CN102211874A - Microcrystalline glass and preparation method thereof - Google Patents

Microcrystalline glass and preparation method thereof Download PDF

Info

Publication number
CN102211874A
CN102211874A CN2011101198849A CN201110119884A CN102211874A CN 102211874 A CN102211874 A CN 102211874A CN 2011101198849 A CN2011101198849 A CN 2011101198849A CN 201110119884 A CN201110119884 A CN 201110119884A CN 102211874 A CN102211874 A CN 102211874A
Authority
CN
China
Prior art keywords
stainless steel
weight percent
glass
quartz sand
devitrified glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101198849A
Other languages
Chinese (zh)
Other versions
CN102211874B (en
Inventor
张深根
田建军
杨洪林
潘德安
张静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN 201110119884 priority Critical patent/CN102211874B/en
Publication of CN102211874A publication Critical patent/CN102211874A/en
Application granted granted Critical
Publication of CN102211874B publication Critical patent/CN102211874B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

The invention provides microcrystalline glass and a preparation method thereof. In the method, one or more of stainless steel dedusting ash, quartz sand, coal ash and waste glass are used so as to regulate stainless steel slag to a component range suitable for preparing the microcrystalline glass. The microcrystalline glass comprises the following components by weight percent: 45-60% of SiO2, 20-28% of CaO, 10-15% of MgO, 2-9% of Al2O3, 0-8% of Na2O, 0.5-5% of Fe2O3, 0.4-2.5% of Cr2O3, 0.5-1.5% of F and 0.1-6% of TiO2. The microcrystalline glass is prepared by using a fusion method. The preparation method has the advantages that stainless steel slag, stainless steel dedusting ash, quartz sand, coal ash and waste glass solid are used as raw materials, other chemical raw materials are not added, and the microcrystalline glass is prepared through component blending, thus various solid wastes are comprehensively recycled, and the environment pollution problem caused by heavy metal chromium is solved. The microcrystalline glass prepared by the method in the invention has the advantages of low cost and wide raw material sources, is suitable for large-scale industrial production, and can be widely applied to the fields of building, decoration and industrial corrosion prevention.

Description

A kind of devitrified glass and preparation method thereof
Technical field
The invention belongs to solid waste resource reutilization field, being specifically related to the stainless steel slag is that in main raw material and dedusting ash of stainless steel, quartz sand, flyash, the cullet one or more are auxiliary material devitrified glass and preparation method thereof through allotment.
Background technology
Along with the development of steel industry, the output of ferrous metallurgy slag is increasing.China's stainless steel output reached 1,130 ten thousand tons in 2010, had produced stainless steel slag and 200,000 tons of dedusting ash of stainless steel of 2,260,000 tons.It is different from other metallurgical slag because of containing heavy metal chromium in stainless steel slag and the dedusting ash of stainless steel, and oozing out of heavy metal chromium has the serious environmental risk, belongs to danger wastes.At present, the stainless steel slag of domestic each stainless steel manufacturer and dedusting ash of stainless steel carry out that the slag field is stacked, preparation cement, build the road etc., and the stainless steel slag of stacking and dedusting ash of stainless steel are easy to ooze out Cr + 3And under physical environment, be oxidized to Cr + 6, chromium ion is easy to ooze out from concrete, cement products under certain sour environment simultaneously, the water-soluble migration, and prolong the seepage discharge increase in time, and cause serious water to pollute, cause human body mucosal ulcer even cancer.Therefore, the green composite utilization of stainless steel slag and dedusting ash of stainless steel is the difficult problem that metallurgy industry is badly in need of solution.
At present, a lot of producers utilize stainless steel slag and other raw material to prepare products such as cement, concrete and pottery.For example, Japanese Patent (JPA51083623) discloses at stainless steel slag and has added other oxide compound, feeds carbonic acid gas under certain condition and prepares light weight concrete, though these products can utilize stainless steel slag, Cr + 6Ooze out from these goods through regular meeting, pollute, and be difficult to these products are recycled.
