CN102224501A - 模拟设备、模拟方法、以及存储程序的记录介质 - Google Patents

模拟设备、模拟方法、以及存储程序的记录介质 Download PDF

Info

Publication number
CN102224501A
CN102224501A CN2009801465501A CN200980146550A CN102224501A CN 102224501 A CN102224501 A CN 102224501A CN 2009801465501 A CN2009801465501 A CN 2009801465501A CN 200980146550 A CN200980146550 A CN 200980146550A CN 102224501 A CN102224501 A CN 102224501A
Authority
CN
China
Prior art keywords
model
heat transfer
thermal
electrical
device model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801465501A
Other languages
English (en)
Inventor
田能村昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN102224501A publication Critical patent/CN102224501A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供计算元件中的局部温度增加的器件模型、存储程序的记录介质、模拟电路、设备以及方法。根据本发明的器件模型用于半导体电路模拟并且具有至少两个模型参数。模型参数包括描述温度特性的电气模型和描述热特性并且与电气模型相对应的热模型。

Description

模拟设备、模拟方法、以及存储程序的记录介质
技术领域
本发明涉及计算温度增加的器件模型、存储程序的记录介质、以及模拟电路、设备和方法。
背景技术
由于近年来已经加速半导体元件的小型化,因此当执行半导体电路模拟时需要使用器件模型来计算由于自发热导致的元件中的温度增加,特别是元件中的局部温度增加。
例如,在场效应晶体管(FET)的情况下,主要在栅极和漏极之间的栅电极端子的边缘处出现自发热,并且栅极和漏极之间以及栅电极端子的边缘的温度局部地增加。结果,漏极电阻器的温度变得高于其他模型参数。
公开了如上所述的用于模拟自发热的器件模型的技术(例如,非专利文献1)。图7是示出非专利文献1的技术的视图。如图7中所示,非专利文献1的器件模型包括电气模型,该电气模型考虑元件中的温度变化来描述电气特性;和热模型,该热模型描述元件的热特性。因此能够考虑由于自发热导致的元件中的温度增加来计算电气特性。
此外,还公开了使用上述器件模型的半导体电路模拟的技术(例如,专利文献1)。在该技术中,上述器件模型被用作组成电路的所有元件的器件模型以便于计算由于自发热导致的元件中的温度增加。此外,计算其中出现热交换的两个元件之间的热阻值,并且热阻值被插入在与两个元件相对应的器件模型的热模型之间。
热交换模型是表示元件之间的热的给予和接收的热模型。以该方式,根据如上所述的专利文献1的技术,能够不仅考虑由于自发热导致的单个元件中的温度增加而且考虑元件之间的热的交换来计算元件中的温度增加。
此外,与使用包括器件模型和热交换模型的模拟电路的半导体电路模拟有关,还公开了一种技术,该技术建模热噪声的物理现象并且通过使用栅极电阻器使噪声特性的模拟值近似到实际测量值(例如,专利文献2)。
引用列表
专利文献
专利文献1:日本未经审查的专利申请公开No.2005-346527
专利文献2:日本未经审查的专利申请公开No.2006-221375
