CN102243080A - 高精度光纤陀螺带温度补偿的信号检测方法及装置 - Google Patents

高精度光纤陀螺带温度补偿的信号检测方法及装置 Download PDF

Info

Publication number
CN102243080A
CN102243080A CN2011101035042A CN201110103504A CN102243080A CN 102243080 A CN102243080 A CN 102243080A CN 2011101035042 A CN2011101035042 A CN 2011101035042A CN 201110103504 A CN201110103504 A CN 201110103504A CN 102243080 A CN102243080 A CN 102243080A
Authority
CN
China
Prior art keywords
temperature
optical fibre
fibre gyro
constant multiplier
output data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101035042A
Other languages
English (en)
Inventor
李慧
李立京
毕兰
张春熹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2011101035042A priority Critical patent/CN102243080A/zh
Publication of CN102243080A publication Critical patent/CN102243080A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明实施例公开了一种高精度光纤陀螺带温度补偿的信号检测方法及装置。所述方法首先获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;然后根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度补偿。本实施例通过分析光纤陀螺输出数据与温度的关系,以及采用自适应信号重构原理根据温度模型重构光纤陀螺输出数据,解决了温度变化使得光纤陀螺全温标度因数重复性变差的问题,优化了数字信号检测方案,提高了光纤陀螺的温度环境性能,对高精度光纤陀螺的工程化具有重要的意义。

