CN102214785A - 卧式多级热并联热电转换堆 - Google Patents

卧式多级热并联热电转换堆 Download PDF

Info

Publication number
CN102214785A
CN102214785A CN201110139902XA CN201110139902A CN102214785A CN 102214785 A CN102214785 A CN 102214785A CN 201110139902X A CN201110139902X A CN 201110139902XA CN 201110139902 A CN201110139902 A CN 201110139902A CN 102214785 A CN102214785 A CN 102214785A
Authority
CN
China
Prior art keywords
thermoelectric
type thermoelectric
heat
semiconductor
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110139902XA
Other languages
English (en)
Inventor
李华强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN HUALITAI COMPOUND SEMICONDUCTOR TECHNOLOGY CO LTD
Original Assignee
WUHAN HUALITAI COMPOUND SEMICONDUCTOR TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN HUALITAI COMPOUND SEMICONDUCTOR TECHNOLOGY CO LTD filed Critical WUHAN HUALITAI COMPOUND SEMICONDUCTOR TECHNOLOGY CO LTD
Priority to CN201110139902XA priority Critical patent/CN102214785A/zh
Publication of CN102214785A publication Critical patent/CN102214785A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种卧式多级热并联热电转换堆,包括多个由N型热电半导体、P型热电半导体及金属片组成的热电转换单元和位于相邻热电转换单元之间的导热电绝缘层,所述相邻两个热电转换单元的工作端通过导热电绝缘层相互叠层连接。本发明进行制冷工作时,热电转换堆可以在形成高制冷量时获得较高的制冷效率,另外,本发明中片状结构的热电半导体能减小热回流。本发明进行发电工作时,同极相互堆积的温差电堆,能在有限的换热面的情况下,最大限度的进行热电转换。同时,上述片状结构的热电半导体的热流出较小,在温差相同的情况下相对传统的温差电堆能产生更多的电能。

