CN102219051B - Method for controlling four-rotor aircraft system based on human-computer interaction technology - Google Patents
Method for controlling four-rotor aircraft system based on human-computer interaction technology Download PDFInfo
- Publication number
- CN102219051B CN102219051B CN 201110110471 CN201110110471A CN102219051B CN 102219051 B CN102219051 B CN 102219051B CN 201110110471 CN201110110471 CN 201110110471 CN 201110110471 A CN201110110471 A CN 201110110471A CN 102219051 B CN102219051 B CN 102219051B
- Authority
- CN
- China
- Prior art keywords
- aircraft
- computer
- quadrotor aircraft
- control
- quadrotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000005516 engineering process Methods 0.000 title claims abstract description 8
- 230000003993 interaction Effects 0.000 title claims abstract description 7
- 238000004891 communication Methods 0.000 claims abstract description 9
- 238000013519 translation Methods 0.000 claims description 6
- 230000000875 corresponding effect Effects 0.000 claims description 5
- 210000003811 finger Anatomy 0.000 claims description 5
- 210000003813 thumb Anatomy 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000013507 mapping Methods 0.000 abstract 1
- 230000000007 visual effect Effects 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
- Selective Calling Equipment (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Toys (AREA)
Abstract
Description
技术领域 technical field
本发明属于智能飞行机器人领域,具体涉及一种利用深度摄像头捕获人体手势完成四旋翼飞行器控制的方法。The invention belongs to the field of intelligent flying robots, and in particular relates to a method for controlling a quadrotor aircraft by using a depth camera to capture gestures of a human body.
技术背景 technical background
四旋翼飞行器是本发明的操作对象,它是一种具有四个螺旋桨的飞行器,并且四个螺旋桨呈十字形交叉结构,相对的两组四旋翼具有相同的旋转方向。在国内四旋翼飞行器还出于萌芽阶段,很少有较为成熟的成果面世;但四旋翼飞行器在国际上较为流行,西方多所名牌高校都已在四旋翼飞行器控制上取得领先地位,也有不少爱好者投身到四旋翼飞行器的制作与研究当中来。四旋翼飞行器以其体积小、重量轻、灵活度高的优势博得了广大飞行器爱好者的青睐。The quadrotor aircraft is the operation object of the present invention. It is an aircraft with four propellers, and the four propellers are in a cross-shaped cross structure, and the opposite two sets of quadrotors have the same rotation direction. In China, quadrotor aircraft is still in its infancy, and few relatively mature results have been released; however, quadrotor aircraft is more popular in the world. Many famous universities in the West have taken the lead in the control of quadrotor aircraft. Enthusiasts devote themselves to the production and research of quadrotor aircraft. The quadrotor aircraft has won the favor of the majority of aircraft enthusiasts with its advantages of small size, light weight and high flexibility.
本发明的控制手段为深度摄像头的手势识别,利用的是Natal深度摄像头。空间图像处理已有一些成型的解决方案,但都因为其复杂的算法以及庞大的运算库将许多周边领域的研究人员拒之门外。本发明使用的Natal深度摄像头巧妙地使用了一个可见光摄像头、一个红外摄像头和一个红外点阵发生器完成了空间图像的深度处理,为手势识别提供了便利条件。目前此项技术已开始在机器视觉领域有所应用,并广受好评。The control means of the present invention is the gesture recognition of the depth camera, and what utilizes is the Natal depth camera. There are already some well-formed solutions for spatial image processing, but because of their complex algorithms and huge computing libraries, researchers in many surrounding fields have been shut out. The Natal depth camera used in the present invention cleverly uses a visible light camera, an infrared camera and an infrared dot matrix generator to complete the depth processing of spatial images, which provides convenient conditions for gesture recognition. At present, this technology has begun to be applied in the field of machine vision and has been widely acclaimed.
发明内容 Contents of the invention
本发明的目的在于提供一种利用深度摄像机捕获人体手势从而控制飞行器姿态的方法,充分体现操作者手势控制的灵活性与便捷性,降低普遍对于飞行器控制的难度,拓展小型飞行器的应用范围。The purpose of the present invention is to provide a method for controlling the attitude of an aircraft by using a depth camera to capture gestures of the human body, which fully reflects the flexibility and convenience of the operator's gesture control, reduces the general difficulty of aircraft control, and expands the application range of small aircraft.
