CN102234547A - 用于整合气化组合循环动力系统的水煤气变换反应器系统 - Google Patents

用于整合气化组合循环动力系统的水煤气变换反应器系统 Download PDF

Info

Publication number
CN102234547A
CN102234547A CN2011101165243A CN201110116524A CN102234547A CN 102234547 A CN102234547 A CN 102234547A CN 2011101165243 A CN2011101165243 A CN 2011101165243A CN 201110116524 A CN201110116524 A CN 201110116524A CN 102234547 A CN102234547 A CN 102234547A
Authority
CN
China
Prior art keywords
water
high pressure
combined cycle
gas shift
gasification combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101165243A
Other languages
English (en)
Other versions
CN102234547B (zh
Inventor
A·K·阿南德
M·穆图拉马林加姆
J·马鲁塔穆图
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102234547A publication Critical patent/CN102234547A/zh
Application granted granted Critical
Publication of CN102234547B publication Critical patent/CN102234547B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/61Removal of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本申请涉及用于整合气化组合循环动力系统的水煤气变换反应器系统。因此,本申请提供一种整合气化组合循环系统(390)。该整合气化组合循环系统(390)可包括水煤气变换反应器系统(400)和热回收蒸汽发生器(160)。该水煤气变换反应器系统(400)可包括再循环系统(445),其具有再循环热交换器(445)来加热合成气流(315)。该热回收蒸汽发生器(160)可包括与再循环热交换器(430)连通的分流水流(450)。