Description

卧式多级热并联热电转换堆
技术领域
本发明涉及一种利用热电半导体材料制冷或发电的装置,具体地说是一种卧式多级热并联热电转换堆。
背景技术
众所周知,由N型热电半导体材料和P型热电半导体材料组成的一对热电偶,当热电偶通入直流电后,因直流电通入的方向不同,将在电偶接触面上产生吸热或放热现象,这种现象称为珀尔帖(Peltier)效应。如果把N型热电半导体材料和P型热电半导体材料交替连接在一起,就会在一个电偶接触面上产生吸热即形成工作端(该工作端在利用珀尔帖效应制冷时被称为冷端),在另一个相邻的电偶接触面上产生放热即形成散热端(该散热端在利用珀尔帖效应制冷时被称为热端),上述工作端和散热端在电偶接触面上的分布由流过N型热电半导体材料和P型热电半导体材料的电流的方向决定;相反地,当一对温差热电偶的两个接头处于不同温度时,热电偶两端会产生一定电动势,这种利用半导体材料将热能(即内能)转化为电能的现象为塞贝克(Seebeck)效应,此时热电偶的两端为工作端(该工作端在利用塞贝克效应发电时被称为热端)和散热端。
目前,利用珀尔帖效应制造的半导体制冷器(TEC Thermoelectric Cooler)和利用塞贝克效应制造的温差电堆已得到广泛应用。
相比其它的制冷设备如压缩机制冷设备,半导体制冷器具有如下独特的优势:1)半导体制冷器不需要制冷剂,不会污染环境,环保;2)由于无机械传动部件,半导体制冷器的结构相对简单、并且无噪声、无磨损、可靠性高;3)半导体制冷器可通过改变工作电流的大小来调节制冷速度和制冷温度,控制灵活(制冷速率快和控制精度高);4)半导体制冷器可以在各种极端条件下工作包括真空、失重和高加速度等。
对于上述提及的半导体制冷器,它的制冷能力和制冷效率主要受三个物理现象制约:1)由电流通入两种不同的热电半导体构成的回路引起的珀尔帖效应;2)由回路中的电阻引起的焦耳热生成;3)由冷热两端的温差引起的热量传导。根据上述三个制约因素,对于任何一种半导体制冷器都存在一个制冷电流的临界值。由于由珀尔帖效应产生的吸热或放热的量是与电流强度的一次方成正比,而由电流产生焦耳热是与电流强度的平方成正比,所以当电流强度大于1时,焦耳热的生成的速度要大于珀尔帖效应传递热量的速度。当几何尺寸和材料一定的情况下,制冷电流存在一个临界值。当制冷电流大于这个临界值时,从散热端回流的热量与生成的焦耳热之和大于珀尔帖效应传递热量,使得制冷器失去制冷作用。从而使得该制冷器存在着最大的制冷量或最大的制冷能流密度,限制了半导体制冷器在大制冷容量和高制冷热流密度方面的应用,这也是立式制冷堆的最主要的弱点。为了增加制冷器的制冷温差,常规的方法是采用多极制冷堆来实现。目前所有的多极制冷堆都是沿热传输的方向热串联或立式叠加(如图1所示)而成。从图1中可以看到,多极致冷片是由多个制冷堆叠加而成,上一级的散热端与下一级的工作端相接,最上层制冷堆的制冷量和制冷面积均最小,下面各层制冷堆的制冷量和制冷面积均依次增加。这样的结构带来的明显缺点,就是制冷效率较低,制冷量也很小。主要的原因是下一级制冷堆叠的除了要承接上一级制冷堆叠的制冷量,同时还要承接上一级自己发出的热量。这是立式制冷堆的第二个弱点。另外,这种多极致冷堆为了达到较好的制冷效果,均需要将N型热电半导体和P型热电半导体做成较粗的棒状结构,这种结构需要很多的半导体材料。
另外,利用塞贝克效应制造的传统的温差电堆,也是采用立式结构。当热源温度和环境温度一定时,从热源到环境的总温差就是一定的。根据赛贝克效应发电的量是与温差成正比。所以对于立式结构来说,由于多级立式结构是热串联的,当其它参数不变的情况下,一级与多级在发电量和效率来说是没有区别的。在发电应用中,立式结构还存在另一个缺陷。立式结构为了达到较好的温差发电的效果,也是需要将N型热电半导体和P型热电半导体做成较粗的棒状结构,这种结构也需要很多的半导体材料。
