值Vef1设置为略低于空载电压。在金属材料的电火花加工中,Vef3设置为3V,Vef2设置为18V。Vef1设置为70V。 The hardware circuit and CPLD internal circuit are as shown in Figure 2-5, only need to adjust the three thresholds of V ef1 , V ef2 and V ef3 . The corresponding threshold setting values are relative to the no-load voltage. The threshold setting of the three comparators of the threshold comparison module correspond to the thresholds V ef1 , V ef2 , V ef3 respectively, but their values are equal to V ef1 , V ef2 , V ef3 times The sampling scale of the differential sampling module. Threshold V ef3 is set to 3~5V. Its function is to distinguish the pulse width and pulse interval of each pulse. The control detection program only judges the discharge state during the pulse width, and does not judge the state during the pulse interval to prevent errors. judge. The threshold V ef2 is set to be slightly lower than the sustaining voltage of the metal pulse discharge, and the threshold V ef1 is set to be slightly lower than the no-load voltage. In the EDM of metal materials, V ef3 is set to 3V, and V ef2 is set to 18V. V ef1 is set to 70V.
间隙电压经差分采样模块进入阈值比较模块,与设置好的阈值进行比较,经光电隔离后,CMP1,CMP2,CMP3信号的波形,以及CPLD内部击穿信号检测模块Inst1和Inst33的输出,如图1 a)所示。 The gap voltage enters the threshold comparison module through the differential sampling module, and compares it with the set threshold. After photoelectric isolation, the waveforms of the CMP1, CMP2, and CMP3 signals, as well as the outputs of the CPLD internal breakdown signal detection modules Inst1 and Inst33, as shown in Figure 1 a) as shown.
在CMP3高电平期间,也就是脉宽期间,不同的间隙放电状态拥有不同的CMP1和CMP2信号。在脉宽期间,如果CMP1存在下降沿,则表明间隙电压由高至低,发生击穿现象,并且CMP2不存在下降沿,间隙电压击穿后高于Vef2,此脉冲放电为火花状态,Inst33输出高电平,采样控制结束后,输出Spark/Spark_H为高电平,其余输出为低电平。在脉宽期间,当CMP1和CMP2都不存在下降沿时,则需要分以下三种情况。首先,如果CMP1的输出为高电平,则表明间隙两端电压高于Vef1,此脉冲放电为空载状态,Inst13输出高电平,采样控制结束后,输出Open为高电平,其余输出为低电平;其次,如果CMP1为低电平,而CMP2为高电平,表明此时间隙两端电压一直在Vef1和Vef2之间,而又不存在间隙击穿,此脉冲放电为不稳定电弧状态,Inst4输出高电平,采样控制结束后,输出Arc/Short_H为高电平,其余输出为低电平。最后,如果CMP2一直为低电平,表明此时间隙两端电压一直低于Vef2,并且也不存在间隙击穿,认为此脉冲放电为短路状态,Inst15输出高电平,采样控制结束后,输出Short/Short_L为高电平,其余输出为低电平。由此便实现了对任一脉冲放电的状态判别,判别结果经由PCI104总线传输至上位机,上位机根据各脉冲的放电状态信息,推测此时的间隙加工状态。图7金属材料电火花加工CPLD程序仿真波形图。根据图1 a)中CMP1、CMP2和CMP3设定CPLD的输入信号,利用Quartus程序的Simulator模块对CPLD程序进行仿真,从仿真结果可以看出,系统可以判别每一个脉冲的放电状态,并且状态信息一直保持到下一个脉冲来临。 During the high level period of CMP3, that is, the pulse width period, different gap discharge states have different CMP1 and CMP2 signals. During the pulse width, if there is a falling edge on CMP1, it indicates that the gap voltage is from high to low, and a breakdown phenomenon occurs, and there is no falling edge on CMP2, and the gap voltage is higher than V ef2 after breakdown. This pulse discharge is in a spark state, Inst33 Output high level, after the sampling control ends, the output Spark/Spark_H is high level, and the other outputs are low level. During the pulse width, when neither CMP1 nor CMP2 has a falling edge, the following three situations need to be distinguished. First, if the output of CMP1 is high level, it means that the voltage at both ends of the gap is higher than V ef1 , this pulse discharge is in the no-load state, and Inst13 outputs high level. After the sampling control is over, the output Open is high level, and the rest output is low level; secondly, if CMP1 is low level and CMP2 is high level, it indicates that the voltage at both ends of the gap has been between V ef1 and V ef2 at this time, and there is no gap breakdown, and this pulse discharge is In the unstable arc state, Inst4 outputs high level, after the sampling control ends, the output Arc/Short_H is high level, and the other outputs are low level. Finally, if CMP2 is always at low level, it indicates that the voltage at both ends of the gap has been lower than V ef2 at this time, and there is no gap breakdown. It is considered that this pulse discharge is a short circuit state, and Inst15 outputs high level. After the sampling control is completed, The output Short/Short_L is high level, and the other outputs are low level. In this way, the state discrimination of any pulse discharge is realized, and the judgment result is transmitted to the host computer through the PCI104 bus, and the host computer estimates the gap processing state at this time according to the discharge state information of each pulse. Fig. 7 Simulation waveform diagram of CPLD program for electric discharge machining of metal materials. Set the input signal of CPLD according to CMP1, CMP2 and CMP3 in Figure 1 a), and use the Simulator module of Quartus program to simulate the CPLD program. It can be seen from the simulation results that the system can distinguish the discharge state of each pulse, and the state information Hold until the next pulse comes.