Description

高精度光纤陀螺带温度补偿的信号检测方法及装置
技术领域
本发明涉及一种光纤陀螺技术领域,尤其涉及一种高精度光纤陀螺带温度补偿的数字信号检测方法及装置。
背景技术
目前,干涉式光纤陀螺是随着光纤传感技术的发展而发展起来的一种新型、高稳定性的角速度传感器。具有无转动部件、无须预热、结构简单、动态范围宽、启动时间短、抗电磁干扰和抗振动冲击能力强、制造成本低、体积小、重量轻、功耗低等优点,因此在惯性设备中具有相当强的竞争力。目前,国内外高精度光纤陀螺技术上相比,环境性能上的差距尤为突出,这些差距极大地限制了国内高精度光纤陀螺的实用化水平。
为了满足实用化需要,一般要求光纤陀螺在较宽的工作温度范围(-40℃到+60℃)下都可以满足其性能指标的要求正常工作,以适应各个领域的应用。但是由于光源的波长λ,石英光纤线圈的几何参数D和L对环境温度都比较敏感,导致光纤陀螺的关键性能参数受环境温度变化的影响后零偏及零偏稳定性、全温标度因数重复性变差,制约了其实际应用。
目前在现有技术中还没有从机理上解决温度对光纤陀螺性能影响的方案,如何提高高精度光纤陀螺的温度特性是目前迫切需要解决的关键技术问题。
发明内容
本发明的目的是提供一种高精度光纤陀螺带温度补偿的信号检测方法及装置。能够提高高精度光纤陀螺在环境温度变化时的标度因数全温重复性,从而提高了系统的测量精度和温度性能。
本发明实施例提供了一种高精度光纤陀螺带温度补偿的信号检测方法,所述方法包括:
获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;
根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
所述获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,具体包括:
环境温度为恒温点的实验数据测试,需测试的环境温度点为-40、-20、0、+25、+40、+60℃,需要记录恒温点的温度值与光纤陀螺输出数据的变化曲线,具体为每到温度测试点保温两个小时后,记录光纤陀螺内部温度值和在此温度下光纤陀螺的零偏与标度因数;
环境温度变化时的实验数据测试,需测试环境温度温变速率为0.5℃/min,1℃/min或2℃/min,需要记录环境温度的温变速率与光纤陀螺输出数据的关系曲线。
所述通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿,具体包括:
根据所建立的光纤陀螺内部温度和标度因数的关系,通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数,取常温+25℃时的标度因数,设为Ko,且Ko为已知量;
根据上述数学模型建立所述标度因数关于温度的参数估计器,该参数估计器根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和Ko送入计算器;
所述计算器根据选定的设计准则和所获得的参数估计值K(t),以及未调整的光纤陀螺输出数据outo,来计算出最优的光纤陀螺输出数据为out,具体通过如下公式计算:
out=outo*Ko/K(t)
根据上述公式重构出最优的光纤陀螺输出数据out,实现对光纤陀螺的输出数据进行温度误差补偿。
本发明还提供了一种高精度光纤陀螺带温度补偿的信号检测装置,所述装置包括:
关系建立单元,用于获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;
温度误差补偿单元,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
所述温度误差补偿单元包括:
数学模型建立模块,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数,取常温+25℃时的标度因数,设为Ko,且Ko为已知量;
根据上述所建立的数学模型建立所述标度因数关于温度的参数估计器,该参数估计器用于根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和Ko送入温度误差补偿计算器;
所述温度误差补偿计算器,用于根据选定的设计准则和所获得的参数估计值K(t),以及未调整的光纤陀螺输出数据outo,计算出最优的光纤陀螺输出数据为out,具体通过如下公式计算:
out=outo*Ko/K(t)
所述温度误差补偿计算器根据上述公式重构出最优的光纤陀螺输出数据out,实现对光纤陀螺的输出数据进行温度误差补偿。
由上述本发明提供的技术方案可以看出,所述方法首先获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;然后根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度补偿。本实施例通过分析光纤陀螺输出数据与温度的关系,以及采用自适应信号重构原理根据温度模型重构光纤陀螺输出数据,解决了温度变化使得光纤陀螺全温标度因数重复性变差的问题,优化了数字信号检测方案,提高了光纤陀螺的温度环境性能,对高精度光纤陀螺的工程化具有重要的意义。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例所提供的高精度光纤陀螺带温度补偿的信号检测方法流程示意图;