Description

用于整合气化组合循环动力系统的水煤气变换反应器系统
技术领域
本申请大体而言涉及整合气化组合循环(integrated gasificationcombined cycle,IGCC)动力系统(power generation system),且更特定而言涉及一种IGCC动力系统,其具有用于它的改进的水煤气变换反应器系统(water gas shift reactor system)。
背景技术
已知的IGCC动力系统可包括与至少一个产生动力的涡轮系统整合的气化系统。举例而言,已知的气化器可将燃料、空气或氧气、蒸汽和其它添加剂的混合物转变成部分地燃烧的气体的输出,通常被称作“合成气”。这些热燃烧气体被供应到燃气涡轮发动机的燃烧器。而燃气涡轮发动机向发电机提供动力以发电或驱动另一类型的负载。来自燃气涡轮发动机的废气被供应到热回收蒸汽发生器(heat recoverysteam generator,HRSG)以便生成蒸汽用于蒸汽涡轮。由蒸汽涡轮生成的动力也可驱动发电机或另一类型的负载。类似类型的动力系统可为已知的。
气化过程可使用水煤气变换反应器。基本的水煤气变换反应如下:CO+H2O<->CO2+H2。为了改进变换反应,高压蒸汽与进入水煤气变换反应器的原料合成气混合以便增加H2O/CO比例。蒸汽源通常从底循环或者自在高温/低温气体冷却部段中冷却合成气得到。反应也是温度敏感的。
但是,对于给定水煤气变换反应器的高压蒸汽要求而言,利用CO2捕获的总IGCC系统的效率会降低。具体而言,对于原料合成气饱和取得的高压蒸汽涉及性能损失,因为蒸汽不能用于蒸汽涡轮中的膨胀功。因此,分流可降低总系统效率,净输出和耗热率。
因此,需要改进的利用CO2捕获的整合气体组合循环动力系统。这种系统优选地可维持充分的CO2捕获同时增加总系统效率和性能。
发明内容
因此,本申请提供一种整合气化组合循环系统。该整合气化组合循环系统可包括水煤气变换反应器系统和热回收蒸汽发生器。水煤气变换反应器系统可包括再循环系统,其具有再循环热交换器以加热合成气流(flow of syngas)。热回收蒸汽发生器可包括与再循环热交换器连通(in communication with)的分流水流(diverted water flow)。
本申请还提供一种操作具有一个或多个水煤气变换反应器和热回收蒸汽发生器的整合组合循环气化系统的方法。该方法可包括以下步骤:提供与进来的合成气流连通的再循环水流;分流来自热回收蒸汽发生器的高压抽水(water extraction);在高压抽水与再循环水流之间进行热交换;使合成气流向水煤气变换反应器;以及,增加合成气流的水分含量。
本申请还提供一种整合气化组合循环系统。该整合气化组合循环系统可包括水煤气变换反应器系统,其具有一个或多个水煤气变换反应器和热回收蒸汽发生器。水煤气变换反应器系统可包括再循环系统,其具有再循环热交换器以加热合成气流。热回收蒸汽发生器可包括与再循环热交换器连通的高压部段和分流的高压水流。
当结合附图和所附权利要求来理解时,通过阅读下文的详细描述,本申请的这些和其它特点和改进对于本领域技术人员而言将会变得明显。
附图说明
图1是利用CO2捕获的IGCC动力系统的示意图。
图2是使用已知IGCC系统的HRSG的低温气体冷却部段的示意图。
图3是使用可如本文所述的HRSG的低温气体冷却部段的示意图。
部件列表:
100    IGCC动力系统
110    气化器
115    合成气冷却器
120    空气分离单元
130    水煤气变换反应器系统
140    酸气移除系统
150    燃气涡轮动力循环
151    煤制备
152    CO2再循环压缩
153    CO2压缩
154    带尾气处理单元的硫回收单元
155    合成气加热单元
160    热回收蒸汽发生器
165    废气
200    高压过热器
210    高压再热器
220    高压蒸发器
225    高压部段
230    高压节热器
240    中压过热器
250    中压蒸发器
255    中压部段
260    中压节热器
270    低压过热器
280    低压蒸发器
285    低压部段
290    低压节热器
300    高压抽水
310    高压蒸汽流
315    合成气流
320    第一水煤气变换反应器
330    第二水煤气变换反应器
340    水再循环系统
350    塔
360    第一气体/水热交换器
370    第二气体/水热交换器
380    气体/气体热交换器
390    IGCC系统
400    水煤气变换反应器系统
410    高压抽水
420    高压蒸汽流
430    再循环热交换器
440    再循环流
445    再循环系统
450    分流水流
460    分流泵
具体实施方式
现参看附图,其中在若干视图中相同附图标记指代相同元件。图1示出利用CO2捕获的IGCC动力系统100。IGCC系统100可包括:高压辐射-传导气化器110以使显热回收最大;辐射合成气冷却器115;空气分离单元120,其使用高压空气分离和自燃气涡轮的部分抽气(airextraction)来产生可为气化所需的预期纯度的氧气;在水煤气变换反应器系统130中的一个或多个催化水煤气变换反应器,其用于产生主要富含H2-CO2的气体;酸气移除系统140,其用于额外产物气体清洁和CO2移除;以及,使用先进的合成气燃料的燃气涡轮动力循环150来产生动力。IGCC系统100也可包括煤制备151;CO2再循环压缩152;CO2压缩153;硫回收单元,其带有尾气处理单元154、洁净合成气加热单元155;以及可能会需要的其它构件。在本发明中也可使用其它配置。
图2示出上文所述的IGCC系统100的一部分。具体而言,图2示出与热回收蒸汽发生器(“HRSG”)160组合的辐射合成气冷却器115与水煤气变换反应器系统130的组合。来自组合循环动力块150的燃气涡轮的废气165可被供应至HRSG 160用于回收来自废气的废热。HRSG 160可包括高压(“HP”)部段225、中压(“IP”)部段255和低压(“LP”)部段285。HRSG 160可被配置成将来自废气165的较低级热逐步地传到每个逐步更低压部段的水循环。在本发明中可使用其它配置。
高压部段225可包括一个或多个高压过热器200、高压蒸发器220和一个或多个高压节热器(economizer)230。节热器230通常在水在蒸发器或以别的方式转变成蒸汽之前预热水。同样,中压部段255可包括一个或多个中压再热器210、中压过热器240、中压蒸发器250和中压节热器260。另外,低压部段285可包括低压过热器270、低压蒸发器280和低压节热器290。在本发明中可使用其它构件和配置。
辐射合成气冷却器115可加热自高压节热器230之一或从以别的方式到高压蒸汽流310内的高压抽水300。高压蒸汽流310可返回到高压蒸发器220或者高压蒸汽流310可与进入水煤气变换反应器系统130的原料合成气流315混合。在此实例中,水煤气变换反应器系统130可包括第一水煤气变换反应器320和第二水煤气变换反应器330。任意多个反应器可用于本发明,取决于待从总系统捕获的CO2量。高压蒸汽流310使合成气流315饱和以改进反应器320、330中任一个或二者中的H2O/CO比例。视情况,热能也可在高压部段、中压部段或低压部段从蒸汽涡轮提取而获得以改进H2O/CO比例。
水煤气变换反应器系统130也可包括水再循环系统340。水再循环系统340可用于在塔350中或以别的方式加热合成气流315。在水再循环系统340内的水流可经由多个气体/水热交换器而被温热。在此情况下,可使用第一气体/水热交换器360和第二气体/水热交换器370。也可使用气体/气体热交换器380。在本发明中可使用任意多个热交换器。在本发明中可使用其它构件和配置。
图3示出可如本文所述的带水煤气变换反应器系统400的IGCC系统390。水煤气变换反应器系统400同样联接到HRSG系统160。具体而言,高压抽水410取自一个高压节热器230。高压抽水410同样流经辐射合成气冷却器105且转到高压蒸汽流420内。但是,所有高压蒸汽流420返回到高压蒸发器220,而不是前移到水煤气变换反应器系统400的反应器320、330之一。
相反,再循环热交换器430温热水煤气变换反应器系统400的再循环系统445中的再循环流440。如上文所述,再循环流440流经第一热交换器360和第二热交换器370和塔350。再循环热交换器430自高压抽水410的分流水流450进给。分流水流450通过再循环热交换器430且然后返回到高压节热器230。分流泵460也可用于其上。在本发明中可使用其它配置。
再循环流440因此可使用能由高压节热器230或以别的方式得到的废热来进行加热。而再循环流440在原料合成气315进入反应器320、330时预热进来的原料合成气流315。因此,可排除和/或至少减少对导向至反应器320、330的高压蒸汽流420的需要。高压蒸汽流420因此可用于有用功同时由高压抽水410来预热原料合成气流315增加合成气保持水分的能力。因此,可通过使用高压抽水410而不是高压蒸汽流420来改进IGCC系统100的总输出。对于相同的饱和含量,更低转移转变是可能的。
显然的是,前文的描述仅涉及本申请的某些实施例,且本领域技术人员在不偏离所附权利要求和其等效物所限定的本发明的总体精神和范围的情况下可对本发明做出许多变化和修改。