实施例2 绝缘陶瓷材料的电火花线切割加工
硬件电路和CPLD内部电路如图2-5所述,只需要调整阈值Vef2即可。阈值Vef2设置为略大于金属脉冲放电维持电压值,因此在绝缘陶瓷的电火花线切割加工中,Vef3设置为3V,Vef2设置为40V。Vef1设置为70V。 The hardware circuit and CPLD internal circuit are described in Figure 2-5, only need to adjust the threshold V ef2 . The threshold V ef2 is set to be slightly larger than the metal pulse discharge sustaining voltage value, so in the wire electric discharge machining of insulating ceramics, V ef3 is set to 3V, and V ef2 is set to 40V. V ef1 is set to 70V.
间隙电压经差分采样模块进入阈值比较模块,与设置好的阈值进行比较,经光电隔离后,CMP1,CMP2,CMP3信号的波形,以及CPLD内部击穿信号检测模块Inst1和Inst33的输出,如图1 b)所示。 The gap voltage enters the threshold comparison module through the differential sampling module, and compares it with the set threshold. After photoelectric isolation, the waveforms of the CMP1, CMP2, and CMP3 signals, as well as the outputs of the CPLD internal breakdown signal detection modules Inst1 and Inst33, as shown in Figure 1 b) as shown.
在CMP3高电平期间,也就是脉宽期间,不同的间隙放电状态拥有不同的CMP1和CMP2信号。在脉宽期间,如果CMP1和CMP2的输出存在下降沿,则表明间隙电压由高至低,发生击穿现象,并且击穿后间隙电压低于Vef2,此脉冲放电为低阻火花状态,Inst1输出高电平,采样控制结束后,输出Spark_L为高电平,其余输出为低电平。在脉宽期间,当CMP2不存在下降沿,CMP1输出存在下降沿,则表明虽然间隙发生了击穿,但间隙放电电压高于Vef2而低于Vef1,认定此脉冲放电为高阻火花状态,Inst33输出高电平,采样控制结束后,输出Spark/Spark_H为高电平,其余输出为低电平。当在脉宽期间CMP1和CMP2都不存在下降沿时,则需要分以下三种情况。首先,如果CMP1的输出为高电平,则表明间隙两端电压高于Vef1,认为此脉冲放电为空载状态,Inst13输出高电平,采样控制结束后,输出Open为高电平,其余输出为低电平;其次,如果CMP1为低电平,而CMP2为高电平,表明此时间隙两端电压一直在Vef1和Vef2之间,而又不存在间隙击穿,因此认为此脉冲放电为高阻短路状态,Inst4输出高电平,采样控制结束后,输出Arc/Short_H为高电平,其余输出为低电平。最后,如果CMP2一直为低电平,表明此时间隙两端电压一直低于Vef2,并且也不存在间隙击穿,认为此脉冲放电为低阻短路状态,Inst15输出高电平,采样控制结束后,输出Short/Short_L为高电平,其余输出为低电平。由此便实现了对任一脉冲放电的状态判别,判别结果经由PCI104总线传输至上位机,上位机根据各脉冲的放电状态信息,推测此时的间隙加工状态。图8为绝缘陶瓷材料电火花线切割加工CPLD程序仿真波形图。根据图1 b)中CMP1、CMP2和CMP3设定CPLD的输入信号,利用Quartus程序的Simulator模块对CPLD程序进行仿真,从仿真结果可以看出,系统可以判别每一个脉冲的放电状态,并且状态信息一直保持到下一个脉冲来临。 During the high level period of CMP3, that is, the pulse width period, different gap discharge states have different CMP1 and CMP2 signals. During the pulse width, if the output of CMP1 and CMP2 has a falling edge, it indicates that the gap voltage changes from high to low, and a breakdown phenomenon occurs, and after the breakdown, the gap voltage is lower than V ef2 , and this pulse discharge is a low-resistance spark state, Inst1 Output high level, after the sampling control ends, the output Spark_L is high level, and the other outputs are low level. During the pulse width, when there is no falling edge on CMP2 and there is a falling edge on CMP1 output, it indicates that although the gap has broken down, the gap discharge voltage is higher than V ef2 but lower than V ef1 , and this pulse discharge is considered to be a high-resistance spark state , Inst33 outputs high level, after the sampling control ends, the output Spark/Spark_H is high level, and the other outputs are low level. When neither CMP1 nor CMP2 has a falling edge during the pulse width, the following three situations need to be distinguished. First, if the output of CMP1 is high level, it indicates that the voltage at both ends of the gap is higher than V ef1 , and this pulse discharge is considered to be in a no-load state, and Inst13 outputs high level. After the sampling control is completed, the output Open is high level, and the rest The output is low level; secondly, if CMP1 is low level and CMP2 is high level, it indicates that the voltage at both ends of the gap has been between V ef1 and V ef2 at this time, and there is no gap breakdown, so it is considered that this The pulse discharge is a high-impedance short-circuit state, and Inst4 outputs a high level. After the sampling control is completed, the output Arc/Short_H is a high level, and the other outputs are a low level. Finally, if CMP2 is always at low level, it indicates that the voltage at both ends of the gap has been lower than V ef2 at this time, and there is no gap breakdown. It is considered that this pulse discharge is a low-impedance short-circuit state, Inst15 outputs high level, and the sampling control ends After that, the output Short/Short_L