图2为本发明实施例所建立的未补偿的温度和标度因数关系示意图;
图3为本发明实施例所提供的标度因数补偿方案的示意图;
图4为本发明实施例所提供标度因数全温补偿效果的实验数据图;
图5为本发明实施例所提供高精度光纤陀螺带温度补偿的信号检测装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明实施例通过分析光纤陀螺输出数据与温度的关系,以及采用自适应信号重构原理根据温度模型重构光纤陀螺输出数据,解决了温度变化使得光纤陀螺全温标度因数重复性变差的问题,优化了数字信号检测方案,提高了光纤陀螺的温度环境性能,对高精度光纤陀螺的工程化具有重要的意义。
下面将结合附图对本发明实施例作进一步地详细描述,本发明实施例研究如何通过理论分析与实验数据建立温度模型以及设计相应的补偿算法,其中温度模型建立的方法如下所示:
根据光纤陀螺的工作原理可知:
Dout(t)=K(t)Ω(t)        (1)
其中,Ω(t)为输入角速度,Dout(t)为光纤陀螺输出数据,K(t)为标度因数,
当输入角速度Ω(t)恒定时,光纤陀螺输出数据Dout(t)和标度因数K(t)成正比,因此可以通过补偿光纤陀螺输出数据Dout(t)来补偿标度因数K(t),在此原理下,根据自适应控制理论建立自适应信号重构系统。
如图1所示为本发明实施例提供的高精度光纤陀螺带温度补偿的信号检测方法的流程示意图,所述方法包括:
步骤11:获得未补偿的光纤陀螺的内部温度和相应温度下的标度因数数据。
在该步骤中,首先建立标度因数的温度补偿模型。在-40℃到+60℃范围内,光纤陀螺的内部温度和陀螺输出数据的模型建立,所需要测量的温度实验数据包括:
1、环境温度为恒温点时,建立光纤陀螺的温度模型需要测试的实验数据
测试环境温度点为-40、-20、0、+25、+40、+60℃时,需要记录恒温点的温度值与光纤陀螺输出数据的变化曲线。实验方法为每到温度测试点保温两个小时后,记录光纤陀螺内部温度值和在此温度下陀螺的零偏与标度因数。
2、环境温度变化时,建立光纤陀螺的温度模型需要测试的实验数据
当测试环境温度在0.5℃/min,1℃/min或2℃/min变化时,需要记录温度与光纤陀螺输出数据的变化曲线。
通过以上两步试验数据得到未补偿的光纤陀螺的内部温度和相应温度下的标度因数数据,建立温度和标度因数的关系如图2示。
步骤12:根据光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
在该步骤中,具体的补偿方案如图3所示,图3中:基于光纤陀螺温度模型来实现温度补偿,具体温度补偿方案包括以下三步:
(1)基于实验得到未补偿的陀螺的内部温度和相应温度下的标度数据的关系,并通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数(一般取常温+25℃时的标度因数,设为K0,K0为已知量)。
(2)根据(1)中的数学模型建立标度因数关于温度的参数估计器,该参数估计器根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和K0送入计算器。
(3)计算器根据选定的设计准则和(2)中获得的参数估计值K(t),以及未调整的陀螺输出数据outo,来计算出最优的陀螺输出数据为out,计算器的设计准则:
outo与out的关系,如公式(2)所示
out=outo*Ko/K(t)        (2)
根据公式(2)重构出最优的陀螺输出数据out。可见,此方案为根据自适应原理设计的光纤陀螺标度因数补偿的自适应信号重构系统。
通过上述技术方案的实施,就可以通过以上光纤陀螺温度模型以及信号处理方法解决了温度变化使得光纤陀螺全温标度因数重复性变差的问题,优化了数字信号检测方案,提高了光纤陀螺的温度环境性能,对高精度光纤陀螺的工程化具有重要的意义。
在具体实施过程中,将带温度补偿的数字信号检测方法应用于高精度光纤陀螺得到的静态精度优于0.01deg/h,并且同一只高精度光纤陀螺具体的标度因数全温补偿前后效果实验数据图可以参考图2与图4所示,可以看出:-40℃到+60℃范围内,未采用本发明所述方法进行补偿的标度因数重复性大于2000ppm,如图2所示;采用本发明所述带温度补偿的信号检测方法后,标度因数重复性小于50ppm,如图4所示。并且通过工程化的大量高精度光纤陀螺的实验数据验证表明此方案是可行的,可有效的优化高精度光纤陀螺全温的标度因数重复性指标。
本发明实施例还提供了一种高精度光纤陀螺带温度补偿的信号检测装置,如图5所示为本发明实施例所提供高精度光纤陀螺带温度补偿的信号检测装置的结构示意图,所述装置包括:
关系建立单元,用于获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;
温度误差补偿单元,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
另外,所述温度误差补偿单元包括:
数学模型建立模块,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数,取常温+25℃时的标度因数,设为Ko,且Ko为已知量;