Therefore in order to address these problems, to have proposed a lot of methods and stoped Cr in the stainless steel slag + 6Ooze out for example Japanese publication (JP-A) No. Hei-6-171993) proposed, when toppling over the stainless steel slag of molten state, in stainless steel slag, add aluminium ash and magnesium oxide-based industrial waste and stop oozing out of chromium ion in the slag.But because molten steel viscosity is too big, toppling process can not carry out fine as to mix, and therefore the chromic oxide that can not be completely fixed in the slag stops Cr + 6Ooze out.In addition, the United States Patent (USP) (US 6,732,547 B1) of Japanese JFE Iron And Steel Company application by in stainless steel refining process in covering slag a certain amount of sulfide of interpolation (S is less than 0.20%) stop Cr in the stainless steel slag + 6Ooze out.This method is to Cr + 6Ooze out good interception arranged, this stainless steel slag can be applied in preparation cement and aspect such as pave the way, but this method has reduced the viscosity of slag, and molten steel produced pollutes.In order at room temperature to reduce Cr + 6Seepage discharge, utilize ferrous sulfate to make Cr as reductive agent + 6Be reduced into Cr + 3To reduce the harm of environment.Japanese Patent JP-A-53028563 disclose a kind of under sour environment, utilize calcium sulfite as reductive agent Cr + 6Be reduced into Cr + 3, add oxyhydroxide then and make Cr + 3Be transformed into the chromium hydroxide compound, add in the cement at last and fix.This patent with the high-valued utilization again of stainless steel slag, probably is not reduced into Cr again under well-oxygenated environment + 6Cause the serious environmental burden.
Green is high-valued to be utilized again in order stainless steel slag is carried out, and prepares the attention that devitrified glass obtains people with it as main raw material.Devitrified glass does not absorb water, and resistance to acids and bases is strong, and the chromium element serves as the crystallite nucleating agent, and good fixed action is arranged, and stops Cr + 6Pollution problem.In addition, the devitrified glass waste material can repeatedly melt down and utilize.Chinese invention patent CN101838108A(application number: 201010154436.8 Shen Qing Publication dates: 2010.09.22) disclose a kind of recovery of stainless steel tailings and utilization of coal ash method, by adding yellow soda ash and barium oxide, mix with stainless steel slag, flyash and quartz sand proportioning, adopt fusing, cast, annealing, coring, crystallization and processing to obtain devitrified glass.This application can be utilized stainless steel slag and fly-ash Preparation devitrified glass, owing to added yellow soda ash and barium oxide industrial chemicals, production cost has improved.
The invention provides a kind of is raw material with stainless steel slag, dedusting ash of stainless steel, quartz sand, flyash, cullet solid waste, do not add other industrial chemicals, by the low-cost method for preparing devitrified glass of composition allotment, not only multiple solid waste is carried out the green composite cycling and reutilization, solved Cr in stainless steel slag and the dedusting ash of stainless steel + 6Ooze out caused problem of environmental pollution.The devitrified glass of the present invention preparation has that cost is low, raw material sources are extensive, is fit to large-scale industrial production, and product can be widely used in building, decoration and industrial antisepsis field.
Summary of the invention
The present situation of utilizing at stainless steel slag and dedusting ash of stainless steel, the invention provides the method for stainless steel slag, dedusting ash of stainless steel, quartz sand, flyash, the utilization of cullet solid waste low cost green composite, make the useless admittedly low-cost high-efficiency increment utilization again that obtains, stop Cr in the stainless steel slag + 6Ooze out caused problem of environmental pollution.
Devitrified glass of the present invention not only makes stainless steel slag and dedusting ash of stainless steel can prepare devitrified glass by the composition adjustment, multiple solid waste is carried out comprehensive cycling and reutilization, and having solved the caused problem of environmental pollution of heavy metal chromium, it comprises F, Cr simultaneously 2O 3, TiO 2, Fe 2O 3, one or more nucleating agent of S.
The technical solution adopted in the present invention is: based on stainless steel slag, add dedusting ash of stainless steel, cullet, flyash, quartz sand and TiO 2In one or more be deployed into the devitrified glass of suitable component, wherein, the shared weight percent of stainless steel slag, dedusting ash of stainless steel, quartz sand, flyash and cullet is: stainless steel slag is 35 ~ 55%, quartz sand is 0 ~ 42%, flyash is 0 ~ 23%, dedusting ash of stainless steel is 0 ~ 15%, and cullet is 0 ~ 55%, TiO 2Be 0 ~ 5%.Table 1 has been listed used stainless steel slag, dedusting ash of stainless steel, flyash, cullet and the quartz sand main component of the present invention.