发明内容
本发明的目的是针对上述不足提供一种卧式多级热并联热电转换堆,该热电转换堆在利用珀尔帖效应作为半导体制冷器使用时,能在保持制冷效率不变的情况下通过增加热电转换堆的级数达到加大制冷温差或加大制冷量;该热电转换堆在利用塞贝克效应作为温差电堆使用时,能通过增加热电转换堆的级数达到增加发电量从而提高热电效率。
本发明是这样实现的:包括多个由N型热电半导体、P型热电半导体及金属片组成的热电转换单元和位于相邻热电转换单元之间的导热电绝缘层,其特征在于:所述相邻两个热电转换单元的工作端通过导热电绝缘层相互叠层连接。
所说N型热电半导体和P型热电半导体均为片状结构。
所说片状结构的N型热电半导体和片状结构的P型热电半导体为水平布置,每个热电转换单元的工作端和散热端位于同一水平面。
所说片状结构的N型热电半导体和片状结构的P型热电半导体为倾斜布置,每个热电转换单元的工作端所在水平面低于散热端所在水平面。
所说片状结构的N型热电半导体和片状结构的P型热电半导体为倾斜布置,每个热电转换单元的工作端所在水平面高于散热端所在水平面。
所说相邻两个热电转换单元的散热端之间通过导热电绝缘层相互叠层连接。
所说相邻两个热电转换单元的工作端的垂直投影相互重合。
所说片状结构的N型热电半导体的厚度范围为10埃~0.2厘米。
所说片状结构的P型热电半导体的厚度范围为10埃~0.2厘米。
所说倾斜设置的N型热电半导体和P型热电半导体的倾斜夹角为0~70度。
在本发明利用珀尔帖效应进行制冷工作时,所有热电转换单元的工作端(即此时的冷端)相互叠加在一起,形成工作端共同制冷的热电转换堆。该热电转换堆可以不通过增加电流强度,而是仅通过增加叠加的热电转换单元的层数达到所需的高制冷量或较大的制冷温差。这样就使得上述热电转换堆可以在形成高制冷量或较大的制冷温差时获得较高的制冷效率,很好地克服现有技术(多级立式叠加)的致命缺陷,现有的(立式)多极制冷堆只能通过增加层数来增加制冷温差,而不能增加制冷量。另外,本发明中片状结构的N型热电半导体和P型热电半导体能减小热回流,从而在同样制冷功率的情况下减少能源的消耗,进而提高效率。
在本发明利用塞贝克效应进行发电工作时,上述同极相互堆积的温差电堆,能在有限的换热面(散热面或发热面)的情况下,最大限度的进行热电转换。同时,上述片状结构的N型热电半导体和P型热电半导体的热流出较小,在温差相同的情况下相对传统的温差电堆能产生更多的电能。
附图说明
图1为现有(立式)多极制冷堆的结构示意图暨制冷原理图。
图2为本发明的结构示意图。
图3为本发明中相邻两个热电转换单元之间电并联的结构示意图。
图4为本发明中相邻两个热电转换单元之间电串联的结构示意图。
图5为本发明中多个热电转换单元之间串并联的结构示意图。
图6为本发明中热电转换单元的工作端和散热端位于同一水平面的示意图。
图7为本发明中热电转换单元的工作端所在水平面高于散热端所在水平面的示意图。
图8为本发明中热电转换单元的工作端所在水平面低于散热端所在水平面的示意图。
图9为本发明的单层结构示意图。
图中:1——导热电绝缘层、2——N型热电半导体、3————P型热电半导体、4——热电转换单元、5——第一金属片、6——第二金属片、7——第三金属片、8——工作端、9——散热端。
图1中QC表示从工作端净带走的热量,Q1表示第一级(上级)所产生的焦耳热,Q2表示第二级(下级)所产生的焦耳热。
具体实施方式
下面结合附图和实施例进一步说明本发明。