基于上述目的,本发明的构思方案为:以四旋翼飞行器、平面位置捕获装置以及手势识别装置构成控制系统。其中平面位置捕获装置包括环境红外摄像头和一组平行放置间距可调的支架,环境红外摄像头与枢纽计算机之间通过无线视频传输模块进行通信,用来将四旋翼飞行器的实时水平面飞行状态反馈给计算机;手势识别装置由一部Natal深度摄像机和一台计算机构成,深度摄像头用来捕获人体手势,并通过有线传输方式将手势信息传输给计算机;四旋翼飞行器与计算机通过ZigBee无线数传模块进行通信。Based on the above purpose, the concept of the present invention is: a control system is composed of a quadrotor aircraft, a plane position capture device and a gesture recognition device. The plane position capture device includes an environmental infrared camera and a group of brackets placed in parallel with adjustable spacing. The environmental infrared camera communicates with the hub computer through a wireless video transmission module, which is used to feed back the real-time horizontal plane flight status of the quadrotor aircraft to the computer. The gesture recognition device is composed of a Natal depth camera and a computer. The depth camera is used to capture human gestures, and the gesture information is transmitted to the computer through wired transmission; the quadrotor aircraft communicates with the computer through a ZigBee wireless data transmission module.
本发明所提供的基于人机交互技术的四旋翼飞行器系统控制方法,具体步骤如下:The control method of the four-rotor aircraft system based on human-computer interaction technology provided by the present invention, the specific steps are as follows:
步骤1:通过四旋翼飞行器1机载的超声波测距模块13获取四旋翼飞行器1的高度信息,该高度信息经四旋翼飞行器1的机载微控制器8处理为以ASCII码表示的十进制数通过ZigBee无线通信模块14传输给计算机7;Step 1: Obtain the altitude information of the
步骤2:通过无线环境红外摄像头5捕获四旋翼飞行器1上表面的2个红外反光布11的平面位置信息和角度信息,从而获得四旋翼飞行器1的平面位置信息和偏航角并传输给计算机7;Step 2: Capture the plane position information and angle information of the two infrared
步骤3:计算机7将所获得的高度信息和平面位置信息综合为无线环境红外摄像头5覆盖空间内的x、y、z坐标,至此得到四旋翼飞行器1的当前位置空间坐标;Step 3: The
步骤4:通过Natal深度摄像机6拍摄操纵者的手的深度图像并传输给计算机7;Step 4: Take the depth image of the manipulator's hand through the Natal depth camera 6 and transmit it to the
步骤5:计算机7对所获得的深度图像进行解析,分离出操纵者的手在Natal深度摄像机6覆盖范围内的x、y、z坐标和操纵者的拇指和食指的夹角信息;Step 5: The
步骤6:计算机7通过空间坐标变换将步骤5所获得的操纵者的手的当前位置空间坐标映射为四旋翼飞行器1所在空间范围的目标位置空间坐标;Step 6: The
步骤7:计算机7根据步骤3中所获得的四旋翼飞行器1的当前位置的空间坐标与步骤6中所获得的四旋翼飞行器1的目标位置空间坐标计算出针对四旋翼飞行器1空间位置的PID控制量,包括前进后退控制量、左右平动控制量、升高降低控制量,根据步骤5中所获得的操纵者拇指和食指的夹角信息生成控制机械手12捏合角度的控制量,根据步骤2所获得的偏航角计算出用于抑制四旋翼飞行器1自旋的偏航角控制量,通过ZigBee无线通信模块14传输给四旋翼飞行器的机载微控制器8;Step 7: The
步骤8:四旋翼飞行器的机载微控制器8将所获得的前进后退、左右平动、升高降低和偏航角控制量以PWM信号形式传输给飞行姿态控制器9,将所获得的机械手控制量以PWM信号形式传输给机械手12;Step 8: The
步骤9:飞行姿态控制器9将所获的控制信息解析为执行相应动作任务的四路电机驱动信号经电子调速器15进行处理和功率放大后最终驱动四个无刷电机10控制四旋翼飞行器1移动到指定位置,机械手按指定角度进行捏合完成抓取动作。Step 9: The
相比于相应领域的其它飞行器控制,本发明具有以下有益效果:Compared with other aircraft controls in the corresponding field, the present invention has the following beneficial effects:
第一,由于四旋翼飞行器本身独特的结构设计,它较为适合狭小空间的灵活操作;再加以使用本发明的空间定位系统,它的飞行定位操作就更为精确。以上两点使得本四旋翼飞行器能够出色的完成高难度的精细动作,例如物体抓取、文字书写等辅助性劳动。First, due to the unique structural design of the quadrotor aircraft itself, it is more suitable for flexible operation in a narrow space; in addition to using the space positioning system of the present invention, its flight positioning operation is more accurate. The above two points enable this quadrotor aircraft to complete difficult fine movements, such as auxiliary tasks such as object grasping and text writing.