根据上述所建立的数学模型建立所述标度因数关于温度的参数估计器,该参数估计器用于根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和Ko送入温度误差补偿计算器;
所述温度误差补偿计算器,用于根据选定的设计准则和所获得的参数估计值K(t),以及未调整的光纤陀螺输出数据outo,计算出最优的光纤陀螺输出数据为out,具体通过如下公式计算:
out=outo*Ko/K(t)
所述温度误差补偿计算器根据上述公式重构出最优的光纤陀螺输出数据out,实现对光纤陀螺的输出数据进行温度误差补偿。
值得注意的是,上述装置实施例中,所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
综上所述,本发明实施例能够提高高精度光纤陀螺在环境温度变化时的标度因数全温重复性,使得高精度光纤陀螺系统具有较强的环境抑制能力,提高了系统的测量精度和温度性能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种高精度光纤陀螺带温度补偿的信号检测方法,其特征在于,所述方法包括:
获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;
根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
2.如权利要求1所述的方法,其特征在于,所述获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,具体包括:
环境温度为恒温点的实验数据测试,需测试的环境温度点为-40、-20、0、+25、+40、+60℃,需要记录恒温点的温度值与光纤陀螺输出数据的变化曲线,具体为每到温度测试点保温两个小时后,记录光纤陀螺内部温度值和在此温度下光纤陀螺的零偏与标度因数;
环境温度变化时的实验数据测试,需测试环境温度温变速率为0.5℃/min,1℃/min或2℃/min,需要记录环境温度的温变速率与光纤陀螺输出数据的关系曲线。
3.如权利要求1所述的方法,其特征在于,所述通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿,具体包括:
根据所建立的光纤陀螺内部温度和标度因数的关系,通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数,取常温+25℃时的标度因数,设为Ko,且Ko为已知量;
根据上述数学模型建立所述标度因数关于温度的参数估计器,该参数估计器根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和Ko送入计算器;
所述计算器根据选定的设计准则和所获得的参数估计值K(t),以及未调整的光纤陀螺输出数据outo,来计算出最优的光纤陀螺输出数据为out,具体通过如下公式计算:
out=outo*Ko/K(t)
根据上述公式重构出最优的光纤陀螺输出数据out,实现对光纤陀螺的输出数据进行温度误差补偿。
4.一种高精度光纤陀螺带温度补偿的信号检测装置,其特征在于,所述装置包括:
关系建立单元,用于获得未补偿的光纤陀螺内部温度和相应温度下的标度因数数据,并建立内部温度和相应温度下标度因数的关系;
温度误差补偿单元,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过自适应信号重构原理对光纤陀螺的输出数据进行温度误差补偿。
5.如权利要求4所述的装置,其特征在于,所述温度误差补偿单元包括:
数学模型建立模块,用于根据所建立的光纤陀螺内部温度和标度因数的关系,通过最佳平方逼近方法建立温度与光纤陀螺标度因数的数学模型,并选择全温理想的标度因数,取常温+25℃时的标度因数,设为Ko,且Ko为已知量;
根据上述所建立的数学模型建立所述标度因数关于温度的参数估计器,该参数估计器用于根据实时测得的温度值预测出该温度点的标度因数,并设为K(t),将K(t)和Ko送入温度误差补偿计算器;
所述温度误差补偿计算器,用于根据选定的设计准则和所获得的参数估计值K(t),以及未调整的光纤陀螺输出数据outo,计算出最优的光纤陀螺输出数据为out,具体通过如下公式计算:
out=outo*Ko/K(t)
所述温度误差补偿计算器根据上述公式重构出最优的光纤陀螺输出数据out,实现对光纤陀螺的输出数据进行温度误差补偿。
CN2011101035042A 2011-04-25 2011-04-25 高精度光纤陀螺带温度补偿的信号检测方法及装置 Pending CN102243080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101035042A CN102243080A (zh) 2011-04-25 2011-04-25 高精度光纤陀螺带温度补偿的信号检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101035042A CN102243080A (zh) 2011-04-25 2011-04-25 高精度光纤陀螺带温度补偿的信号检测方法及装置

