CN102244390B  Smooth energy storage system capacity optimization method for microgrid junctor power fluctuation  Google Patents
Smooth energy storage system capacity optimization method for microgrid junctor power fluctuation Download PDFInfo
 Publication number
 CN102244390B CN102244390B CN2011101930485A CN201110193048A CN102244390B CN 102244390 B CN102244390 B CN 102244390B CN 2011101930485 A CN2011101930485 A CN 2011101930485A CN 201110193048 A CN201110193048 A CN 201110193048A CN 102244390 B CN102244390 B CN 102244390B
 Authority
 CN
 China
 Prior art keywords
 power
 energy
 storage
 ned
 microgrid
 Prior art date
Links
 238000004146 energy storage Methods 0.000 title claims abstract description 229
 238000005457 optimization Methods 0.000 title claims abstract description 33
 238000005070 sampling Methods 0.000 claims abstract description 58
 238000004088 simulation Methods 0.000 claims abstract description 13
 230000000875 corresponding Effects 0.000 claims description 40
 230000001172 regenerating Effects 0.000 claims description 31
 238000010183 spectrum analysis Methods 0.000 claims description 20
 238000007599 discharging Methods 0.000 claims description 7
 230000005611 electricity Effects 0.000 claims description 6
 230000001131 transforming Effects 0.000 claims description 6
 238000004458 analytical method Methods 0.000 claims description 5
 230000035699 permeability Effects 0.000 abstract description 7
 238000000034 method Methods 0.000 description 3
 239000007787 solid Substances 0.000 description 3
 238000004364 calculation method Methods 0.000 description 2
 238000002485 combustion reaction Methods 0.000 description 2
 230000001276 controlling effect Effects 0.000 description 1
 238000005516 engineering process Methods 0.000 description 1
 239000000446 fuel Substances 0.000 description 1
 230000000737 periodic Effects 0.000 description 1
 238000010248 power generation Methods 0.000 description 1
 230000001932 seasonal Effects 0.000 description 1
 238000001228 spectrum Methods 0.000 description 1
 239000000126 substance Substances 0.000 description 1
Classifications

 Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSSSECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSSREFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
 Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
 Y02E70/00—Other energy conversion or management systems reducing GHG emissions
 Y02E70/30—Systems combining energy storage with energy generation of nonfossil origin
Abstract
The invention provides a smooth energy storage system capacity optimization method for microgrid junctor power fluctuation, comprising the following steps: 1) determining reasonable output power of renewable energy sources and load sample data, wherein the power output of the renewable energy sources and the sampling period of load samples take values which are more than or equal to1 minute and less than or equal to 1 hour, and the power output of the renewable energy sources and the load sample data comprise the sampling period or sampling frequency, the sampling startstop time and the sampling length; 2) using a simulation method to determine the power of the energy storage system in accordance with the output power of the renewable energy sources and the load sample data; and 3) using the simulation method to determine the capacity of and the initial SOC state in accordance with the power output required by the energy storage system. A reasonable energy storage system capacity optimization scheme which can meet a junctor power control target, an internal electric source of the microgrid and the running constraints of the energy storage system is practical, simple and quick and is easy to realize. The method provided by the invention has wide application prospects in capacity planning, design and optimization of the energy storage system in the microgrid with high renewable energy resource permeability.
Description
Technical field
The present invention relates to a kind of method of energy storage system capacity planning, design and optimization in microgrid, particularly relate to a kind of energy storage system capacity optimization method of controlling the level and smooth microgrid interconnection tie power fluctuation of target and net load (load deducts the regenerative resource power stage) output sum result of spectrum analysis based on interconnection power.
Background technology
The regenerative resource that windforce, photovoltaic generation is representative of take has intermittence, randomness and the characteristics such as uncertain.Along with the regenerative resource permeability constantly increases, they have brought increasing challenge to the safe and reliable operation of electrical network.Microgrid is combined regenerative resource power supply system, load, controllable electric power, energystorage system etc., by limited public contact point (being generally 1), with electrical network, is connected, and effective technological approaches is provided for the high permeability regenerative resource is gridconnected.Energystorage system relies on it can fill the operation characteristic that can put, can effectively overcome the fluctuation of renewable energy system in microgrid, improves microgrid " close friend " degree to electrical network.
The microgrid internal electric source, by whether controlled, can be divided into uncontrollable power supply and controllable electric power; The former take windforce, photovoltaic generation etc. is representative, and it is representative that the latter be take miniature gas turbine (MT), diesel engine generator, fuel cell etc.Energystorage system coordinates the microgrid internal electric source, microgrid and external electrical network interconnection power can be controlled near steady state value, to offset the adverse effect of high regenerative resource permeability to electrical network.The factor that energy storage system capacity optimization method under the scene of regenerative resource permeability microgrid interconnection power control is at present considered is not comprehensive, so definite method of relevant energy storage system capacity is deep not enough, does not reach practical.
Summary of the invention
Technical problem to be solved by this invention is, provide a kind of can effectively providing to meet interconnection power and control target, microgrid internal electric source, the lower energystorage system optimizing capacity scheme of energystorage system operation constraint, practical, simple, fast and be easy to the energy storage system capacity optimization method of the level and smooth microgrid interconnection tie power fluctuation of realization.
The technical solution adopted in the present invention is: a kind of energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation includes following steps:
1) determine rational regenerative resource power output and load sample data, wherein, regenerative resource power stage and load sample sampling period get and are more than or equal to 1 minute, be less than or equal to a numerical value of 1 hour, described regenerative resource power stage and load sample data comprise sampling period or sample frequency, sampling beginning and ending time, sampling length;
2), according to regenerative resource power output and load sample data, utilize simulation method to determine energystorage system power;
3), according to the output of energystorage system power demand, utilize simulation method to obtain and determine capacity and initial SOC state.
2. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, the described simulation method of utilizing is determined energystorage system power, comprises the steps:
(1) determine the required controlled power output of microgrid P
_{ned}, and it is carried out to discrete Fourier transform;
(2) based on the required controlled power output of microgrid P
_{ned}result of spectrum analysis, determine that meet microgrid interconnection power controls target P
_{tL}frequency domain scope and the time domain power stage corresponding to the required compensation frequency domain of this controllable electric power scope of the required compensation of controllable electric power of constraint;
(3) according to the ideal value of controllable electric power power stage, under the impact of considering energystorage system efficiency for chargedischarge factor, determine the energystorage system power stage can guarantee the energystorage system continuous and steady operation, and then the required maximum of definite energystorage system discharges and recharges power, that is its rated power.
3. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 2, is characterized in that, the required controlled power output of described definite microgrid P
_{ned}, and it is carried out to discrete Fourier transform, specifically:
Set microgrid by batch (type) regenerative resource, controllable electric power, energystorage system and load structure, corresponding output is respectively by column vector P
_{gr}, P
_{gc}, P
_{eS0}and P
_{l}mean, for meeting microgrid interconnection power, control target P
_{tL}demand has following power constraint:
P
_{gr}P
_{L}+P
_{ES0}+P
_{gc}＝P
_{TL}
P
_{gr}[n]P
_{L}[n]+P
_{ES0}[n]+P
_{gc}[n]＝P
_{TL}[n]????(1)
n∈{1，...，N
_{s}}
In formula, P
_{*}[n] represents column vector P
_{*}in n element, i.e. n the power output [kW] that sampled point is corresponding, N
_{s}represent the sampled point number, the span of n is the same; P
_{*}the sample frequency of the sampled data of representative, sampled point number and sampling beginning and ending time are all identical, make f
_{s}, T
_{s}be respectively sample data P
_{*}sample frequency [Hz] and sampling period [s]; P
_{eS0}[n] can just can bear, and for just representing energy storage system discharges, is negative representative charging; P
_{tL}[n] also can just can bear, and for just representing that microgrid is to the electrical network power output, for negative, represents that electrical network is to the microgrid injecting power;
Load is deducted to the regenerative resource power stage and be defined as net load P
_{lnet}, that is:
P
_{Lnet}＝P
_{L}P
_{gr}????(2)
Control target P at known microgrid interconnection power
_{tL}after, can determine the required controlled power output of microgrid sum P by formula (1), (2)
_{ned}:
P
_{end}＝P
_{TL}+P
_{Lnet}＝P
_{ES0}+P
_{gc}????(3)
Formula (3) shows the required controlled power output of microgrid P
_{ned}control target and net load decision by microgrid interconnection power, provided by energystorage system and controllable electric power.
To required controlled power output P in microgrid
_{ned}carry out spectrum analysis, obtain amplitudefrequency S as a result
_{ned}and f
_{ned}.
S
_{ned}＝DFT(P
_{ned})＝[S
_{ned}[1]，..，S
_{ned}[n]，...，S
_{ned}[N
_{s}]]
^{T}????(4)
f
_{ned}＝[f
_{ned}[1]，...，f
_{ned}[n]，...，f
_{ned}[N
_{s}]]
^{T}
DFT (P
_{ned}) represent sample data P
_{ned}carry out discrete Fourier transform.S
_{ned}[n]=R
_{ned}[n]+I
_{ned}[n] i represents n frequency f in the Fourier transform result
_{ned}the amplitude that [n] is corresponding, R
_{ned}[n], I
_{ned}[n] is respectively for real part and the imaginary part of amplitude.F
_{ned}for with S
_{ned}corresponding column of frequencies vector.
4. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 2, is characterized in that, described based on the required controlled power output of microgrid P
_{ned}result of spectrum analysis, determine that meet microgrid interconnection power controls target P
_{tL}frequency domain scope and the time domain power stage corresponding to the required compensation frequency domain of this controllable electric power scope of the required compensation of controllable electric power of constraint, specifically:
Set f
_{gc}the compensation frequency range of controllable electric power is determined in representative according to result of spectrum analysis; S
_{gc}representing that controllable electric power is required provides the result of spectrum analysis that power stage is corresponding,
To S
_{gc}carry out the discrete fourier inverse transformation the required controlled power Output rusults P that provides of controllable electric power is provided
_{gc}:
P
_{gc}＝IDFT(S
_{gc})＝[P
_{gc}[1]，...，P
_{gc}[n]，...，P
_{gc}[N
_{s}]]
^{T}????(6)
In formula, IDFT (S
_{gc}) represent S
_{gc}carry out the discrete fourier inverse transformation;
Setting the inner controllable electric power power stage of microgrid is:
In formula, N
_{gc}represent that controllable electric power is by N
_{gc}individual electric power generating composition of the same type; J=1 ..., N
_{gc}represent of the same type in j controllable electric power.P
_{gc, j}[n] represented in corresponding n the sampling period, controllable electric power j power output size;
For guaranteeing operational efficiency and extending unit durability, controllable electric power power stage P
_{gc, j}[n] needs to meet following constraint:
In formula, u
_{gc, j}[n], for controllable electric power operation sign, gets 0 or 1; Get 0 o'clock, representative is n sampling period, and controllable electric power j is operation not; Get the representative operation at 1 o'clock;
minimum while representing respectively controllable electric power j operation, maximum power output, cause decrease in efficiency and shortened equipment life for avoiding too low power stage,
get the rated power of 0.3 times;
get the rated power of 1 times;
From formula (7), (8), controllable electric power power output sum P in microgrid
_{gc}need to meet following constraint:
?
Determine the output of controllable electric power ideal power, at first will select rational controllable electric power frequency domain compensation scope f
_{gc}adopt try and error method, from DC component, gradually frequency range is extended to high band, utilize the controllable electric power power stage corresponding to analytical method check different compensation frequency range of front whether to meet formula (10), and then determine and can meet controllable electric power power output constraint, can guarantee again the controllable electric power compensation frequency range that energy storage system capacity is as far as possible little, and then obtain the idealized power stage of controllable electric power.
5. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 2, is characterized in that, described energystorage system power stage, and energystorage system rated power definite:
According to controllable electric power ideal power output P
_{gc}, the energystorage system power demand is exported by column vector P
_{eS0}=[P
_{eS0}[1] ..., P
_{eS0}[n] ..., P
_{eS0}[N
_{s}]]
^{t}mean:
P
_{ES0}[n]＝P
_{ned}[n]P
_{gc}[n]?????(11)
Energystorage system overall efficiency η
_{eS}mean, the actual power that discharges and recharges of energystorage system, use P
_{eS}=[P
_{eS}[1] ..., P
_{eS}[n] ..., P
_{eS}[N
_{s}]
^{t}mean:
In formula, η
_{eS, c}and η
_{eS, d}represent respectively energystorage system charge efficiency and discharging efficiency;
In whole sample cycle, for guaranteeing the energystorage system continuous and steady operation, needing to meet clean charge/discharge electric weight in the energystorage system running, be zero, that is:
6. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 5, is characterized in that, for guaranteeing the output of system power target, meets:
Microgrid interconnection power is controlled to target P
_{tL}the whole upwards translation of whole translation downwards or controllable electric power power stage realizes; The translational movement absolute value is designated as Δ P, by iterative computation, obtains; After translation, the energystorage system power demand is output as:
P
_{ES0}[n]＝P
_{ned}[n]ΔPP
_{gc}[n]???(14)
Utilize formula
${P}_{\mathrm{ES}}\left[n\right]=\left\{\begin{array}{cc}{P}_{\mathrm{ES}0}\left[n\right]/{\mathrm{\η}}_{\mathrm{ES},d}& {P}_{\mathrm{ES}0}\left[n\right]\≥0\\ {P}_{\mathrm{ES}0}\left[n\right]{\mathrm{g\η}}_{\mathrm{ES},0}& {P}_{\mathrm{ES}0}\left[n\right]<0\end{array}\right.$ Obtain the actual performance number that discharges and recharges of energystorage system after consideration discharges and recharges power loss; In whole sample data in the cycle, the actual power P that discharges and recharges of the energystorage system obtained
_{eS}the maximum of absolute value is the energystorage system powerhandling capability:
7. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, the described simulation method of utilizing obtains definite capacity and initial SOC state, comprises the steps:
(1) the energystorage system real output data based on definite, add up the energystorage system charge/discharge electricity amount of each sample point, obtains the energy hunting of different sampling instant energystorage systems with respect to initial condition;
(2) for energystorage system energy hunting in the cycle in whole sample data, calculate the poor of energystorage system maximum, least energy, consider energystorage system SOC restriction, obtain the capacity that energystorage system should possess, that is energystorage system rated capacity value;
(3), after determining energy storage system capacity, SOC is no more than restriction range when guaranteeing the energystorage system operation, set the SOC initial value will be satisfied condition.
8. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 7, is characterized in that, the different sampling instant energystorage systems of described acquisition, with respect to the energy hunting of initial condition, specifically adopt following formula:
In formula, T
_{s}/ 3600 mean chronomere's " second " convert be chronomere " hour "; E
_{eS, ac}[m] represents energystorage system energy hunting with respect to initial condition m sampling instant, that is m the sampling period before corresponding, that is, from the 0th to m sampling period, energystorage system accumulative total chargedischarge energy sum [kWh].
9. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 7, is characterized in that, describedly obtains the capacity that energystorage system should possess, that is energystorage system rated capacity value, specifically adopts following formula:
In formula, SOC
_{max}and SOC
_{min}represent respectively the upper and lower limit constraint of SOC in the energystorage system actual motion, max{E
_{eS, ac}[m] }min{E
_{eS, ac}[m] } represented the absolute value of energystorage system ceiling capacity fluctuation in the whole sample data cycle.
10. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 7, is characterized in that, described SOC initial value will satisfied condition be to adopt following formula to obtain:
In formula, SOC[0] represent the initial SOC value of energystorage system;
If energy storage system capacity satisfies the demands, in the time of guaranteeing the energystorage system operation, SOC is no more than restriction range, and the SOC initial value need to meet following initial value computing formula:
The energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation of the present invention, the result of spectrum analysis that the interconnection power of take is controlled target and net load (load deducts the regenerative resource power stage) output sum is basis, can consider the interconnection power target requirement after the energystorage system compensation, controllable electric power output power limit in microgrid, the energystorage system efficiency for chargedischarge, SOC operation restriction waits constraint, provide and reasonably can meet interconnection power control target, the microgrid internal electric source, energystorage system optimizing capacity scheme under energystorage system operation constraint, the method practicality, simply, fast and be easy to realize.Aspect energy storage system capacity planning in high regenerative resource permeability microgrid, Design and optimization, have broad application prospects and huge society, economic benefits.
The accompanying drawing explanation
Fig. 1 is the microgrid structural representation;
Fig. 2 is the output of microgrid photovoltaic, load, net load curve;
Fig. 3 is the required controlled power output of microgrid;
Fig. 4 is the required controlled power output spectrum of microgrid analysis result;
Fig. 5 is power stage constraint and the energy storage system capacity that different miniature combustion engine compensation cycle lower limits are corresponding
Wherein, (a) being the corresponding power stage upper limits of different MT compensation cycle lower limits, is (b) the corresponding desired volumes of the different energystorage system compensation cycle upper limits;
Fig. 6 is optimum capacity program analysis result of calculation
Wherein, be (a) output of MG controlled power, (b) be the energystorage system energy hunting.
Embodiment
Provide specific embodiment below in conjunction with accompanying drawing, how the energy storage system capacity optimization method that further illustrates level and smooth microgrid interconnection tie power fluctuation of the present invention is realized.
The energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation of the present invention, comprise the steps:
One, before determining energy storage system capacity, at first need to select rational regenerative resource power output and load sample data according to application scenarios.The sampling period of sample data (or sample frequency), sampling beginning and ending time, sampling length are directly relevant to the particular problem of intending research.Control scene for microgrid interconnection power, energystorage system is mainly used in compensating the mismatch between the interior regenerative resource power stage of microgrid and workload demand, and its time yardstick is generally several minutes levels to 1 hour.That is, the sampling period gets and is more than or equal to 1 minute, is less than or equal to a numerical value of 1 hour.If the sampling period of load monitoring system is 5 minutes, the regenerative resource power stage specimen sample cycle also is chosen as 5 minutes.Certainly, if the specimen sample cycle, to be less than this numerical value better.Without loss of generality, for the capacity under this kind of application scenarios of energystorage system, determine, it is 1 minute that the present invention selects regenerative resource power stage and load sample sampling period.
The length of sample data fragment selects to need the discharge capacity of energystorage system in the As soon as possible Promising Policy fragment and charge volume (deduction discharges and recharges power loss) about equally.When meeting this necessary condition, when the primary power in the time of can guaranteeing the level and smooth microgrid interconnection tie power fluctuation of energystorage system and end, energy equates substantially.Because operation of power networks generally be take 1 day as unit, therefore data slot length is chosen as 1 day.In addition, the regenerative resources such as photovoltaic, wind power generation have stronger seasonality, and data slot can be chosen typical case's day data of Various Seasonal (summer, winter).
After determining rational regenerative resource power output and load sample data, can determine successively energystorage system power, capacity and initial SOC state.
Two, power determination
Control target requirement for meeting microgrid interconnection power, guarantee the energystorage system continuous and steady operation, should guarantee that energystorage system possesses enough large power definite rational energystorage system power stages of discharging and recharging.For given regenerative resource power stage, load sample data, the required maximum of energystorage system that meets interconnection power control goal constraint discharges and recharges power and can utilize simulation method to obtain.Socalled simulation method consists of following several steps:
1) determine the required controlled power output of microgrid P
_{ned}, and it is carried out to discrete Fourier transform.
Suppose that microgrid is by batch (type) regenerative resource, controllable electric power, energystorage system and load structure, corresponding output is respectively by column vector P
_{gr}, P
_{gc}, P
_{eS0}and P
_{l}mean.Control target P for meeting microgrid interconnection power
_{tL}demand has following power constraint:
P
_{gr}P
_{L}+P
_{ES0}+P
_{gc}＝P
_{TL}
P
_{gr}[n]P
_{L}[n]+P
_{ES0}[n]+P
_{gc}[n]＝P
_{TL}[n]???(1)
n∈{1，...，N
_{s}}
In formula, P
_{*}[n] represents column vector P
_{*}in n element, i.e. n the power output [kW] that sampled point is corresponding, N
_{s}represent the sampled point number.P
_{*}the sample frequency of the sampled data of representative, sampled point number and sampling beginning and ending time are all identical, make f
_{s}, T
_{s}be respectively sample data P
_{*}sample frequency [Hz] and sampling period [s].P
_{eS0}[n] can just can bear, and for just representing energy storage system discharges, is negative representative charging; P
_{tL}[n] also can just can bear, and for just representing that microgrid is to the electrical network power output, for negative, represents that electrical network is to the microgrid injecting power.