Figure 2011101198849100002DEST_PATH_IMAGE001
Table 1 material composition compositing range (weight percent)
Raw material type Stainless steel slag Dedusting ash of stainless steel Flyash Cullet Quartz sand
SiO 2 18~24 20~25 55~58 73~77 97~99
CaO 32~40 38~43 4~7 10~13
MgO 22~30 12~17 0~1
Al 2O 3 4~8 4~6 15~30
Cr 2O 3 0.4~3 10~14
TiO 2 0~1 0~2
Fe 2O 3 1~3 4~6 5~13
Na 2O 10~15
F 1~3
Other 0~2 0~2 1~4 1~3 1~3
Make the devitrified glass component be by the composition allotment: SiO 2Weight percent is 45 ~ 60%, the CaO weight percent is 20 ~ 28%, the MgO weight percent is 10 ~ 15%, Al 2O 3Weight percent is 2 ~ 9%, Na 2The O weight percent is 0 ~ 8%, Fe 2O 3Weight percent is 0.5 ~ 5%, Cr 2O 3Weight percent is 0.4 ~ 2.5%, the F weight percent is 0.5 ~ 1.5%, TiO 2Weight percent is 0.1 ~ 6%.
Another object of the present invention provides the above-mentioned preparation method of devitrified glass, and concrete technology is as follows:
(1) batching: the stainless steel slag weight percent is 35 ~ 55%; Addition material is one or more of quartz sand, flyash, dedusting ash of stainless steel, cullet, and the addition material weight percent is a dedusting ash of stainless steel: 0 ~ 15%, and quartz sand: 0 ~ 42%, flyash: 0 ~ 23%, cullet: 0 ~ 55%, TiO 2: 0 ~ 5%;
(2) batch mixing: the devitrified glass raw material that proportioning is good mixes;
(3) fusion: the raw material that mixes is heated to 1400 ~ 1600 ℃ is fused into glass solution and is incubated 1 ~ 3 hour;
(4) casting: the glass metal after the fusion is cast in 600 ~ 700 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 650 ~ 900 ℃, coring 1 ~ 3 hour with the heat-up rate of 5 ~ 15 ℃/min;
(6) crystallization: the glass after the coring is heated to 850 ~ 1100 ℃, crystallization 1 ~ 3 hour with the heat-up rate of 5 ~ 15 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1 ~ 2 hour, makes devitrified glass through polishing, polishing.
Devitrified glass composition range of the present invention with weight percent is: SiO 2Be 45 ~ 60%, CaO is 20 ~ 28%, and MgO is 10 ~ 15%, Al 2O 3Be 2 ~ 9%, Na 2O is 0 ~ 8%, Fe 2O 3Be 0.5 ~ 5%, Cr 2O 3Be 0.4 ~ 2.5%, F is 0.1 ~ 1.5%, TiO 2Be 0.1 ~ 6%.
It is the feedstock production devitrified glass that the present invention adopts stainless steel slag, dedusting ash of stainless steel, quartz sand, flyash, cullet solid waste, not only multiple solid waste is carried out the high value cycling and reutilization of low cost, and solved the problem of environmental pollution of heavy metal chromium.The devitrified glass of the present invention's preparation can be widely used in building, decoration and industrial antisepsis.
Embodiment
According to the raw material of table 1, the required devitrified glass composition of proportioning obtains devitrified glass through fusion, casting, coring, crystallization, annealing and post-treatment operation.Below be further described with the preparation of the right devitrified glass of embodiment, will help the present invention is better understood.Protection domain of the present invention is not subjected to the qualification of these embodiment, and protection scope of the present invention is determined by claims.