非专利文献
非专利文献1:″VBIC95,The Vertical Bipolar Inter-Company
Model,″IEEE JOURNAL OF SOLID STATE CIRCUITS,vol.31,No.10,Oct.1996
发明内容
技术问题
然而,根据在专利文献1中描述的技术,因为组成器件模型的所有的电气模型在出现自发热时均匀地使温度增加,不能够计算元件内部的局部温度增加。因此存在产生自发热的器件特性的模拟精确度劣化的问题。
图8是示出使用专利文献1的器件模型和实际测量数据计算的小信号特性的视图。如图8中所示,实际测量数据和器件模型的结构是不同的。当自发热增加时,栅极和漏极之间的温度局部地增加,并且 只有漏电阻增加。因此,当在此区域中创建器件模型时,在自发热低的区域中没有出现漏电阻的增加。因此需要将组成器件模型的源电阻减少为小于实际值,并且,因此,实际测量数据和小信号特性的器件模型的结果不匹配。
此外,根据在专利文献1中描述的技术,因为以阻性元件描述热交换模型,因此热只能够在一个方向上行进。结果,存在下述问题,当在特定元件内部出现局部温度增加时,考虑电路中的元件之间的热交换的模拟方法不是令人满意的。
另一方面,因为在专利文献2中描述的技术中使用的模型建模热噪声的物理现象,因此它由产生热噪声的电阻器和没有产生热噪声的对于产生热噪声的电阻器不具有依赖性的电阻器组成。因此,专利文献2的技术具有下述问题,即它不适合于模拟热的物理现象以及在不劣化精度的情况下计算元件内部的局部温度增加。
已经完成本发明以解决上述问题并且因此本发明的目的是为了提供计算元件内部的局部温度增加的器件模型、存储程序的记录介质、以及模拟电路、设备和方法。
对问题的解决方案
根据本发明的器件模型是用于半导体电路模拟的器件模型,其包括至少两个模型参数,其中模型参数包括描述温度特性的电气模型,和描述热特性并且对应于电气模型的热模型。
根据本发明的模拟电路包括具有至少两个模型参数的器件模型,和描述描述热特性的多个热模型的之间的热交换的热交换模型,并且模型参数包括描述温度特性的电气模型、和与电气模型相对应的热模型。
根据本发明的模拟设备包括器件模型创建装置,该器件模型创建装置用于创建具有至少两个模型参数的器件模型,模型参数包括描述温度特性的电气模型和描述热特性并且与电气模型相对应的热模型;热交换模型创建装置,该热交换模型创建装置用于创建描述多个热模型之间的热交换的热交换模型;布置装置,该布置装置用于布置器件模型和热交换模型;连接装置,该连接装置用于通过电气布线连接器件模型和热交换模型;以及计算装置,该计算装置用于通过计算器件模型、热交换模型以及电气布线来计算模拟值。
根据本发明的半导体电路模拟方法包括:器件模型创建步骤,该器件模型创建步骤创建具有至少两个模型参数的器件模型,模型参数包括描述温度特性的电气模型和描述热特性并且与电气模型相对应的热模型;热交换模型创建步骤,该热交换模型创建步骤创建描述多个热模型之间的热交换的热交换模型;布置步骤,该布置步骤布置器件模型和热交换模型;连接步骤,该连接步骤通过电气布线连接器件模型和热交换模型;以及计算步骤,该计算步骤通过计算器件模型、热交换模型、以及电气布线来计算模拟值。
根据本发明的存储在记录介质中的程序使计算机执行下述处理:创建具有至少两个模型参数的器件模型的处理,模型参数包括描述温度特性的电气模型和描述热特性并且与电气模型相对应的热模型;创建描述多个热模型之间的热交换的热交换模型的处理;布置器件模型和热交换模型的处理;通过电气布线连接器件模型和热交换模型的处理;以及通过计算器件模型、热交换模型以及电气布线来计算模拟值的处理。
本发明的有利效果
根据本发明,能够计算元件内部的局部温度增加并且从而提高产生自发热的元件特性的模拟精度。
附图说明
图1是示出根据示例性实施例的用于半导体电路模拟的器件模型示例的视图;