Load is deducted to the regenerative resource power stage and be defined as net load P
_{lnet}, that is:
P
_{Lnet}＝P
_{L}P
_{gr}????(2)
Control target P at known microgrid interconnection power
_{tL}after, can determine the required controlled power output of microgrid sum P by formula (1), (2)
_{ned}:
P
_{ned}＝P
_{TL}+P
_{Lnet}＝P
_{ES0}+P
_{gc}????(3)
Formula (3) shows the required controlled power output of microgrid P
_{ned}control target and net load decision by microgrid interconnection power, provided by energystorage system and controllable electric power.
To required controlled power output P in microgrid
_{ned}carry out spectrum analysis, obtain amplitudefrequency S as a result
_{ned}and f
_{ned}.
S
_{ned}＝DFT(P
_{ned})＝[S
_{ned}[1]，...，S
_{ned}[n]，...，S
_{ned}[N
_{s}]]
^{T}????(4)
f
_{ned}＝[f
_{ned}[1]，...，f
_{ned}[n]，...，f
_{ned}[N
_{s}]]
^{T}
DFT (P
_{ned}) represent sample data P
_{ned}carry out discrete Fourier transform.S
_{ned}[n]=R
_{ned}[n]+I
_{ned}[n] i represents n frequency f in the Fourier transform result
_{ned}the amplitude that [n] is corresponding, R
_{ned}[n], I
_{ned}[n] is respectively for real part and the imaginary part of amplitude.F
_{ned}for with S
_{ned}corresponding column of frequencies vector.
2) based on the required controlled power output of microgrid P
_{ned}result of spectrum analysis, can determine that meeting microgrid interconnection power controls target P
_{tL}frequency domain scope and the time domain power stage corresponding to the required compensation frequency domain of this controllable electric power scope of the required compensation of controllable electric power of constraint.
Suppose f
_{gc}the compensation frequency range of controllable electric power is determined in representative according to result of spectrum analysis; S
_{gc}representing that controllable electric power is required provides the result of spectrum analysis that power stage is corresponding.Wherein, compensate amplitude size corresponding to frequency range constant, the outer amplitude of compensation frequency range set to 0mean that controllable electric power corresponding to its compensation frequency range provides at power stage.?
To S
_{gc}carry out the discrete fourier inverse transformation the required controlled power Output rusults P that provides of controllable electric power can be provided
_{gc}:
P
_{gc}＝IDFT(S
_{gc})＝[P
_{gc}[1]，...，P
_{gc}[n]，...，P
_{gc}[N
_{s}]]
^{T}????(6)
In formula, IDFT (S
_{gc}) represent S
_{gc}carry out the discrete fourier inverse transformation.
The inner controllable electric power of microgrid generally by bavin send out, MT etc. forms, and is to simplify the problem complexity, the present embodiment is set the inner controllable electric power power stage of microgrid and is consisted of than the power of low capacity output sum a plurality of of same type,
In formula, N
_{gc}represent that controllable electric power is by N
_{gc}individual electric power generating composition of the same type.J=1 ..., N
_{gc}represent of the same type in j controllable electric power.P
_{gc, j}[n] represented in corresponding n the sampling period, controllable electric power j power output size.
For guaranteeing operational efficiency and extending unit durability, controllable electric power power stage P
_{gc, j}[n] needs to meet following constraint:
In formula, u
_{gc, j}[n], for controllable electric power operation sign, gets 0 or 1.Get 0 o'clock, representative is n sampling period, and controllable electric power j is operation not; Get the representative operation at 1 o'clock.
minimum while representing respectively controllable electric power j operation, maximum power output, cause decrease in efficiency and shortened equipment life for avoiding too low power stage,
generally get the rated power of 0.3 times;
generally get the rated power of 1 times.
From formula (7), (8), controllable electric power power output sum P in microgrid
_{gc}need to meet following constraint:
?
The purpose of energy storage system capacity optimization is exactly to obtain to meet the minimum compensation capacity that interconnection power is controlled target call.The actual analysis result shows, the compensation capacity of energystorage system is directly related with the compensation frequency range.Suppose f
_{eS}the compensation frequency range of energystorage system is determined in representative according to result of spectrum analysis; S
_{eS}represent that the required controlled power that provides of energystorage system exports corresponding result of spectrum analysis.For avoiding energystorage system and controllable electric power output to influence each other, make f
_{eS}with f
_{gc}mutually disjoint; And f
_{eS}uf
_{gc}=f
_{ned}, now interconnection power control target requirement will meet naturally.
In general, same bin width, the required energy storage system capacity of high compensation frequency range can be less than low compensation frequency range.The low frequency component that the general suitable compensation of controllable electric power starts from DC component, energystorage system compensates all the other wave components, and hence one can see that under the prerequisite that meets constraint formula (1), f
_{gc}scope is wider, and the frequency range of the required compensation of energystorage system is just less, and energy storage system capacity is also just less.When definite controllable electric power compensation frequency range, can adopt try and error method, from DC component, gradually frequency range is extended to high band, utilize the controllable electric power power stage corresponding to the different compensation of analytical method check frequency range of front whether to meet constraint (10), and then determine and can meet controllable electric power power output constraint, can guarantee again the controllable electric power compensation frequency range that energy storage system capacity is as far as possible little, and then obtain the idealized power stage of controllable electric power.
3) according to the ideal value of controllable electric power power stage, under the impact of considering the factors such as energystorage system efficiency for chargedischarge, determine the energystorage system power stage can guarantee the energystorage system continuous and steady operation, and then the required maximum of definite energystorage system discharges and recharges power, that is its rated power.
At definite controllable electric power ideal power output P
_{gc}afterwards, the output of energystorage system power demand can be by column vector P
_{eS0}=[P
_{eS0}[1] ..., P
_{eS0}[n] ..., P
_{eS0}[N
_{s}]]
^{t}mean:
P
_{ES0}[n]＝P
_{ned}[n]P
_{gc}[n]??????(11)
In actual energystorage system, have certain loss in its charge and discharge process, the efficiency that energystorage system discharges and recharges a circulation is called the energystorage system overall efficiency, uses η
_{eS}mean.According to the power stage value of required energystorage system, consider the overall efficiency of energystorage system, can determine the actual power that discharges and recharges of energystorage system, use P
_{eS}=[P
_{eS}[1] ..., P
_{eS}[n] ..., P
_{eS}[N
_{s}]]
^{t}mean:
In formula, η
_{eS, c}and η
_{eS, d}represent respectively energystorage system charge efficiency and discharging efficiency, if supposition energystorage system efficiency for chargedischarge is equal,
after considering and discharging and recharging power loss, when electric discharge, after the loss of energystorage system actual discharge power deduction, need to meet required discharge power requirement, its value for required discharge power divided by discharging efficiency; When charging, the actual charge power of energystorage system is the value after required charge power deduction charging loss, should be required charge power and is multiplied by charge efficiency.