实施例:如图2所示包括多个由N型热电半导体2、P型热电半导体3及金属片组成的热电转换单元4和位于相邻热电转换单元4之间的导热电绝缘层1,相邻两个热电转换单元4的工作端8通过导热电绝缘层1相互叠层连接。每个热电转换单元4中,P型热电半导体3的一端连接第一金属片5,P型热电半导体3的另一端通过第二金属片6连接N型热电半导体2的一端,N型热电半导体2的另一端连接第三金属片7。相邻两个热电转换单元4之间的电连接根据具体需要可以为串联连接或并联连接(如图3~5所示)。上述导热电绝缘层1可以由陶瓷材料制成。
上述技术方案中,为了得到最好的制冷效果,相邻两个热电转换单元4的散热端9之间通过导热电绝缘层1相互叠层连接;相邻两个热电转换单元4的工作端8的垂直投影最好相互重合,加大工作端8的重合度;上述N型热电半导体2和P型热电半导体3均为片状结构,减小了焦耳热的产生,从而减少了能源的消耗。该片状结构的N型热电半导体2的厚度范围为10埃~0.2厘米。该片状结构的P型热电半导体的厚度范围为10埃~0.2厘米。
上述技术方案中,如图6~8所示,为了配合热电转换堆在多种场合的应用,上述片状结构的N型热电半导体和片状结构的P型热电半导体可以为水平布置,每个热电转换单元4的工作端8和散热端9位于同一水平面。同时,上述片状结构的N型热电半导体和片状结构的P型热电半导体也可以为倾斜布置,每个热电转换单元4的工作端8所在水平面低于散热端9所在水平面。也可以每个热电转换单元4的工作端8所在水平面高于散热端9所在水平面。当N型热电半导体和P型热电半导体倾斜设置时,它们的倾斜夹角最好为0度~70度。
上述技术方案中,根据珀尔帖效应,每个热电转换单元4中的工作端8(即此时的冷端)和散热端(即此时的热端)均由流过该热电转换单元4的电流的方向所决定。
上述技术方案中,当本发明的热电转换堆利用珀尔帖效应制冷时,除了相邻两个热电转换单元4的工作端8(即此时的冷端)通过导热电绝缘层1相互叠层连接外其它的各个部分包括散热端9(即此时的热端)均不需要重合;当本发明的热电转换堆利用塞贝克效应发电时,相邻两个热电转换单元4的工作端8(即此时的热端)通过导热电绝缘层1相互叠层连接,相邻两个热电转换单元4的散热端9通过导热电绝缘层1相互叠层连接,其它的各个部分均不需要重合,这样能进一步加大发电量。
下面详细说明本发明相对于现有结构所具有的有益效果:
本发明的卧式热电转换堆可以通过增加电流强度来提高制冷量或制冷温差,也可以通过增加叠加的层数来提高制冷量或制冷温差。正是由于在保持电流不变的情况下,这项发明可以通过增加层数来达到提高制冷量或制冷温差的功能,从而使在本发明在加大温差或加大制冷量时获得保持制冷效率不变的效果,很好地克服现有技术(单级立式或多级立式叠加)的致命缺陷。
本发明的卧式热电转换堆相较现有的立式热电制冷堆,还具有另一个重要的优点是可以减少热电材料的使用从而大大降低产品的成本。在热电制冷堆中存在热回流(高温向低温的热传导),立式结构要求热电材料有一定的高度,既不能太高(电阻会过大)也不能太低(热回流过大),通常为1mm至6mm之间。同理,立式结构要求热电材料有一定的横截面积,通常为1mm2至25mm2之间。这使得热电材料耗材较多。而本发明的卧式制冷堆技术可以制成厚度仅为10埃~0.2厘米的薄膜而大大降低热电材料的消耗,从而有效地降低产品的成本。
在本发明的卧式多级热并联热电转换堆利用塞贝克效应进行发电工作时,由于本发明的热电转换堆采用卧式结构,它的多级结构为热并联的,所有热电转换单元的工作端8(即此时的热端)都与热源相连,热电转换单元的散热端9都与环境相接,所以每增加一级热电转换单元,它的发电量就增加一倍,从而提高了发电效率。