图2是示出根据示例性实施例的用于半导体电路模拟的器件模型示例的视图;
图3是示出根据示例性实施例的用于半导体电路模拟的器件模型示例的视图;
图4是示出根据示例性实施例的用于半导体电路模拟的热交换模型的示例的视图;
图5是示出根据示例性实施例的半导体电路模拟处理的流程的示例的流程图;
图6是示出根据示例性实施例的半导体电路模拟处理的流程的示例的流程图;
图7是示出非专利文献1的视图;以及
图8是示出使用专利文献1的器件模型和实际测量数据计算的小信号特性的视图。
具体实施方式
在下文中参考附图详细地描述本发明的示例性实施例的示例。
(第一示例性实施例)
根据示例性实施例的用于半导体电路模拟的器件模型包括具有温度依赖性的两个或者更多电气模型ME1至MEn和与元件的各电气模型ME1至MEn相对应的表示热特性的热模型MQ1至MQn。电气模型ME1至MEn由电阻器元件、电容器元件、电感器元件、电流源元件、以及电压源元件中的任意一个组成。热模型MQ1至MQn由电阻器元件、电容器元件、以及电流源元件组成。因此,组成根据示例性实施例的器件模型的模型参数包括描述热特性的热模型和描述温度特性的电气模型。然而,优选的是,模型参数中的至少一个仅由电气模型组成。
图1是示出根据示例性实施例的用于半导体电路模拟的器件模型示例的视图。如图1中所示,器件模型包括六个电气模型ME1至ME6和与各电气模型相对应的六个热模型MQ1至MQ6。注意的是,由组成图1中所示的器件模型的电气模型ME1至MEn组成的等效电路是示出FET的π型等效电路的示例,并且可以使用其他等效电路。此外,由组成图1中所示的器件模型的热模型MQ1至MQn组成的等效电路仅是示例,并且可以使用由电阻器元件、电容器元件、以及电流源元件组成的其他等效电路。这样,模拟电路包括包括电气模型和热模型的器件模型。
电气模型ME1至MEn的电气特性根据热模型MQ1至MQn的热特性中的动态变化而变化。
通过下述等式来定义电气模型ME1至MEn的温度T1至Tn。在等式中,Ta是环境温度,Rn是组成热模型MQn的电阻器元件的电阻值,j是虚数单位,Cn是组成热模型MQn的电容器元件的电容值,并且Qn是组成热模型MQn的电流源的电流值。
等式(1):Tn=Ta+Qn×(Rn/(1+j×ω×Cn×Rn))
等式(2):ω=2×π×频率
上述等式(1)中的右手侧表示由于自发热导致的温度增加。
注意,示例性实施例中的第i和第m热模型可以是相同的。此外,示例性实施例中的热模型的数目可以等于或者大于2并且等于或者小于n,如图2中所示。
如上所述,根据示例性实施例,组成器件模型的每个模型参数包括电气模型和热模型。因此,例如,能够仅增加电气模型ME1的温度 T1,并且因此计算元件内部的局部温度增加。从而能够提高产生自发热的元件特性的模拟精度。
此外,因为组成器件模型的每个模型参数包括电气模型和热模型,因此当发生局部温度增加时能够考虑电路中的元件之间的热交换来提高模拟的精确度。
(第二示例性实施例)
图3是示出根据示例性实施例的用于半导体电路模拟方法的器件模型示例的视图。在本示例性实施例中,参考图3描述在包括两个或者更多器件模型的情况下的半导体电路模拟的示例。尽管在本示例性实施例中描述第一示例性实施例中描述的包括两个器件模型的情况作为示例,但是可以包括三个或者更多器件模型。
如图3中所示,根据示例性实施例的半导体电路包括与在第一示例性实施例中描述的器件模型相类似的器件模型1m和2m,并且器件模型1m包括三个热模型,并且器件模型2m包括两个热模型。在1m的各热模型MQ1、MQ2以及MQ6与2m的各热模型NQ1和NQ2之间是热交换模型I_MQ1NQ1、I_MQ2NQ1、I_MQ6NQ1、I_MQ1NQ2以及I_MQ6NQ2。
在本示例性实施例中,器件模型1m的热模型的数目是3并且器件模型2m的热模型的数目是2的情况被描述为示例。然而,热模型的数目可以是2或者更大,并且没有特别地限制数目。