第二,由于本四旋翼飞行器控制系统的人机交互基于深度摄像机,上位机能够较为准确地获取并有效地处理手势姿态信息,从而实现操作者的实时手势控制。此项技术的应用使得本四旋翼飞行器的控制更加灵活、方便,能够通过简单的手势空间对应完成复杂的飞行器空间操控。Second, since the human-computer interaction of the quadrotor aircraft control system is based on the depth camera, the upper computer can accurately acquire and effectively process the gesture information, thereby realizing the real-time gesture control of the operator. The application of this technology makes the control of the quadrotor aircraft more flexible and convenient, and can complete complex aircraft space control through simple gesture space correspondence.
以下结合附图说明和具体实施方式对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
附图说明 Description of drawings
图1是本发明所使用的基于人机交互技术的四旋翼飞行器系统结构示意图;Fig. 1 is a schematic structural diagram of a four-rotor aircraft system based on human-computer interaction technology used in the present invention;
图2是四旋翼飞行器的俯视图Figure 2 is a top view of the quadrotor aircraft
图3是四旋翼飞行器的仰视图Figure 3 is a bottom view of the quadrotor aircraft
图4是本发明的系统框图Fig. 4 is a system block diagram of the present invention
图中:1-四旋翼飞行器,2-平面位置捕获装置,3-手势识别装置,4-两个平行放置间距可调的支架,5-无线环境红外摄像头,6-Natal深度摄像机,7-计算机,8-机载微控制器,9-飞行姿态控制器,10-无刷电机,11-红外反光布,12-机械手,13-超声波测距模块,14-ZigBee无线通信模块,15-电子调速器。In the figure: 1-quadrotor aircraft, 2-plane position capture device, 3-gesture recognition device, 4-two parallel adjustable brackets, 5-wireless environment infrared camera, 6-Natal depth camera, 7-computer , 8-Onboard microcontroller, 9-Flight attitude controller, 10-Brushless motor, 11-Infrared reflective cloth, 12-Manipulator, 13-Ultrasonic ranging module, 14-ZigBee wireless communication module, 15-Electronic controller accelerator.
具体实施方式 Detailed ways
第一部分通过移动手的位置控制四旋翼飞行器空间位置的实现方法The first part realizes the method of controlling the spatial position of the quadrotor aircraft by moving the position of the hand
步骤一:通过触发四旋翼飞行器机载的超声波测距模块13得到一个与触发信号的时间差和四旋翼飞行器高度正相关的脉冲信号,并由四旋翼飞行器的机载微控制器MC9S12XS128通过输入捕获测量这一时间差得到四旋翼飞行器的高度信息,然后处理为以ASCII码表示的十进制数通过ZigBee无线通信模块14传输给计算机;Step 1: By triggering the onboard ultrasonic ranging
步骤二:通过环境红外摄像头捕获四旋翼飞行器上表面中心对称排布的2个红外反光布11反射的红外光(其他波段由红外滤片滤除),经CMOS传感器将此光信号转化为红外图像视频流,此视频流通过无线视频传输模块传输给计算机;Step 2: Use the ambient infrared camera to capture the infrared light reflected by the two infrared
步骤三:计算机通过OpenCV对所获得的视频流进行解析:Step 3: The computer parses the obtained video stream through OpenCV:
1、将红外图像灰度化;1. Grayscale the infrared image;
2、查找ROI区域;2. Find the ROI area;
3、进行高斯滤波以进行二值化;3. Perform Gaussian filtering for binarization;
4、检测Contours轮廓并计算轮廓个数并对每个独立轮廓进行编号,以此来计算四旋翼飞行器的几何中心在环境红外摄像头视场中的x、y坐标和偏航角;4. Detect the Contours contour and calculate the number of contours and number each independent contour to calculate the x, y coordinates and yaw angle of the geometric center of the quadrotor aircraft in the field of view of the environmental infrared camera;
5、利用摄像头的透视原理,结合四旋翼飞行器机载微控制器传回的来自超声波测距模块的高度信息,计算出飞行器的z坐标;5. Using the perspective principle of the camera, combined with the height information from the ultrasonic ranging module sent back by the onboard microcontroller of the quadrotor aircraft, the z coordinate of the aircraft is calculated;
步骤四:通过Natal深度摄像机拍摄操纵者的手的深度图像并传输给计算机;Step 4: Take the depth image of the operator's hand through the Natal depth camera and transmit it to the computer;
步骤五:计算机对所获得的深度图像进行解析,分离出操纵者的手在Natal深度摄像机覆盖范围内的x、y、z坐标,至此获得操纵者的手的当前位置空间坐标;Step 5: The computer analyzes the obtained depth image, separates the x, y, and z coordinates of the operator's hand within the coverage of the Natal depth camera, and thus obtains the current position space coordinates of the operator's hand;