is high level, and the other outputs are low level. In this way, the state discrimination of any pulse discharge is realized, and the judgment result is transmitted to the host computer through the PCI104 bus, and the host computer estimates the gap processing state at this time according to the discharge state information of each pulse. Fig. 8 is a simulation waveform diagram of a CPLD program for wire electric discharge machining of insulating ceramic materials. Set the input signal of CPLD according to CMP1, CMP2 and CMP3 in Figure 1 b), and use the Simulator module of Quartus program to simulate the CPLD program. It can be seen from the simulation results that the system can distinguish the discharge state of each pulse, and the state information Hold until the next pulse comes.
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。 The above are only preferred specific implementations of the present invention. These specific implementations are all based on different implementations under the overall concept of the present invention, and the scope of protection of the present invention is not limited thereto. Anyone familiar with the technical field Within the technical scope disclosed in the present invention, any changes or substitutions that can be easily conceived by a skilled person shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101331544A CN102248235B (en) | 2011-05-23 | 2011-05-23 | Device and method for detecting discharge state in electric spark linear cutting work gap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101331544A CN102248235B (en) | 2011-05-23 | 2011-05-23 | Device and method for detecting discharge state in electric spark linear cutting work gap |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102248235A CN102248235A (en) | 2011-11-23 |
CN102248235B true CN102248235B (en) | 2013-12-04 |
Family
ID=44976003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101331544A Expired - Fee Related CN102248235B (en) | 2011-05-23 | 2011-05-23 | Device and method for detecting discharge state in electric spark linear cutting work gap |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102248235B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102626810B (en) * | 2012-05-02 | 2013-12-04 | 宣浩 | Vibration discharge processing method |
CN102886574A (en) * | 2012-07-05 | 2013-01-23 | 宁波虎兴数控科技有限公司 | Novel sampling circuit for linear cutting |
CN103624344A (en) * | 2013-12-16 | 2014-03-12 | 贵州航中力电精机科技有限公司 | Control system of electric discharge machining unit |
CN105522238B (en) * | 2014-10-28 | 2017-09-22 | 佛山科学技术学院 | Discharging gap-state detection module based on pulse-train analysis |
CN105269091A (en) * | 2015-10-26 | 2016-01-27 | 苏州新火花激光科技有限公司 | Pulse gap detection circuit for PCD material electric spark discharging |
CN106124944A (en) * | 2016-07-19 | 2016-11-16 | 哈尔滨工业大学 | A kind of ceramic metal real-time discharge detection method of FGM micro EDM and device |
CN106624217B (en) * | 2016-10-18 | 2018-06-22 | 丁毅 | A kind of control method of spark pulse power device |
CN106513877B (en) * | 2016-10-18 | 2018-05-01 | 丁毅 | A kind of control method of electric pulse spark-discharge gap |
CN107322109B (en) * | 2017-08-17 | 2023-04-25 | 江苏冬庆数控机床有限公司 | Circuit and method for inhibiting/eliminating flanging of orifice of electric spark perforation processing surface |
CN107891199B (en) * | 2017-12-01 | 2019-02-15 | 中州大学 | Electric spark discharge state detection device and identification method |
CN107824921A (en) * | 2017-12-18 | 2018-03-23 | 无锡微研精微机械技术有限公司 | Scarce the silk judgment means and determination methods of a kind of electric spark machine tool |
EP3711886A1 (en) * | 2019-03-22 | 2020-09-23 | Agie Charmilles SA | Wire electrical discharge machining method |
CN110293270B (en) * | 2019-07-02 | 2020-07-17 | 哈尔滨工业大学 | Material type identification device and method for electric spark machining of insulating ceramic coating-metal material |