图4是示出根据示例性实施例的用于半导体模拟的热交换模型的示例的视图。如图4中所示,在本示例性实施例中使用的热交换模型示例包括具有不同极性的两个电流源。通过使用两个具有不同极性的电流源作为热交换模型,能够表现热的给予和接收。
根据示例性实施例,能够计算元件内部的局部温度增加,并且从而能够提高产生自发热的元件特性的模拟精确度。此外,通过使用具有不同极性并且相互并联连接的两个电流源作为热交换模型,能够表现热的给予和接收,并且因此能够考虑热交换来提高模拟的精确度。
图5是示出根据第二示例性实施例的半导体电路模拟处理的流程的示例的流程图。在下文中,将上述第二示例性实施例的情况作为示例,参考图5描述半导体电路模拟处理的流程的示例。
首先,创建上述多个器件模型并且将其布置在计算机中(步骤S51),计算机是执行半导体电路模拟的半导体模拟设备。然后,创建热交换模型并且将其布置在上述步骤S51中布置的器件模型之间(步骤S52)。
通过电气布线连接上述多个器件模型(步骤S53),并且计算多个器件模型、热交换模型、以及电气布线(步骤S54),从而计算模拟值。
接下来,描述根据示例性实施例的另一半导体模拟处理示例。图6是示出根据第二示例性实施例的半导体电路模拟处理的流程的示例的流程图。将上述第二示例性实施例的情况作为示例,参考图6描述另一半导体电路模拟处理的流程的示例。
首先,创建上述多个器件模型并且将其布置在计算机中(步骤S61),计算机是执行半导体电路模拟的半导体模拟设备。然后,在计算机上计算多个器件模型之间的距离(步骤S62),并且基于计算的距离的结果提取热交换模型的参数(步骤S63)。
通过电气布线连接上述多个器件模型(步骤S64),并且计算多个器件模型、热交换模型、以及电气布线(步骤S65),从而计算模拟 值。
注意,尽管包括多个器件模型的半导体电路模拟的处理的流程的示例被描述为本示例性实施例中的示例,但是其不限于此,并且器件模型的数目可以是1。
此外,尽管在上述示例性实施例中本发明被描述为器件模型,但是本发明不限于此。通过使CPU(中央处理单元)执行计算机程序以执行图5和图6的处理可以实现本发明。在这样的情况下,计算机程序可以被存储在记录介质中和提供,或者可以通过诸如因特网的通信介质发送和提供。存储介质的示例包括软盘、硬盘、磁盘、磁光盘、CD-ROM、DVD、ROM盒、具有电池备份的RAM存储盒、闪存盒、以及非易失性RAM盒。此外,通信介质的示例包括诸如电话线路的有线通信介质,和诸如微波线路的无线通信介质。
虽然参考其示例性实施例已经特别地示出并且描述本发明,但是本发明不限于上述器件模型、模拟电路、模拟设备和半导体电路模拟方法、程序以及记录介质,并且将显然的是,在不脱离本发明的精神和范围的情况下能够进行各种变化。
本申请基于并且要求2008年11月20日提交的日本专利申请No.2008-297226的优先权,其全部内容在此通过引用整体合并在此。
工业适用性
本发明可以应用于其中发生由于元件的自发热导致的温度增加的半导体电路的模拟。特别地,本发明可以应用于其中元件的温度局部地增加的半导体电路的模拟。
附图标记列表
1m,2m器件模型
ME1至MEn组成器件模型1m的电气模型
MQ1至MQn组成与电气模型ME1至MEn相对应的器件模型的热模型
NE1至NEn组成器件模型2m的电气模型
NQ1至NQn组成与电气模型NE1至NEn相对应的器件模型的热模型
I_MQ1NQ1描述热模型MQ1和热模型NQ1之间的热交换的热交换模型
I_MQ2NQ1描述热模型MQ2和热模型NQ1之间的热交换的热交换模型
I_MQ6NQ1描述热模型MQ6和热模型NQ1之间的热交换的热交换模型
I_MQ1NQ2描述热模型MQ1和热模型NQ2之间的热交换的热交换模型
I_MQ2NQ2描述热模型MQ2和热模型NQ2之间的热交换的热交换模型
I_MQ6NQ2描述热模型MQ6和热模型NQ2之间的热交换的热交换模型