Claims (10)

1.一种整合气化组合循环系统(390),包括:
水煤气变换反应器系统(400);
所述水煤气变换反应器系统(400)包括再循环系统(445);
所述再循环系统(445)包括再循环热交换器(430)以加热合成气流(315);
热回收蒸汽发生器(160);并且
所述热回收蒸汽发生器(160)包括与所述再循环热交换器(430)连通的分流水流(450)。
2.根据权利要求1所述的整合气化组合循环系统(390),其特征在于,所述水煤气变换反应器系统(400)包括一个或多个水煤气变换反应器(320,330)。
3.根据权利要求1所述的整合气化组合循环系统(390),其特征在于,所述热回收蒸汽发生器(160)包括高压部段(225)。
4.根据权利要求3所述的整合气化组合循环系统(390),其特征在于,所述高压部段(225)包括一个或多个高压过热器(200)、一个或多个高压再热器(210)、一个或多个蒸发器(220)和/或一个或多个节热器(230)。
5.根据权利要求3所述的整合气化组合循环系统(390),其特征在于,所述高压部段(225)包括与所述分流水流(450)连通的一个或多个节热器(230)。
6.根据权利要求1所述的整合气化组合循环系统(390),其特征在于,所述分流水流(450)包括高压抽水(410)。
7.根据权利要求1所述的整合气化组合循环系统(390),其特征在于还包括与高压抽水(410)连通的合成气冷却器(115)以形成高压蒸汽流(420)。
8.根据权利要求7所述的整合气化组合循环系统(390),其特征在于,所述高压蒸汽流(420)与所述热回收蒸汽发生器(160)连通。
9.根据权利要求8所述的整合气化组合循环系统(390),其特征在于,所述热回收蒸汽发生器(160)包括高压蒸发器(220),且所述高压蒸发器(220)与所述高压蒸汽流(420)连通。
10.一种操作具有一个或多个水煤气变换反应器(320,330)和热回收蒸汽发生器(160)的整合组合循环气化系统(390)的方法,包括:
提供与进来的合成气流(315)连通的再循环水流(440);
从所述水回收蒸汽发生器(160)分流高压抽水;
在所述高压抽水(410)与所述再循环水流(440)之间进行热交换;
使所述合成气(315)流向一个或多个水煤气变换反应器(320,330);以及
增加合成气流(315)的水分含量。
CN201110116524.3A 2010-04-26 2011-04-26 用于整合气化组合循环动力系统的水煤气变换反应器系统 Expired - Fee Related CN102234547B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/766979 2010-04-26
US12/766,979 US8268023B2 (en) 2010-04-26 2010-04-26 Water gas shift reactor system for integrated gasification combined cycle power generation systems

Publications (2)

Publication Number Publication Date
CN102234547A true CN102234547A (zh) 2011-11-09
CN102234547B CN102234547B (zh) 2015-02-25

Family

ID=44117571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110116524.3A Expired - Fee Related CN102234547B (zh) 2010-04-26 2011-04-26 用于整合气化组合循环动力系统的水煤气变换反应器系统

Country Status (4)