步骤六:计算机通过空间坐标变换将步骤五所获得的操纵者的手的当前位置空间坐标映射为四旋翼飞行器所在空间范围的目标位置空间坐标;Step 6: The computer maps the current position space coordinates of the operator's hand obtained in
步骤七:计算机根据步骤三中所获得的四旋翼飞行器的当前位置的空间坐标与步骤五中所获得的四旋翼飞行器的目标位置空间坐标计算出PID控制量,包括前进后退控制量、左右平动控制量、升高降低控制量,并通过ZigBee无线通信模块传输给四旋翼飞行器的机载微控制器;Step 7: The computer calculates the PID control amount according to the space coordinates of the current position of the quadrotor aircraft obtained in
步骤八:四旋翼飞行器的机载微控制器将所获得的前进后退、左右平动、升高降低控制量以PWM信号形式传输给飞行姿态控制器9;Step 8: The onboard microcontroller of the quadrotor aircraft transmits the obtained forward and backward, left and right translation, and elevation and reduction control quantities to the
步骤九:飞行姿态控制器将所获的控制信息解析执行相应动作任务的四路电机驱动信号经电子调速器15进行处理和功率放大后最终驱动四个无刷电机控制四旋翼飞行器移动到指定位置。Step 9: The flight attitude controller analyzes the obtained control information and executes the four-way motor drive signals for corresponding action tasks. After processing and power amplification by the
第二部分通过抓取手势控制四旋翼飞行器机载机械手抓取物体的实现方法The second part is the implementation method of controlling the quadrotor aircraft on-board manipulator to grab objects by grabbing gestures
步骤一:通过Natal深度摄像机拍摄操纵者的手的深度图像并传输给计算机;Step 1: Take the depth image of the operator's hand through the Natal depth camera and transmit it to the computer;
步骤二:计算机对所获得的深度图像进行解析:Step 2: The computer analyzes the obtained depth image:
1、由OpenGL还原成操纵者手的三维图像;1. The three-dimensional image of the operator's hand is restored by OpenGL;
2、应用本田技术研究所Youding Zhu,Kikuo Fujimura研究员提出的应用贝叶斯框架对深度图像中人体姿态的追踪方法从三维图像中提取操纵者的拇指和食指的夹角信息并通过ZigBee无线通信模块传输给四旋翼飞行器的机载微控制器;2. Using the Bayesian framework proposed by Youding Zhu and researcher Kikuo Fujimura of the Honda Institute of Technology to track the human body posture in the depth image, extract the angle information between the operator's thumb and index finger from the three-dimensional image and pass it through the ZigBee wireless communication module Transmission to the on-board microcontroller of the quadrotor;
步骤三:四旋翼飞行器的机载微控制器将所获得的夹角信息处理为对应的舵机控制信号控制四旋翼飞行器机载的机械手的捏合距离,最终完成抓取动作。Step 3: The onboard microcontroller of the quadrotor aircraft processes the obtained angle information into corresponding steering gear control signals to control the pinching distance of the manipulator onboard the quadrotor aircraft, and finally completes the grasping action.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110110471 CN102219051B (en) | 2011-04-29 | 2011-04-29 | Method for controlling four-rotor aircraft system based on human-computer interaction technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110110471 CN102219051B (en) | 2011-04-29 | 2011-04-29 | Method for controlling four-rotor aircraft system based on human-computer interaction technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102219051A CN102219051A (en) | 2011-10-19 |
CN102219051B true CN102219051B (en) | 2013-01-09 |
Family
ID=44775817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110110471 Expired - Fee Related CN102219051B (en) | 2011-04-29 | 2011-04-29 | Method for controlling four-rotor aircraft system based on human-computer interaction technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102219051B (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102354345A (en) * | 2011-10-21 | 2012-02-15 | 北京理工大学 | Medical image browse device with somatosensory interaction mode |
CN103365294A (en) * | 2012-03-29 | 2013-10-23 | 鸿富锦精密工业(深圳)有限公司 | Unmanned aerial vehicle control system and method thereof |