Claims (15)

1.一种用于半导体电路模拟的器件模型,包括至少两个模型参数,
其中所述模型参数包括描述温度特性的电气模型和描述热特性并且与所述电气模型相对应的热模型。
2.根据权利要求1所述的器件模型,其中所述模型参数中的至少一个仅由所述电气模型组成。
3.根据权利要求1或者2所述的器件模型,其中所述电气模型至少包括电阻器元件、电容器元件、电感器元件、电流源元件、以及电压源元件中的任意一个。
4.根据权利要求1至3中的任意一项所述的器件模型,其中所述热模型至少包括电阻器元件、电容器元件、以及电流源元件中的任意一个。
5.一种模拟电路,包括:
器件模型,所述器件模型具有至少两个模型参数;以及
热交换模型,所述热交换模型描述用于描述热特性的多个热模型之间的热交换,
其中所述模型参数包括描述温度特性的电气模型和与所述电气模型相对应的热模型。
6.根据权利要求5所述的模拟电路,其中所述热交换模型包括具有不同的极性并且并联连接的两个电流源。
7.根据权利要求5或者6所述的模拟电路,其中包括至少两个器件模型和至少两个热交换模型。
8.一种模拟设备,包括:
器件模型创建装置,所述器件模型创建装置用于创建具有至少两个模型参数的器件模型,所述模型参数包括描述温度特性的电气模型和描述热特性并且与所述电气模型相对应的热模型;
热交换模型创建装置,所述热交换模型创建装置用于创建描述多个热模型之间的热交换的热交换模型;
布置装置,所述布置装置用于布置所述器件模型和所述热交换模型;
连接装置,所述连接装置用于通过电气布线连接所述器件模型和所述热交换模型;以及
计算装置,所述计算装置用于通过计算所述器件模型、所述热交换模型、以及所述电气布线来计算模拟值。
9.根据权利要求8所述的模拟设备,包括:
距离计算装置,所述距离计算装置用于计算所述器件模型之间的距离;以及
提取装置,所述提取装置用于基于通过所述距离计算装置计算的所述器件模型之间的距离来提取所述热交换模型的参数。
10.根据权利要求8或者9所述的模拟装置,其中所述热交换模型包括具有不同的极性并且并联连接的两个电流源。
11.一种半导体电路模拟方法,包括:
器件模型创建步骤,所述器件模型创建步骤创建具有至少两个模型参数的器件模型,所述模型参数包括描述温度特性的电气模型和描述热特性并且与所述电气模型相对应的热模型;
热交换模型创建步骤,所述热交换模型创建步骤创建描述多个热模型之间的热交换的热交换模型;
布置步骤,所述布置步骤布置所述器件模型和所述热交换模型;
连接步骤,所述连接步骤通过电气布线连接所述器件模型和所述热交换模型;以及
计算步骤,所述计算步骤通过计算所述器件模型、所述热交换模型、以及所述电气布线来计算模拟值。
12.根据权利要求11所述的半导体电路模拟方法,包括:
距离计算步骤,所述距离计算步骤计算所述器件模型之间的距离;以及
提取步骤,所述提取步骤基于通过距离计算装置计算的所述器件模型之间的距离来提取所述热交换模型的参数。
13.根据权利要求11或者12所述的半导体电路模拟方法,其中所述热交换模型包括具有不同的极性并且并联连接的两个电流源。
14.一种存储程序的记录介质,所述程序使计算机执行:
创建具有至少两个模型参数的器件模型的处理,所述模型参数包括描述温度特性的电气模型和描述热特性并且与所述电气模型相对应的热模型;
创建描述多个热模型之间的热交换的热交换模型的处理;
布置所述器件模型和所述热交换模型的处理;
通过电气布线连接所述器件模型和所述热交换模型的处理;以及
通过计算所述器件模型、所述热交换模型、以及所述电气布线来计算模拟值的处理。
15.根据权利要求14所述的存储程序的记录介质,所述程序使计算机执行:
计算所述器件模型之间的距离的处理,以及
基于所述器件模型之间的距离来提取所述热交换模型的参数的处理。
CN2009801465501A 2008-11-20 2009-09-17 模拟设备、模拟方法、以及存储程序的记录介质 Pending CN102224501A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008297226 2008-11-20
JP2008-297226 2008-11-20
PCT/JP2009/004671 WO2010058507A1 (ja) 2008-11-20 2009-09-17 シミュレーション装置、シミュレーション方法及びプログラムが格納された記録媒体

Publications (1)

Publication Number Publication Date
CN102224501A true CN102224501A (zh) 2011-10-19

Family

ID=42197951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801465501A Pending CN102224501A (zh) 2008-11-20 2009-09-17 模拟设备、模拟方法、以及存储程序的记录介质

Country Status (4)