Country Link
US (1) US8268023B2 (zh)
EP (1) EP2392795B1 (zh)
JP (1) JP2011231320A (zh)
CN (1) CN102234547B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279340B2 (en) 2010-03-23 2016-03-08 General Electric Company System and method for cooling gas turbine components
US8951313B2 (en) 2012-03-28 2015-02-10 General Electric Company Gasifier cooling system with convective syngas cooler and quench chamber
CA2877691C (en) * 2012-06-26 2018-06-12 Lummus Technology Inc. Two stage gasification with dual quench
US9188028B2 (en) 2012-10-05 2015-11-17 General Electric Company Gas turbine system with reheat spray control
DK3992267T3 (da) * 2020-10-29 2023-01-16 Rwe Generation Nl B V Co-omskiftningsenhed til omdannelse af fast affald til syngas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301327A (zh) * 1998-07-13 2001-06-27 诺尔斯海德公司 利用烃类原料生产电能、蒸汽和二氧化碳的工艺
US20090019767A1 (en) * 2007-07-20 2009-01-22 John Abughazaleh Heat integration and condensate treatment in a shift feed gas saturator
US20100074839A1 (en) * 2008-09-22 2010-03-25 Raymond Francis Drnevich Hydrogen production method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850841A (en) 1969-11-10 1974-11-26 Exxon Research Engineering Co Shift process for new catalyst
US4110359A (en) * 1976-12-10 1978-08-29 Texaco Development Corporation Production of cleaned and purified synthesis gas and carbon monoxide
US4999995A (en) 1986-08-29 1991-03-19 Enserch International Investments Ltd. Clean electric power generation apparatus
GB2196016B (en) 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
DE3841619A1 (de) 1988-12-10 1990-06-21 Linde Ag Verfahren zur erzeugung eines ammoniaksynthesegases
FR2780635B1 (fr) 1998-07-06 2000-10-20 Tornier Sa Dispositif pour la fixation d'un insert en matiere plastique
NO20075953L (no) 2005-04-19 2008-01-17 Statoil Asa Fremgangsmate for produksjon av elektrisk energi og CO2 fra et hydrokarbonramateriale
US8673034B2 (en) 2008-02-21 2014-03-18 General Electric Company Methods and systems for integrated boiler feed water heating
US8252091B2 (en) 2008-03-18 2012-08-28 General Electric Company CO2 recovery from IGCC power plants
US8205451B2 (en) 2008-08-05 2012-06-26 General Electric Company System and assemblies for pre-heating fuel in a combined cycle power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301327A (zh) * 1998-07-13 2001-06-27 诺尔斯海德公司 利用烃类原料生产电能、蒸汽和二氧化碳的工艺
US20090019767A1 (en) * 2007-07-20 2009-01-22 John Abughazaleh Heat integration and condensate treatment in a shift feed gas saturator
US20100074839A1 (en) * 2008-09-22 2010-03-25 Raymond Francis Drnevich Hydrogen production method

Also Published As

Publication number Publication date
US8268023B2 (en) 2012-09-18
JP2011231320A (ja) 2011-11-17
US20110260113A1 (en) 2011-10-27
CN102234547B (zh) 2015-02-25
EP2392795B1 (en) 2013-11-06
EP2392795A1 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US8715379B2 (en) Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
US8356485B2 (en) System and method for oxygen separation in an integrated gasification combined cycle system
US8354082B2 (en) System for heat integration with methanation system
CN108439336B (zh) 一种零排放氢电联产系统
US20070181854A1 (en) Advanced integration for improved integrated gasification combined cycle efficiency
CN102186956B (zh) 用于整体锅炉给水加热的方法和系统
CN105820842A (zh) 一种煤气化超临界co2循环发电系统
US8741225B2 (en) Carbon capture cooling system and method
CN102373097B (zh) 煤气化工艺与残碳氧化工艺与蒸汽透平发电工艺的耦合方法
CN102234547A (zh) 用于整合气化组合循环动力系统的水煤气变换反应器系统
CN103649475A (zh) 基于甲醇间接燃烧的高级联合循环系统及方法
AU2010241232B2 (en) System and method for improving performance of an IGCC power plant
US20100071381A1 (en) High efficiency integrated gasification combined cycle power plant
US20100275648A1 (en) Efficiently compressing nitrogen in a combined cycle power plant
US20120009075A1 (en) Systems for compressing a gas
CN113623033A (zh) 一种采用空气气化的igcc系统及其工作方法
CN110257106B (zh) 一种采用水煤浆气化的整体煤气化燃料电池发电系统及方法
CN110218583B (zh) 一种采用脱硫后变换工艺的整体煤气化燃料电池发电系统及方法
CN109350988B (zh) 一种co2液化过程与深冷空分耦合的igfc发电系统及方法
US8186177B2 (en) Systems for reducing cooling water and power consumption in gasification systems and methods of assembling such systems
Li et al. High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation
KR20130047058A (ko) 건식 이산화탄소 포집공정이 통합된 석탄가스화 복합발전 시스템
CN211045602U (zh) 一种采用高温净化的高效整体煤气化燃料电池发电系统
JP3787820B2 (ja) ガス化複合発電設備
CN210367562U (zh) 一种采用脱硫后变换工艺的整体煤气化燃料电池发电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150225