CN103940823A (en) * | 2014-04-25 | 2014-07-23 | 河海大学常州校区 | Iron tower defect detection system based on aircraft and aircraft positioning method |
CN105321315A (en) * | 2014-07-30 | 2016-02-10 | 芯讯通无线科技(上海)有限公司 | Aircraft system and communication method thereof |
CN105334851A (en) * | 2014-08-12 | 2016-02-17 | 深圳市银星智能科技股份有限公司 | Mobile device capable of sensing gesture |
CN104581072B (en) * | 2015-01-05 | 2018-10-02 | 嘉兴欧祥通讯设备有限公司 | Night capture apparatus |
CN104590554B (en) * | 2015-01-05 | 2017-02-22 | 张晶 | Path-finding lighting equipment |
CN104565876B (en) * | 2015-01-05 | 2018-09-28 | 永康市华格工业产品设计有限公司 | Portable lighting device |
CN104606901A (en) * | 2015-01-29 | 2015-05-13 | 赵旭 | A structure and application of an infrared reflective sensor type toy aircraft for height and air pressure detection |
CN106143927A (en) * | 2015-04-03 | 2016-11-23 | 云南师范大学 | A kind of indoor four-axle aircraft closed-loop control system based on Kinect |
CN104816829B (en) * | 2015-05-12 | 2017-01-18 | 广东澄星航模科技股份有限公司 | Skyeye aircraft applicable to investigation |
CN104808799A (en) * | 2015-05-20 | 2015-07-29 | 成都通甲优博科技有限责任公司 | Unmanned aerial vehicle capable of indentifying gesture and identifying method thereof |
CN104898524B (en) * | 2015-06-12 | 2018-01-09 | 江苏数字鹰科技发展有限公司 | No-manned machine distant control system based on gesture |
CN104965516B (en) * | 2015-06-15 | 2017-10-10 | 东南大学 | A kind of view-based access control model and the quadrotor of force feedback carry out the control method of aerial crawl operation |
CN105607740A (en) * | 2015-12-29 | 2016-05-25 | 清华大学深圳研究生院 | Unmanned aerial vehicle control method and device based on computer vision |
CN105843251B (en) * | 2016-03-28 | 2020-04-07 | 沈阳上博智拓科技有限公司 | Method, device and system for controlling aircraft |
CN105843252A (en) * | 2016-03-30 | 2016-08-10 | 乐视控股(北京)有限公司 | Unmanned aircraft system and flight control method thereof |
EP3228541B1 (en) * | 2016-04-08 | 2018-06-13 | LEONARDO S.p.A. | Rotor for a hover-capable aircraft and method for detecting the attitude of a blade with respect to a hub of such a rotor |
CN105965522B (en) * | 2016-07-12 | 2017-12-19 | 哈工大机器人集团(哈尔滨)资产经营管理有限公司 | A kind of high-altitude changes the bulb robot automatically |
CN106054911A (en) * | 2016-07-22 | 2016-10-26 | 华南理工大学 | Quadrocopter capable of gesture identification operation and method thereof |
CN106774365A (en) * | 2016-12-20 | 2017-05-31 | 华中科技大学 | A kind of unmanned plane debugging system based on external view positioning |
US10409276B2 (en) * | 2016-12-21 | 2019-09-10 | Hangzhou Zero Zero Technology Co., Ltd. | System and method for controller-free user drone interaction |
CN107645599A (en) * | 2017-09-21 | 2018-01-30 | 宇龙计算机通信科技(深圳)有限公司 | A kind of control method, terminal and computer-readable recording medium |
CN107831791B (en) * | 2017-11-17 | 2020-12-15 | 深圳意动航空科技有限公司 | A control method, device, control device and storage medium for an unmanned aerial vehicle |
CN110825121B (en) * | 2018-08-08 | 2023-02-17 | 纬创资通股份有限公司 | Control device and unmanned aerial vehicle control method |
CN109176559B (en) * | 2018-10-24 | 2022-05-24 | 上海思依暄机器人科技股份有限公司 | Robot and control method and system |
CN112947589A (en) * | 2021-03-10 | 2021-06-11 | 南京理工大学 | Indoor four-rotor unmanned aerial vehicle based on dual-core DSP gesture control |
CN113282110B (en) * | 2021-07-23 | 2021-10-22 | 季华实验室 | Flying robot and human cooperative operation method and device and flying robot |
CN113282109A (en) * | 2021-07-23 | 2021-08-20 | 季华实验室 | Unmanned aerial vehicle and human cooperative operation system |