Country Link
US (1) US8630835B2 (zh)
JP (1) JPWO2010058507A1 (zh)
CN (1) CN102224501A (zh)
WO (1) WO2010058507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105373642A (zh) * 2014-08-18 2016-03-02 三星电子株式会社 估计电路的自发热特征的模拟系统及其设计方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10755015B2 (en) * 2017-08-21 2020-08-25 Semiconductor Components Industries, Llc Agnostic model of semiconductor devices and related methods
US20240095421A1 (en) * 2021-11-08 2024-03-21 Resonac Corporation Program, proposal device, and proposal method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707486A (zh) * 2004-06-04 2005-12-14 松下电器产业株式会社 电路仿真方法、器件模型和仿真电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030055613A1 (en) * 2000-04-28 2003-03-20 Trw, Inc. Semi-physical modeling of HEMT DC-to high frequency electrothermal characteristics
JP2002032426A (ja) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp 回路シミュレーション装置、回路シミュレーション方法および回路シミュレーションプログラムを記録した記録媒体
US7340697B2 (en) * 2004-12-22 2008-03-04 Agere Systems Inc. Integrated computer-aided circuit design kit facilitating verification of designs across different process technologies
JP4539356B2 (ja) 2005-02-09 2010-09-08 日本電気株式会社 電界効果トランジスタモデル生成装置、電界効果トランジスタモデル生成方法等

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707486A (zh) * 2004-06-04 2005-12-14 松下电器产业株式会社 电路仿真方法、器件模型和仿真电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105373642A (zh) * 2014-08-18 2016-03-02 三星电子株式会社 估计电路的自发热特征的模拟系统及其设计方法
CN105373642B (zh) * 2014-08-18 2020-04-28 三星电子株式会社 估计电路的自发热特征的模拟系统及其设计方法

Also Published As

Publication number Publication date
JPWO2010058507A1 (ja) 2012-04-19
WO2010058507A1 (ja) 2010-05-27
US20110224964A1 (en) 2011-09-15
US8630835B2 (en) 2014-01-14

Similar Documents

Publication Publication Date Title
CN105373642B (zh) 估计电路的自发热特征的模拟系统及其设计方法
Tajdinian et al. Sensitivity‐based approach for real‐time evaluation of transient stability of wind turbines interconnected to power grids
US10846451B1 (en) Methods of modelling irregular shaped transistor devices in circuit simulation
CN112241617B (zh) 一种pcb电源完整性仿真方法及相关装置
Johansson et al. Comparison of simulation programs for supercapacitor modelling
d’Alessandro et al. Analysis of the UIS behavior of power devices by means of SPICE-based electrothermal simulations
Spina et al. Stochastic macromodeling of nonlinear systems via polynomial chaos expansion and transfer function trajectories
CN102224501A (zh) 模拟设备、模拟方法、以及存储程序的记录介质
Pandey et al. Steady-state simulation for combined transmission and distribution systems
Bu et al. Model validation of DFIGs for power system oscillation stability analysis
Gianto T-circuit model of asynchronous wind turbine for distribution system load flow analysis
Duan et al. Adaptive time-stepping universal line and machine models for real time and faster-than-real-time hardware emulation
US20150331989A1 (en) Metal interconnect modeling
Liao et al. Layout-dependent effects aware g m/i D-based many-objective sizing optimization for analog integrated circuits
TW581953B (en) Method, apparatus and medium recording program for preparing a simulation model for semiconductor integrated circuit at power supply terminal for simulating electromagnetic interference
Gogolou et al. Integrated DC-DC converter design methodology for design cycle speed up
CN109508479B (zh) 基于fpga的有源配电网实时仿真器参数配置通用化方法
Jardim et al. Variable time step application on hybrid eletromechanical–eletromagnetic simulation
Yin et al. A method to improve the accuracy and efficiency for metallized-film capacitor's reliability assessment using joint simulation
Wang et al. Multi-harmonic nonlinear modeling of low-power PWM DC-DC converters operating in CCM and DCM
Schutt-Ainé et al. IBIS simulation using the latency insertion method (LIM)
Passos et al. Parametric macromodeling of integrated inductors for RF circuit design
CN106712029A (zh) 小阻抗支路pq端点变雅可比矩阵的牛顿法潮流计算方法
US8554529B2 (en) Black box model for large signal transient integrated circuit simulation
TW201839639A (zh) 電子系統層級的電池放電模擬

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111019