Publications (1)

Publication Number Publication Date
CN102243080A true CN102243080A (zh) 2011-11-16

Family

ID=44961253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101035042A Pending CN102243080A (zh) 2011-04-25 2011-04-25 高精度光纤陀螺带温度补偿的信号检测方法及装置

Country Status (1)

Country Link
CN (1) CN102243080A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322874A (zh) * 2011-09-15 2012-01-18 武汉武大卓越科技有限责任公司 一种简易光纤陀螺仪性能参数标定方法
CN102519489A (zh) * 2011-12-16 2012-06-27 东南大学 一种基于温度及输入角速率的光纤陀螺标度因数建模方法
CN102607542A (zh) * 2012-03-28 2012-07-25 昆明物理研究所 微机械陀螺自适应补偿的方法及装置
CN102650527A (zh) * 2012-05-25 2012-08-29 北京航空航天大学 一种基于时间序列分析消噪的光纤陀螺温度补偿方法
CN104596545A (zh) * 2015-01-27 2015-05-06 北京航天时代光电科技有限公司 一种光纤惯性测量装置陀螺仪标度因数温度建模方法
CN104713574A (zh) * 2013-12-11 2015-06-17 中国航空工业第六一八研究所 一种闭环光纤陀螺标度因数高精度标定方法
CN105333888A (zh) * 2015-11-26 2016-02-17 湖北三江航天红峰控制有限公司 一种利用一次温度实验同时补偿光纤陀螺标度因数及零偏的方法
CN105628976A (zh) * 2015-12-30 2016-06-01 中国科学院地质与地球物理研究所 Mems加速度传感器性能参数标定方法、处理器及系统
RU2598155C1 (ru) * 2015-08-11 2016-09-20 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ компенсации систематических составляющих дрейфа гироскопических датчиков
CN106908080A (zh) * 2015-12-23 2017-06-30 上海亨通光电科技有限公司 一种光纤陀螺全温非正交角偏差的通用误差补偿方法
CN108489512A (zh) * 2018-02-28 2018-09-04 北京控制工程研究所 一种半球谐振陀螺标度因数的补偿标定方法及装置
CN109839124A (zh) * 2017-11-24 2019-06-04 北京自动化控制设备研究所 一种mems陀螺仪标度因数温度补偿方法
CN110285832A (zh) * 2019-07-04 2019-09-27 北京航天时代光电科技有限公司 光纤陀螺惯测产品的标定参数长期稳定性缺陷检测方法
CN112325901A (zh) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 一种平台式惯导系泊状态下计算方位陀螺仪标度的方法
CN112629562A (zh) * 2020-12-24 2021-04-09 广州导远电子科技有限公司 一种基于imu传感器的组装补偿方法及装置
CN114216450A (zh) * 2021-12-09 2022-03-22 北京思卓博瑞科技有限公司 一种光纤陀螺的标度因数温度补偿方法及系统
CN116124180A (zh) * 2023-04-04 2023-05-16 中国船舶集团有限公司第七〇七研究所 一种基于多级温度预测的陀螺惯导自适应对准方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408427A (zh) * 2008-11-19 2009-04-15 中国航天时代电子公司 一种光纤陀螺仪分布式分层级温度误差补偿方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408427A (zh) * 2008-11-19 2009-04-15 中国航天时代电子公司 一种光纤陀螺仪分布式分层级温度误差补偿方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUNXI ZHANG ET AL.: "Thermal analysis of the effects of thermally induced nonreciprocity in fiber optic gyroscope sensing coils", 《OPTIK》 *
曹华等: "光纤陀螺组件误差标定ARLS算法", 《光电工程》 *
王新龙等: "光纤陀螺温度与标度因数非线性建模与补偿", 《北京航空航天大学学报》 *
金靖等: "基于RBF神经网络的数字闭环光纤陀螺温度误差补偿", 《光学精密工程》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322874A (zh) * 2011-09-15 2012-01-18 武汉武大卓越科技有限责任公司 一种简易光纤陀螺仪性能参数标定方法
CN102519489A (zh) * 2011-12-16 2012-06-27 东南大学 一种基于温度及输入角速率的光纤陀螺标度因数建模方法
CN102519489B (zh) * 2011-12-16 2014-04-16 东南大学 一种基于温度及输入角速率的光纤陀螺标度因数建模方法
CN102607542A (zh) * 2012-03-28 2012-07-25 昆明物理研究所 微机械陀螺自适应补偿的方法及装置
CN102607542B (zh) * 2012-03-28 2014-12-10 昆明物理研究所 微机械陀螺自适应补偿的方法及装置
CN102650527A (zh) * 2012-05-25 2012-08-29 北京航空航天大学 一种基于时间序列分析消噪的光纤陀螺温度补偿方法
CN102650527B (zh) * 2012-05-25 2014-12-03 北京航空航天大学 一种基于时间序列分析消噪的光纤陀螺温度补偿方法
CN104713574A (zh) * 2013-12-11 2015-06-17 中国航空工业第六一八研究所 一种闭环光纤陀螺标度因数高精度标定方法
CN104713574B (zh) * 2013-12-11 2018-02-27 中国航空工业第六一八研究所 一种闭环光纤陀螺标度因数高精度标定方法
CN104596545B (zh) * 2015-01-27 2017-07-28 北京航天时代光电科技有限公司 一种光纤惯性测量装置陀螺仪标度因数温度建模方法
CN104596545A (zh) * 2015-01-27 2015-05-06 北京航天时代光电科技有限公司 一种光纤惯性测量装置陀螺仪标度因数温度建模方法
RU2598155C1 (ru) * 2015-08-11 2016-09-20 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ компенсации систематических составляющих дрейфа гироскопических датчиков
CN105333888B (zh) * 2015-11-26 2018-02-23 湖北三江航天红峰控制有限公司 一种利用一次温度实验同时补偿光纤陀螺标度因数及零偏的方法
CN105333888A (zh) * 2015-11-26 2016-02-17 湖北三江航天红峰控制有限公司 一种利用一次温度实验同时补偿光纤陀螺标度因数及零偏的方法
CN106908080A (zh) * 2015-12-23 2017-06-30 上海亨通光电科技有限公司 一种光纤陀螺全温非正交角偏差的通用误差补偿方法
CN106908080B (zh) * 2015-12-23 2019-11-08 上海亨通光电科技有限公司 一种光纤陀螺全温非正交角偏差的通用误差补偿方法
CN105628976A (zh) * 2015-12-30 2016-06-01 中国科学院地质与地球物理研究所 Mems加速度传感器性能参数标定方法、处理器及系统
CN105628976B (zh) * 2015-12-30 2018-05-18 中国科学院地质与地球物理研究所 Mems加速度传感器性能参数标定方法、处理器及系统
CN109839124A (zh) * 2017-11-24 2019-06-04 北京自动化控制设备研究所 一种mems陀螺仪标度因数温度补偿方法
CN108489512B (zh) * 2018-02-28 2020-12-18 北京控制工程研究所 一种半球谐振陀螺标度因数的补偿标定方法及装置
CN108489512A (zh) * 2018-02-28 2018-09-04 北京控制工程研究所 一种半球谐振陀螺标度因数的补偿标定方法及装置
CN110285832A (zh) * 2019-07-04 2019-09-27 北京航天时代光电科技有限公司 光纤陀螺惯测产品的标定参数长期稳定性缺陷检测方法
CN112325901A (zh) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 一种平台式惯导系泊状态下计算方位陀螺仪标度的方法
CN112325901B (zh) * 2020-09-28 2022-09-16 中国船舶重工集团公司第七0七研究所 一种平台式惯导系泊状态下计算方位陀螺仪标度的方法
CN112629562A (zh) * 2020-12-24 2021-04-09 广州导远电子科技有限公司 一种基于imu传感器的组装补偿方法及装置
CN114216450A (zh) * 2021-12-09 2022-03-22 北京思卓博瑞科技有限公司 一种光纤陀螺的标度因数温度补偿方法及系统
CN116124180A (zh) * 2023-04-04 2023-05-16 中国船舶集团有限公司第七〇七研究所 一种基于多级温度预测的陀螺惯导自适应对准方法
CN116124180B (zh) * 2023-04-04 2023-06-16 中国船舶集团有限公司第七〇七研究所 一种基于多级温度预测的陀螺惯导自适应对准方法