Claims (10)

1.一种卧式多级热并联热电转换堆,包括多个由N型热电半导体、P型热电半导体及金属片组成的热电转换单元和位于相邻热电转换单元之间的导热电绝缘层,其特征在于:所述相邻两个热电转换单元的工作端通过导热电绝缘层相互叠层连接。
2.按权利要求1所述卧式多级热并联热电转换堆,其特征在于:所说N型热电半导体和P型热电半导体均为片状结构。
3.按权利要求2所述卧式多级热并联热电转换堆,其特征在于:所说片状结构的N型热电半导体和片状结构的P型热电半导体为水平布置,每个热电转换单元的工作端和散热端位于同一水平面。
4.按权利要求2所述卧式多级热并联热电转换堆,其特征在于:所说片状结构的N型热电半导体和片状结构的P型热电半导体为倾斜布置,每个热电转换单元的工作端所在水平面低于散热端所在水平面。
5.按权利要求2所述卧式多级热并联热电转换堆,其特征在于:所说片状结构的N型热电半导体和片状结构的P型热电半导体为倾斜布置,每个热电转换单元的工作端所在水平面高于散热端所在水平面。
6.按权利要求1或2所述卧式多级热并联热电转换堆,其特征在于:所说相邻两个热电转换单元的散热端之间通过导热电绝缘层相互叠层连接。
7.按权利要求1或2所述卧式多级热并联热电转换堆,其特征在于:所说相邻两个热电转换单元的工作端的垂直投影相互重合。
8.按权利要求2-5任一项所述卧式多级热并联热电转换堆,其特征在于:所说片状结构的N型热电半导体的厚度范围为10埃~0.2厘米。
9.按权利要求2-5任一项所述卧式多级热并联热电转换堆,其特征在于:所说片状结构的P型热电半导体的厚度范围为10埃~0.2厘米。
10.按权利要求4或5所述卧式多级热并联热电转换堆,其特征在于:所说倾斜设置的N型热电半导体和P型热电半导体的倾斜夹角为0度~70度。
CN201110139902XA 2011-05-27 2011-05-27 卧式多级热并联热电转换堆 Pending CN102214785A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110139902XA CN102214785A (zh) 2011-05-27 2011-05-27 卧式多级热并联热电转换堆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110139902XA CN102214785A (zh) 2011-05-27 2011-05-27 卧式多级热并联热电转换堆

Publications (1)

Publication Number Publication Date
CN102214785A true CN102214785A (zh) 2011-10-12

Family

ID=44745995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110139902XA Pending CN102214785A (zh) 2011-05-27 2011-05-27 卧式多级热并联热电转换堆

Country Status (1)

Country Link
CN (1) CN102214785A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151967A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种冷能温差发电装置
RU2575618C2 (ru) * 2013-10-22 2016-02-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Термоэлектрическое устройство с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода
CN105371522A (zh) * 2014-08-29 2016-03-02 陈树山 一种多级半导体温差电制冷组件
CN105827149A (zh) * 2015-01-06 2016-08-03 厦门兰智科技有限公司 一种对热源能量进行多次吸收转换的热电转换装置
CN107124108A (zh) * 2016-02-25 2017-09-01 西门子公司 热量管理方法、装置及包含大功率发热元件的设备
WO2017166102A1 (zh) * 2016-03-30 2017-10-05 博立多媒体控股有限公司 热能利用系统
CN107360711A (zh) * 2015-03-17 2017-11-17 美梦有限公司 具有热电织物的温度控制垫
CN110132438A (zh) * 2019-05-14 2019-08-16 上海电力学院 适用于腐蚀性流体管道的温度测量仪
CN112164746A (zh) * 2020-09-01 2021-01-01 西安交通大学 温差发电器件
CN112242480A (zh) * 2020-09-30 2021-01-19 西南电子技术研究所(中国电子科技集团公司第十研究所) 芯片级电子设备热电制冷方法
CN112556235A (zh) * 2020-11-25 2021-03-26 杭州大和热磁电子有限公司 一种多回路微型半导体制冷芯片
CN112600463A (zh) * 2020-12-05 2021-04-02 西安交通大学 一种体相结构化的集热发电模块
CN113130655A (zh) * 2019-12-31 2021-07-16 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN113587490A (zh) * 2018-03-01 2021-11-02 莱尔德热力系统有限公司 压缩机制冷器系统及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104041A (ja) * 2002-09-13 2004-04-02 Sony Corp 熱電変換装置及びその製造方法
CN202134576U (zh) * 2011-05-27 2012-02-01 武汉华利泰复合半导体技术有限公司 卧式多级热并联热电转换堆

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104041A (ja) * 2002-09-13 2004-04-02 Sony Corp 熱電変換装置及びその製造方法
CN202134576U (zh) * 2011-05-27 2012-02-01 武汉华利泰复合半导体技术有限公司 卧式多级热并联热电转换堆