Interconnection power after the energystorage system compensation not only will meet the control target call, also will guarantee that energystorage system can continuous and steady operation., require in whole sample cycle, in the energystorage system running, satisfied (putting) power consumption that only fills is zero, that is: for this reason
When the power that utilizes energystorage system to given frequency range compensates, what compensate due to the power fluctuation to each frequency is complete cycle amount, if do not consider the loss that discharges and recharges of energystorage system, the required charge capacity of energystorage system should equal discharge electricity amount, that is to say that constraints (13) will meet naturally.Yet, energystorage system actual efficiency η
_{eS}be less than 100%, now, the actual charge volume of energystorage system should be less than discharge capacity, i.e. Δ E>0.For guaranteeing that the output of system power target meets constraint (13), can control target P by microgrid interconnection power
_{tL}the whole upwards translation of whole translation downwards or controllable electric power power stage realizes.The translational movement absolute value is designated as Δ P, can obtain by iterative computation.After translation, the energystorage system power demand is output as:
P
_{ES0}[n]＝P
_{ned}[n]ΔPP
_{gc}[n]???????(14)
Utilize formula (12) can obtain the actual performance number that discharges and recharges of energystorage system after consideration discharges and recharges power loss.
In whole sample data in the cycle, the actual power P that discharges and recharges of the energystorage system obtained
_{eS}the maximum of absolute value is the maximum that energystorage system should possess and discharges and recharges power, that is the energystorage system powerhandling capability:
Three, capacity and initial SOC determine
Control the demand of target for meeting level and smooth interconnection power, energystorage system should possess enough large capacity.For definite energystorage system power stage, the required heap(ed) capacity of energystorage system can utilize simulation method to obtain equally.Its calculation procedure is as follows:
1) the energystorage system real output data based on definite, add up the energystorage system charge/discharge electricity amount of each sample point, can obtain the energy hunting of different sampling instant energystorage systems with respect to initial condition, that is:
In formula, T
_{s}/ 3600 mean chronomere's " second " convert be chronomere " hour ".E
_{eS, ac}[m] represents energystorage system energy hunting with respect to initial condition m sampling instant, that is m (from the 0th to the m) sampling period before corresponding, energystorage system accumulative total chargedischarge energy sum [kWh].
2) for energystorage system energy hunting in the cycle in whole sample data, calculate the poor of energystorage system maximum, least energy, consider energystorage system SOC restriction, obtain the capacity that energystorage system should possess, that is energystorage system rated capacity value:
In formula, SOC
_{max}and SOC
_{min}represent respectively the upper and lower limit constraint of SOC in the energystorage system actual motion.Ideally, SOC
_{max}=1, SOC
_{min}=0.Ring energystorage system lifespan, SOC for fear of overcharging, cross film playback while considering the energystorage system actual motion
_{max}and SOC
_{min}should be suitably in [0,1] interior value; Max{E
_{eS, ac}[m] }, min{E
_{eS, ac}[m] } represent respectively in the whole sample data cycle that energystorage system is with respect to minimum, the ceiling capacity of initial condition, max{E
_{eS, ac}[m] }min{E
_{eS, ac}[m] } represented the absolute value of energystorage system ceiling capacity fluctuation in the whole sample data cycle.
3), after determining energy storage system capacity, if in the time of will guaranteeing the energystorage system operation, SOC is no more than restriction range, the SOC initial value need to meet certain requirement.
After obtaining energy storage system capacity by formula (17), can judge whether the gained capacity meets constraint by verification energystorage system SOC range of operation.SOC may be defined as energystorage system dump energy level, and Related Computational Methods is:
In formula, SOC[0] represent the initial SOC value of energystorage system.
If energy storage system capacity satisfies the demands, in the time of guaranteeing the energystorage system operation, SOC is no more than restriction range, and the SOC initial value need to meet certain requirement.Can show that according to formula (17), (18) SOC initial value computing formula is as follows:
From SOC initial value computing formula, after the energystorage system minimum capacity that meets constraint is determined, the SOC initial value of corresponding unique satisfied constraint has also just been determined.Although some harshness of this condition, in real system, this initial condition can move a period of time at energystorage system and naturally be met after reaching stable state.
Below with high regenerative resource permeability microgrid data, verify that energy storage system capacity determines method.Microgrid consists of miniature combustion engine (being abbreviated as MT), 250kW load and the energystorage system of 120kW photovoltaic, 2*75kW, as shown in Figure 1.Wherein, photovoltaic power output data are China's certain electric power saving Testing & Research Institute photovoltaic plant pilot system whole day sampled data on August 5th, 2009, and the sampling period is 1 minute, as shown in accompanying drawing 2 solid lines.The photovoltaic Maximum Power Output is 86.4kW, and minimum power is 0, and average output power is 17.05kW.The load data peak load is 250kW, and waveform is with reference to the first distributed energy storage system of the U.S. that is positioned at Chemical Station on July 10th, the 2006 load waveform of first operation day, as shown in 2 pairs of line of accompanying drawing.The MT that in microgrid, controllable electric power is 75kW by two rated power forms, and during every MT operation, minimum operate power is 22.5kW (i.e. the rated power of 0.3 times), and maximum operate power is 75kW (i.e. the rated power of 1 times).From formula (10), during the MT operation, power stage sum minimum value is 22.5kW, and maximum power is 150kW.For without loss of generality, suppose that the MT real work determining heat pattern (otherwise can't regulate to process, following the tracks of the photovoltaic exporting change) with electricity.The comprehensive efficiency for chargedischarge η of energystorage system
_{eS}be taken as 88%, and supposition charging and discharging efficiency is equal, is 93.81%; The SOC upper limit gets 1, and lower limit gets 0.3.Microgrid interconnection power is controlled target P
_{tL}for100kW, guarantee that the power that electrical network injects to microgrid is 100kW.The Power Exchange amount between microgrid and electrical network of it should be noted that not necessarily only has a value in one day, can be different in the peak valley time period, i.e. and given interconnection power ratio control P in literary composition
_{tL}can be variate, but without loss of generality, this example be only considered fixed value.
At first, determine the required controlled power output of microgrid P
_{ned}, and it is carried out to discrete Fourier transform.
Photovoltaic output P in known microgrid
_{gr}, the load P
_{l}and microgrid interconnection target P
_{tL}, by formula (2), (3), can obtain respectively microgrid net load P
_{lnet}with the required controlled power output of microgrid sum P
_{ned}, respectively as shown in accompanying drawing 2 dotted lines and accompanying drawing 3.Based on discrete Fourier transform, the required controlled power of microgrid is exported to P
_{ned}carry out spectrum analysis, its result as shown in Figure 4.Accompanying drawing 4 has provided sample data in the Nyquist frequency f
_{n}=8.333 * 10
^{3}amplitudefrequency characteristic before Hz.