Similar Documents

Publication Publication Date Title
CN102243080A (zh) 高精度光纤陀螺带温度补偿的信号检测方法及装置
CN104713574B (zh) 一种闭环光纤陀螺标度因数高精度标定方法
CN102519489B (zh) 一种基于温度及输入角速率的光纤陀螺标度因数建模方法
CN108955727B (zh) 一种光纤线圈性能评价方法
CN102621890A (zh) 一种运动载体光电跟踪稳定平台的控制方法
CN102426420B (zh) 一种强鲁棒性的运动载体光电稳定平台控制系统
CN102620729B (zh) 一种机抖激光陀螺惯性测量单元数字滤波器设计方法
CN102135420B (zh) 一种提高光纤陀螺仪角位移测量精度的方法
CN102636183B (zh) 基于光纤监测和双轴转台离心机的挠性陀螺二次过载项测试方法
CN106017511B (zh) 一种光纤陀螺温度系数测试和补偿方法
CN101339093A (zh) 光纤陀螺用光纤环质量的测量方法及其装置
CN104967480A (zh) 采用分数阶傅里叶变换监测光纤链路非线性效应的方法
CN104990547A (zh) 一种稳定光纤陀螺保持标度因数的方法和装置
CN101387524A (zh) 一种适用于光纤陀螺的偏置温度误差测试与补偿系统
CN110108299A (zh) 一种硅微机械陀螺仪标度因数在线自校准系统
CN105157733A (zh) 一种改进的生成载波相位pgc解调方法
CN110954136A (zh) 一种光纤陀螺温度补偿的方法
CN104713575A (zh) 一种闭环光纤陀螺频率特性的测试方法
CN114942035A (zh) 一种基于光谱演化补偿的光纤陀螺标度因数误差抑制方法
CN106705995A (zh) 一种MEMS陀螺仪g值敏感系数的标定方法
CN102636185B (zh) 基于带单轴反转台离心机的挠性陀螺比力敏感项非线性测试方法
CN106897480B (zh) 一种抑制光纤陀螺标度因数模型迟滞效应的建模方法
CN103884352B (zh) 光纤陀螺输出延迟时间自动测量的方法及装置
CN107543537B (zh) 一种提高光纤陀螺标度因数稳定性的方法
CN113720321A (zh) 一种光纤陀螺温度补偿系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111116