CN110548941A (en) * | 2019-10-16 | 2019-12-10 | 江苏冬庆数控机床有限公司 | detection device and detection method for discharge state of wire cut electrical discharge machining |
CN111121612B (en) * | 2020-01-02 | 2021-08-24 | 北方工业大学 | Method for identifying the depth of scratches on the surface of cadmium discs of spark test device |
CN111558752B (en) * | 2020-05-11 | 2021-05-25 | 杭州台业机械设备有限公司 | Slow-speed wire-walking pulse power supply control method |
CN111843075B (en) * | 2020-07-30 | 2023-01-31 | 扬州大学 | A 3D Ultrasonic Hybrid Electrochemical Generating Machining System |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481908A (en) * | 1990-07-25 | 1992-03-16 | Mitsubishi Electric Corp | Positioning method and positioning device |
CN101259551B (en) * | 2008-04-08 | 2010-10-06 | 哈尔滨工业大学 | Electrospark wire-electrode cutting process discharge condition detecting device |
CN101318241B (en) * | 2008-04-08 | 2010-04-07 | 哈尔滨工业大学 | EDM small hole machining pulse power supply |
CN101474698B (en) * | 2009-01-08 | 2010-06-30 | 上海交通大学 | FPGA-based nanosecond micro-energy pulse power supply |
CN201735916U (en) * | 2010-03-08 | 2011-02-09 | 苏州新火花机床有限公司 | Multi-mode real-time sampling digital servo feed system for medium-speed wire-cutting machine |
-
2011
- 2011-05-23 CN CN2011101331544A patent/CN102248235B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102248235A (en) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102248235B (en) | Device and method for detecting discharge state in electric spark linear cutting work gap | |
CN101905360B (en) | Wire cut electric discharge machine with machining state discrimination function | |
Han et al. | Basic study on pulse generator for micro-EDM | |
CN103949733B (en) | Detect the wire electric discharge processing machine of machining state | |
Li et al. | An EDM pulse power generator and its feasible experiments for drilling film cooling holes | |
Pey Tee et al. | Pulse discrimination for electrical discharge machining with rotating electrode | |
CN213257561U (en) | High-speed reciprocating wire-moving electrospark wire-electrode cutting filament cutting discharge state identification system | |
CN106238836B (en) | Machining pulse microcosmic control method of electric spark digital pulse power supply | |
CN106513879B (en) | A kind of spark discharge state recognition and detection method based on chaology | |
Jiang et al. | A study on pulse control for small-hole electrical discharge machining | |
CN104014878A (en) | Novel electric spark machining circuit and method capable of achieving multi-point-discharge high-speed electric spark machining | |
CN102672293B (en) | Electric discharge machine | |
CN110548941A (en) | detection device and detection method for discharge state of wire cut electrical discharge machining | |
Yang et al. | Study on characteristic of multi-spark EDM method by using capacity coupling | |
CN210731286U (en) | Detection apparatus for spark-erosion wire cutting processing discharge state | |
CN110142471B (en) | Device and method for detecting abnormal discharge state of insulating ceramic coating-metal electric spark machining | |
CN201632728U (en) | Precise electro-discharge machining power supply | |
Zhang et al. | An independent discharge status detection method and its application in EAM milling | |
Li et al. | Gap current voltage characteristics of energy-saving pulse power generator for wire EDM | |
CN104708131B (en) | Processing unit (plant) and processing method | |
CN104959689A (en) | Overcurrent protective device for wire cut electrical discharge machining (WEDM) machine tool pulse power supply | |
CN206105082U (en) | A spark -erosion wire cutting machine pulse generator for processing of accurate mould | |
Abbas et al. | Micro-EDM with controlled pulse train method using small feeding capacitance | |
CN2257507Y (en) | Linear cutting machine processing source with detecting and control function | |
CN202137480U (en) | Electrical discharge machining power source circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131204 Termination date: 20140523 |