Based on result of spectrum analysis, can determine and can meet the constraint of controllable electric power power output, can guarantee again the controllable electric power compensation frequency range that energy storage system capacity is as far as possible little, and then obtain the idealized power stage for the controllable electric power of this compensation frequency range.For explaining conveniently, band limits is described by corresponding periodic quantity.If the compensation cycle scope is [T
_{l}, T
_{u}), T
_{l}, T
_{u}represent respectively compensation cycle lower limit and the upper limit.Because energystorage system self can not produce power, therefore MT needs compensating direct current component (corresponding frequency is 0Hz), compensation cycle upper limit T
_{u}be made as infinity.Generally speaking, the compensating frequency scope is larger, and the controllable electric power power fluctuation is larger, as shown in accompanying drawing 5a.Adopt try and error method to search and meet T corresponding to the maximum compensation range of MT that the MT power fluctuation retrains [22.5,150] kW
_{l}=130 minutes, as shown in accompanying drawing 5a.The MT compensation range is larger, and the required compensation range of energystorage system is less, and its desired volume is just less, as shown in accompanying drawing 5b.
From accompanying drawing 5a, the maximum compensation range that meets MT power stage constraint for [130 ,+∞) minute, the MT power stage P that this compensation range is corresponding
_{gc}see accompanying drawing 6a solid line, its power stage scope is [22.686,137.664] kW, meets the constraint of MT power output.
After guaranteeing that energystorage system deduction discharges and recharges loss, sample data in the cycle actual charge/discharge electricity amount equate, by P
_{tL}whole translation Δ P=0.258kW downwards, the energystorage system power demand that is met energystorage system continuous and steady operation constraint (13) is exported P
_{eS0}, the comprehensive efficiency for chargedischarge of consideration energystorage system 88%, determine the actual power P that discharges and recharges of energystorage system
_{eS}, as shown in accompanying drawing 6a dotted line.Can determine energystorage system rated power, capacity and SOC initial value according to formula (15), (17), (19), as shown in table 1.
The optimum capacity scheme of table 1
Definite energystorage system power, capacity are carried out to verification, and in its running, the SOC size is as shown in accompanying drawing 6b dotted line, and known SOC maximum and minimum value are respectively 100%, 30%, just equals the constraint of SOC bound; During end of run, to charge and discharge electric weight be 0 to the actual accumulative total of energystorage system, sees accompanying drawing 6b solid line, therefore definite capacity scheme can guarantee the energystorage system continuous and steady operation.
Claims (9)
1. the energy storage system capacity optimization method of a level and smooth microgrid interconnection tie power fluctuation, is characterized in that, includes following steps:
1) determine rational regenerative resource power output and load sample data, wherein, regenerative resource power stage and load sample sampling period get and are more than or equal to 1 minute, be less than or equal to a numerical value of 1 hour, described regenerative resource power stage and load sample data comprise sampling period or sample frequency, sampling beginning and ending time, sampling length;
2) according to regenerative resource power output and load sample data, utilize simulation method to determine energystorage system power,
The described simulation method of utilizing is determined energystorage system power, comprises the steps:
(1) determine the required controlled power output of microgrid P
_{ned}, and it is carried out to discrete Fourier transform;
(2) based on the required controlled power output of microgrid P
_{ned}result of spectrum analysis, determine that meet microgrid interconnection power controls target P
_{tL}frequency domain scope and the time domain power stage corresponding to the required compensation frequency domain of this controllable electric power scope of the required compensation of controllable electric power of constraint;
(3) according to the ideal value of controllable electric power power stage, under the impact of considering energystorage system efficiency for chargedischarge factor, determine the energystorage system power stage can guarantee the energystorage system continuous and steady operation, and then the required maximum of definite energystorage system discharges and recharges power, that is its rated power;
3) according to the output of energystorage system power demand, utilize simulation method to determine capacity and initial SOC state.
2. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, the required controlled power output of described definite microgrid P
_{ned}, and it is carried out to discrete Fourier transform, specifically:
Set microgrid by batch (type) regenerative resource, controllable electric power, energystorage system and load structure, corresponding output is respectively by column vector P
_{g}r, P
_{gc}, P
_{eS0}and P
_{l}mean, for meeting microgrid interconnection power, control target P
_{tL}demand has following power constraint:
P
_{gr}P
_{L}+P
_{ES0}+P
_{gc}=P
_{TL}
P
_{gr}[n]P
_{L}[n]+P
_{ES0}[n]+P
_{gc}[n]=P
_{TL}[n]????????（1）
n∈{1,...,N
_{s}}
In formula, P
_{*}[n] represents column vector P
_{*}in n element, i.e. n the power output [kW] that sampled point is corresponding, N
_{s}represent the sampled point number, the span of n is the same; P
_{*}the sample frequency of the sampled data of representative, sampled point number and sampling beginning and ending time are all identical, make f
_{s}, T
_{s}be respectively sample data P
_{*}sample frequency [Hz] and sampling period [s]; P
_{eS0}[n] can just can bear, and for just representing energy storage system discharges, is negative representative charging; P
_{tL}[n] also can just can bear, and for just representing that microgrid is to the electrical network power output, for negative, represents that electrical network is to the microgrid injecting power;
Load is deducted to the regenerative resource power stage and be defined as net load P
_{lnet}, that is:
P
_{Lnet}=P
_{L}P
_{gr}?????????（2）
Control target P at known microgrid interconnection power
_{tL}after, can determine the required controlled power output of microgrid sum P by formula (1), (2)
_{ned}:
P
_{ned}=P
_{TL}+P
_{Lnet}=P
_{ES0}+P
_{gc}??????????（3）
Formula (3) shows the required controlled power output of microgrid P
_{ned}control target and net load decision by microgrid interconnection power, provided by energystorage system and controllable electric power;
To required controlled power output P in microgrid
_{ned}carry out spectrum analysis, obtain amplitudefrequency S as a result
_{ned}and f
_{ned},
S
_{ned}=DFT(P
_{ned})=[S
_{ned}[1],...,S
_{ned}[n],...,S
_{ned}[N
_{s}]]
^{T}?????（4）
f
_{ned}=[f
_{ned}[1],...,f
_{ned}[n],...,f
_{ned}[N
_{s}]]
^{T}
DFT (P
_{ned}) represent sample data P
_{ned}carry out discrete Fourier transform, S
_{ned}[n]=R
_{ned}[n]+I
_{ned}[n] i represents n frequency f in the Fourier transform result
_{ned}the amplitude that [n] is corresponding, R
_{ned}[n], I
_{ned}[n] respectively for real part and the imaginary part of amplitude, f
_{ned}for with S
_{ned}corresponding column of frequencies vector.
3. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, described based on the required controlled power output of microgrid P
_{ned}result of spectrum analysis, determine that meet microgrid interconnection power controls target P
_{tL}frequency domain scope and the time domain power stage corresponding to the required compensation frequency domain of this controllable electric power scope of the required compensation of controllable electric power of constraint, specifically:
Set f
_{gc}the compensation frequency range of controllable electric power is determined in representative according to result of spectrum analysis; S
_{gc}representing that controllable electric power is required provides the result of spectrum analysis that power stage is corresponding,
To S
_{gc}carry out the discrete fourier inverse transformation the required controlled power Output rusults P that provides of controllable electric power is provided
_{gc}:
P
_{gc}=IDFT(S
_{gc})=[P
_{gc}[1],...,P
_{gc}[n],...,P
_{gc}[N
_{s}]]
^{T}???????（6）
In formula, IDFT (S
_{gc}) represent S
_{gc}carry out the discrete fourier inverse transformation;
Setting the inner controllable electric power power stage of microgrid is:
In formula, N
_{gc}represent that controllable electric power is by N
_{gc}individual electric power generating composition of the same type; J=1 ..., N
_{gc}represent of the same type in j controllable electric power, P
_{gc, j}[n] represented in corresponding n the sampling period, controllable electric power j power output size;
For guaranteeing operational efficiency and extending unit durability, controllable electric power power stage P
_{gc, j}[n] needs to meet following constraint:
In formula, u
_{gc, j}[n], for controllable electric power operation sign, gets 0 or 1; Get 0 o'clock, representative is n sampling period, and controllable electric power j is operation not; Get the representative operation at 1 o'clock;
minimum while representing respectively controllable electric power j operation, maximum power output, cause decrease in efficiency and shortened equipment life for avoiding too low power stage,
get the rated power of 0.3 times;
get the rated power of 1 times;
From formula (7), (8), controllable electric power power output sum P in microgrid
_{gc}need to meet following constraint:
?
Determine the output of controllable electric power ideal power, at first will select rational controllable electric power frequency domain compensation scope f
_{gc}adopt try and error method, from DC component, gradually frequency range is extended to high band, utilize the controllable electric power power stage corresponding to analytical method check different compensation frequency range of front whether to meet formula (10), and then determine and can meet controllable electric power power output constraint, can guarantee again the controllable electric power compensation frequency range that energy storage system capacity is as far as possible little, and then obtain the idealized power stage of controllable electric power.
4. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, described energystorage system power stage, and energystorage system rated power definite:
According to controllable electric power ideal power output P
_{gc}, the energystorage system power demand is exported by column vector P
_{eS0}=[P
_{eS0}[1] ..., P
_{eS0}[n] ..., P
_{eS0}[N
_{s}]]
^{t}mean:
P
_{ES0}[n]=P
_{ned}[n]P
_{gc}[n]?????????（11）
Energystorage system overall efficiency η
_{eS}mean, the actual power that discharges and recharges of energystorage system, use P
_{eS}=[P
_{eS}[1] ..., P
_{eS}[n] ..., P
_{eS}[N
_{s}]]
^{t}mean:
In formula, η
_{eS, c}and η
_{eS, d}represent respectively energystorage system charge efficiency and discharging efficiency;
In whole sample cycle, for guaranteeing the energystorage system continuous and steady operation, needing to meet clean charge/discharge electric weight in the energystorage system running, be zero, that is:
5. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 4, is characterized in that, for guaranteeing the output of system power target, meets:
Microgrid interconnection power is controlled to target P
_{tL}the whole upwards translation of whole translation downwards or controllable electric power power stage realizes; The translational movement absolute value is designated as Δ P, by iterative computation, obtains; After translation, the energystorage system power demand is output as:
P
_{ES0}[n]=P
_{ned}[n]ΔPP
_{gc}[n]????????????（14）
Utilize formula
${P}_{\mathrm{ES}}\left[n\right]=\left\{\begin{array}{cc}{P}_{\mathrm{ES}0}\left[n\right]/{\mathrm{\η}}_{\mathrm{ES},d}& {P}_{\mathrm{ES}0}\left[n\right]\≥0\\ {P}_{\mathrm{ES}0}\left[n\right]\·{\mathrm{\η}}_{\mathrm{ES},c}& {P}_{\mathrm{ES}0}\left[n\right]<0\end{array}\right.$ Obtain the actual performance number that discharges and recharges of energystorage system after consideration discharges and recharges power loss; In whole sample data in the cycle, the actual power P that discharges and recharges of the energystorage system obtained
_{eS}the maximum of absolute value is the energystorage system powerhandling capability:
6. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 1, is characterized in that, the described simulation method of utilizing is determined capacity and initial SOC state, comprises the steps:
(1) the energystorage system real output data based on definite, add up the energystorage system charge/discharge electricity amount of each sample point, obtains the energy hunting of different sampling instant energystorage systems with respect to initial condition;
(2) for energystorage system energy hunting in the cycle in whole sample data, calculate the poor of energystorage system maximum, least energy, consider energystorage system SOC restriction, obtain the capacity that energystorage system should possess, that is energystorage system rated capacity value;
(3), after determining energy storage system capacity, SOC is no more than restriction range when guaranteeing the energystorage system operation, set the SOC initial value will be satisfied condition.
7. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 6, is characterized in that, the different sampling instant energystorage systems of described acquisition, with respect to the energy hunting of initial condition, specifically adopt following formula:
In formula, T
_{s}/ 3600 mean chronomere's " second " convert be chronomere " hour "; E
_{eS, ac}[m] represents energystorage system energy hunting with respect to initial condition m sampling instant, that is m the sampling period before corresponding, that is, from the 0th to m sampling period, energystorage system accumulative total chargedischarge energy sum [kWh].
8. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 6, is characterized in that, describedly obtains the capacity that energystorage system should possess, that is energystorage system rated capacity value, specifically adopts following formula:
In formula, SOC
_{max}and SOC
_{min}represent respectively the upper and lower limit constraint of SOC in the energystorage system actual motion, max{E
_{eS, ac}[m] }min{E
_{eS, ac}[m] } represented the absolute value of energystorage system ceiling capacity fluctuation in the whole sample data cycle.