CN116337086B (en) * | 2023-05-29 | 2023-08-04 | 中国人民解放军海军工程大学 | Calculation method, system, medium and terminal for optimal capture position of unmanned aerial vehicle net capture |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4490794A (en) * | 1982-01-18 | 1984-12-25 | Sperry Corporation | Altitude preselect system for aircraft without air data computer |
FR2604001B1 (en) * | 1986-09-15 | 1988-12-09 | Aerospatiale | ELECTRIC FLIGHT CONTROL SYSTEM WITH INCIDENT PROTECTION FOR AIRCRAFT |
US6390417B1 (en) * | 1999-06-30 | 2002-05-21 | Honda Giken Kogyo Kabushiki Kaisha | Drag control system for flying machine, process for estimating drag of flying machine, boundary layer control system, and boundary layer control process |
CN101699510A (en) * | 2009-09-02 | 2010-04-28 | 北京科技大学 | Particle filtering-based pupil tracking method in sight tracking system |
CN102012741A (en) * | 2010-11-16 | 2011-04-13 | 吕文阁 | Camera device-based multimedia human-computer interaction method and system |
-
2011
- 2011-04-29 CN CN 201110110471 patent/CN102219051B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102219051A (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102219051B (en) | Method for controlling four-rotor aircraft system based on human-computer interaction technology | |
CN111055281B (en) | A ROS-based autonomous mobile grasping system and method | |
CN109955254B (en) | Mobile robot control system and teleoperation control method for robot end pose | |
CN103170973B (en) | Man-machine cooperation device and method based on Kinect video camera | |
CN103399637B (en) | Based on the intelligent robot man-machine interaction method of kinect skeleton tracing control | |
CN110039545B (en) | Robot remote control system and control method based on wearable equipment | |
CN204997657U (en) | Biomimetic mechanical hand with imitate function | |
CN107309872A (en) | A kind of flying robot and its control method with mechanical arm | |
CN104950902B (en) | The control method and multi-rotor aerocraft of multi-rotor aerocraft | |
CN206633010U (en) | A kind of snake robot with computer vision function | |
CN113253750B (en) | Multi-mode control system for flapping wing aircraft | |
CN106113067B (en) | A kind of Dual-Arm Mobile Robot system based on binocular vision | |
CN106504605A (en) | Simulation control system for force feedback teleoperation training of space station manipulator | |
CN104898524A (en) | Unmanned plane remote control system based on gesture | |
CN109934871A (en) | A system and method for intelligent unmanned aerial vehicle to grab target for high-risk environment | |
CN109164829A (en) | A kind of flight mechanical arm system and control method based on device for force feedback and VR perception | |
CN207027518U (en) | A kind of intelligent body-sensing mechanical arm | |
CN109270954A (en) | A kind of unmanned plane interactive system and its control method based on gesture recognition | |
CN110153987A (en) | An intelligent identification and handling robot and its control method | |
CN113156813B (en) | Pigeon swarm optimization control-based four-rotor unmanned aerial vehicle system with arms and control method | |
CN106155090A (en) | Wearable drone control device based on somatosensory | |
CN107582305A (en) | A kind of operation table of motion sensing control | |
CN100361792C (en) | A mobile manipulator control system | |
CN114791765B (en) | ROS intelligent vehicle interaction method based on mixed reality technology | |
CN114310957A (en) | Robotic system and detection method for medical inspection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130109 Termination date: 20140429 |