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151967B (zh) * 2013-01-27 2015-06-10 南京瑞柯徕姆环保科技有限公司 一种冷能温差发电装置
CN103151967A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种冷能温差发电装置
RU2575618C2 (ru) * 2013-10-22 2016-02-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Термоэлектрическое устройство с тонкопленочными полупроводниковыми ветвями и увеличенной поверхностью теплоотвода
CN105371522A (zh) * 2014-08-29 2016-03-02 陈树山 一种多级半导体温差电制冷组件
CN105827149A (zh) * 2015-01-06 2016-08-03 厦门兰智科技有限公司 一种对热源能量进行多次吸收转换的热电转换装置
CN107360711A (zh) * 2015-03-17 2017-11-17 美梦有限公司 具有热电织物的温度控制垫
CN107124108A (zh) * 2016-02-25 2017-09-01 西门子公司 热量管理方法、装置及包含大功率发热元件的设备
WO2017166102A1 (zh) * 2016-03-30 2017-10-05 博立多媒体控股有限公司 热能利用系统
CN113587490A (zh) * 2018-03-01 2021-11-02 莱尔德热力系统有限公司 压缩机制冷器系统及其控制方法
CN113587490B (zh) * 2018-03-01 2023-01-13 莱尔德热力系统有限公司 压缩机制冷器系统及其控制方法
CN110132438A (zh) * 2019-05-14 2019-08-16 上海电力学院 适用于腐蚀性流体管道的温度测量仪
CN113130655A (zh) * 2019-12-31 2021-07-16 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN113130655B (zh) * 2019-12-31 2024-02-06 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN112164746B (zh) * 2020-09-01 2022-12-06 西安交通大学 温差发电器件
CN112164746A (zh) * 2020-09-01 2021-01-01 西安交通大学 温差发电器件
CN112242480A (zh) * 2020-09-30 2021-01-19 西南电子技术研究所(中国电子科技集团公司第十研究所) 芯片级电子设备热电制冷方法
CN112556235A (zh) * 2020-11-25 2021-03-26 杭州大和热磁电子有限公司 一种多回路微型半导体制冷芯片
CN112600463A (zh) * 2020-12-05 2021-04-02 西安交通大学 一种体相结构化的集热发电模块
CN112600463B (zh) * 2020-12-05 2022-03-22 西安交通大学 一种体相结构化的集热发电模块

Similar Documents

Publication Publication Date Title
CN102214785A (zh) 卧式多级热并联热电转换堆
Cao et al. Advances in the design and assembly of flexible thermoelectric device
Pourkiaei et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials
CN101826823B (zh) 热电转换型太阳能热发电系统
CN106655894B (zh) 一种多热源温差发电系统
CN104205382A (zh) 用于热回收系统的模块化热电单元及其方法
Olabi et al. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems
Park et al. Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion
US20120305044A1 (en) Thermal transfer and power generation systems, devices and methods of making the same
CN106568341A (zh) 一种板翅式热发电换热器
CN105471366B (zh) 一种含相变材料的太阳能‑热电耦合系统
CN103238227B (zh) 用于排气系统的热电模块
KR101237235B1 (ko) 열전필름 제조방법
WO2014114136A1 (zh) 一种冷能温差发电装置
CN103489948B (zh) 具有光冷/光热转换功能的半导体元器件
CN101562415A (zh) 发电装置
CN109346595A (zh) 一种阶梯式温差发电片及其引脚高度确定方法
CN202134576U (zh) 卧式多级热并联热电转换堆
WO2018083912A1 (ja) 熱電発電熱交換器
CN207117506U (zh) 一种层叠式的热能电能转换模组及其发电装置
CN101582665A (zh) 基于空调、冰箱中蒸发器与冷凝器间绝对温差的发电装置
CN201726340U (zh) 一种太阳能光电、热电转换系统
CN103311196A (zh) 基于热电制冷器的高密度集成微纳光电子芯片散热装置
Gupta et al. A review on thermoelectric cooler
CN108987559A (zh) 一种基于石墨烯材料的集成电路热管理系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111012