9. the energy storage system capacity optimization method of level and smooth microgrid interconnection tie power fluctuation according to claim 8, is characterized in that, described SOC initial value will satisfied condition be to adopt following formula to obtain:
In formula, SOC[0] represent the initial SOC value of energystorage system;
If energy storage system capacity satisfies the demands, in the time of guaranteeing the energystorage system operation, SOC is no more than restriction range, and the SOC initial value need to meet following initial value computing formula:
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN2011101930485A CN102244390B (en)  20110711  20110711  Smooth energy storage system capacity optimization method for microgrid junctor power fluctuation 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN2011101930485A CN102244390B (en)  20110711  20110711  Smooth energy storage system capacity optimization method for microgrid junctor power fluctuation 
Publications (2)
Publication Number  Publication Date 

CN102244390A CN102244390A (en)  20111116 
CN102244390B true CN102244390B (en)  20131211 
Family
ID=44962306
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN2011101930485A CN102244390B (en)  20110711  20110711  Smooth energy storage system capacity optimization method for microgrid junctor power fluctuation 
Country Status (1)
Country  Link 

CN (1)  CN102244390B (en) 
Families Citing this family (15)
Publication number  Priority date  Publication date  Assignee  Title 

CN102593854B (en) *  20120201  20140226  中国电力科学研究院  Method for stabilizing wind power fluctuation under transient time constant of battery energy storage system 
CN103560533B (en) *  20120418  20150909  中国电力科学研究院  The method and system of the level and smooth wind light generation fluctuation of energyaccumulating power station are controlled based on rate of change 
CN102684222B (en) *  20120514  20140219  华北电力大学  Method for smoothly controlling wind power generation power based on energy storage technology 
CN103078340B (en) *  20121224  20150429  天津大学  Mixed energy storing capacity optimization method for optimizing microgrid call wire power 
CN103475015B (en) *  20130923  20150923  国家电网公司  A kind of energy storage configuration method for level and smooth gridconnected wind and light generating system output pulsation 
AU2014377330B2 (en)  20140113  20180208  Abb Power Grids Switzerland Ag  Control of a stabilizing energy storage in a microgrid 
CN104361405A (en) *  20141028  20150218  广东电网有限责任公司电力科学研究院  Micro grid energy storage device design method based on capacity limit value constrain 
CN104333025B (en) *  20141115  20161116  国家电网公司  Adapt to the super capacitor collocation method that the fluctuation of impulse type load power is stabilized 
CN104899460A (en) *  20150616  20150909  北京亿利智慧能源科技有限公司  Capacity configuration method of energy storage system for improving wind power prediction accuracy 
CN105365589B (en) *  20151023  20170919  江南大学  A kind of capacity measurement method of electric bus energy storage device 
CN106972515A (en) *  20160113  20170721  北京兆阳能源技术有限公司  Source, the electric energy control device at lotus end, method and system 
CN108183497A (en) *  20171229  20180619  国网北京市电力公司  Charging station capacity determining methods and device 
CN108242822B (en) *  20180302  20201027  清华大学  Distributed frequency control method and device for power system 
CN109802414A (en) *  20190129  20190524  国家电网有限公司  A kind of energy storage configuration method of smooth new energy outputpower fluctuation 
CN110601260A (en) *  20190911  20191220  电子科技大学  Lightstorage system capacity optimization method for limiting power fluctuation on interconnection line 
Citations (1)
Publication number  Priority date  Publication date  Assignee  Title 

CN102104251A (en) *  20110224  20110622  浙江大学  Microgrid realtime energy optimizing and scheduling method in parallel running mode 

2011
 20110711 CN CN2011101930485A patent/CN102244390B/en active IP Right Grant
Patent Citations (1)
Publication number  Priority date  Publication date  Assignee  Title 

CN102104251A (en) *  20110224  20110622  浙江大学  Microgrid realtime energy optimizing and scheduling method in parallel running mode 
NonPatent Citations (4)
Title 

Energy Storage and Its Use With Intermittent Renewable Energy;John P.Barton等;《IEEE TRANSACTIONS ON ENERGY CONVERSION》;20040630;第19卷(第2期);441448 * 
John P.Barton等.Energy Storage and Its Use With Intermittent Renewable Energy.《IEEE TRANSACTIONS ON ENERGY CONVERSION》.2004,第19卷(第2期),441448. 
大型风电场用储能装置容量的优化配置;梁亮等;《高电压技术》;20110430;第37卷(第4期);930936 * 
梁亮等.大型风电场用储能装置容量的优化配置.《高电压技术》.2011,第37卷(第4期),930935. 
Also Published As
Publication number  Publication date 

CN102244390A (en)  20111116 
Similar Documents
Publication  Publication Date  Title 

Medina et al.  Electrical energy storage systems: technologies' stateoftheart, technoeconomic benefits and applications analysis  
Gee et al.  Analysis of battery lifetime extension in a smallscale windenergy system using supercapacitors  
Yang et al.  Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong  
Chen  Optimum capacity determination of standalone hybrid generation system considering cost and reliability  
Pourbehzadi et al.  Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review  
Datta et al.  Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system  
Paska et al.  Hybrid power systems–An effective way of utilising primary energy sources  
Billinton et al.  Reliability evaluation of small standalone wind energy conversion systems using a time series simulation model  
CN100380774C (en)  Electric power control apparatus, power generation system and power grid system  
CN103595068B (en)  Mixed energy storage system stabilizes the control method of honourable outputpower fluctuation  
Ramakumar et al.  A knowledgebased approach to the design of integrated renewable energy systems  
Brekken et al.  Optimal energy storage sizing and control for wind power applications  
CN104037793B (en)  A kind of energystorage units capacity collocation method being applied to active distribution network  
CN104734166B (en)  hybrid energy storage system and wind power generation power smooth control method  
CN104348189B (en)  A kind of distributed power supply system  
CN105976055B (en)  distributed photovoltaicenergy storage system output optimization and capacity configuration method considering power loss  
CN104701871A (en)  Wind, light and watercontaining multisource complementary microgrid hybrid energy storage capacity optimal proportion method  
CN105244869A (en)  Dynamic random scheduling control method for power distribution network containing microgrid  
CN102684222B (en)  Method for smoothly controlling wind power generation power based on energy storage technology  
CN104092231A (en)  Method for optimal configuration of independent micro grid mixed energy storage capacity  
Yuan et al.  Determination of economic dispatch of wind farm‐battery energy storage system using genetic algorithm  
Bruni et al.  Control strategy influence on the efficiency of a hybrid photovoltaicbatteryfuel cell system distributed generation system for domestic applications  
CN103094926A (en)  Multicomponent energystoring capacity collocation method applied to micro power grid group  
Olulope et al.  Modeling and simulation of hybrid distributed generation and its impact on transient stability of power system  
CN102148510A (en)  Power flow algorithm for electric distribution network comprising distributed generation (DG) 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
C06  Publication  
SE01  Entry into force of request for substantive examination  
C10  Entry into substantive examination  
GR01  Patent grant  
C14  Grant of patent or utility model  
TR01  Transfer of patent right 
Effective date of registration: 20210128 Address after: Room 531, 5th floor, Yuanhe building, 959 Jiayuan Road, Yuanhe street, Xiangcheng District, Suzhou City, Jiangsu Province, 215100 Patentee after: Suzhou Junhao Electric Power Co.,Ltd. Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92 Patentee before: Tianjin University 

TR01  Transfer of patent right 