Embodiment 1
(1) batching: raw material is by weight ratio: stainless steel slag: 55%, and quartz sand: 42%; Flyash: 3%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1600 ℃ is fused into glass solution and is incubated 1 hour;
(4) casting: the glass metal after the fusion is cast in 700 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 900 ℃, coring 3 hours with the heat-up rate of 15 ℃/min;
(6) crystallization: the glass after the coring is heated to 1100 ℃, crystallization 3 hours with the heat-up rate of 15 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 2 hours, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 60%; CaO:25.5%; MgO:10%; Al 2O 3: 2%; Fe 2O 3: 0.5%; Cr 2O 3: 0.4%; F:1.5%; TiO 2: 0.1%;
Embodiment 2
(1) batching: raw material is by weight ratio: stainless steel slag: 35%, and dedusting ash of stainless steel: 15%; Cullet: 50%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1400 ℃ is fused into glass solution and is incubated 3 hours;
(4) casting: the glass metal after the fusion is cast in 600 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 650 ℃, coring 2 hours with the heat-up rate of 5 ℃/min;
(6) crystallization: the glass after the coring is heated to 850 ℃, crystallization 2 hours with the heat-up rate of 5 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1 hour, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 45%; CaO:28%; MgO:11.9%; Al 2O 3: 3%; Na 2O:7.5%; Fe 2O 3: 1.5%; Cr 2O 3: 2.5%; F:0.5%; TiO 2: 0.1%.
Embodiment 3
(1) batching: raw material is by weight ratio: stainless steel slag: 40%, and dedusting ash of stainless steel: 10%; Quartz sand: 12%; Flyash: 23%; TiO 2: 5%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1500 ℃ is fused into glass solution and is incubated 2 hours;
(4) casting: the glass metal after the fusion is cast in 650 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 650 ℃, coring 1 hour with the heat-up rate of 10 ℃/min;
(6) crystallization: the glass after the coring is heated to 950 ℃, crystallization 1 hour with the heat-up rate of 10 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1.5 hours, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 45%; CaO:20%; MgO:12%; Al 2O 3: 9%; Fe 2O 3: 5%; Cr 2O 3: 1.3%; F:0.7%; TiO 2: 6%.
Embodiment 4
(1) batching: raw material is by weight ratio: stainless steel slag: 55%, and dedusting ash of stainless steel: 15%; Quartz sand: 15%; Flyash: 15%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1550 ℃ is fused into glass solution and is incubated 2 hours;
(4) casting: the glass metal after the fusion is cast in 680 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 840 ℃, coring 2 hours with the heat-up rate of 12 ℃/min;
(6) crystallization: the glass after the coring is heated to 1000 ℃, crystallization 2 hours with the heat-up rate of 12 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 2 hours, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 50%; CaO:23.5%; MgO:15%; Al 2O 3: 5%; Fe 2O 3: 2%; Cr 2O 3: 2.5%; F:1%; TiO 2: 1%.
Embodiment 5
(1) batching: raw material is by weight ratio: stainless steel slag: 50%, and dedusting ash of stainless steel: 8%; Quartz sand: 20%; Flyash: 10%; Cullet: 10%; TiO 2: 2%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1450 ℃ is fused into glass solution and is incubated 1.5 hours;
(4) casting: the glass metal after the fusion is cast in 660 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 800 ℃, coring 2 hours with the heat-up rate of 7.5 ℃/min;
(6) crystallization: the glass after the coring is heated to 900 ℃, crystallization 2 hours with the heat-up rate of 7.5 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1.5 hours, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 52%; CaO:23%; MgO:12.4%; Al 2O 3: 4%; Na 2O:3%; Fe 2O 3: 1.5%; Cr 2O 3: 1%; F:0.6%; TiO 2: 2.5%.
Embodiment 6
(1) batching: raw material is by weight ratio: stainless steel slag: 35%, and dedusting ash of stainless steel: 5%; Flyash: 4%; Cullet: 55%, TiO 2: 1%;
(2) batch mixing: the devitrified glass raw material for preparing is mixed;
(3) fusion: the raw material that mixes is heated to 1480 ℃ is fused into glass solution and is incubated 2.5 hours;
(4) casting: the glass metal after the fusion is cast in 620 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 700 ℃, coring 1.5 hours with the heat-up rate of 9 ℃/min;
(6) crystallization: the glass after the coring is heated to 1050 ℃, crystallization 1.5 hours with the heat-up rate of 8 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1.5 hours, makes devitrified glass through polishing, polishing.
The prepared devitrified glass chemical constitution of above-mentioned technology is (weight percent): SiO 2: 55%; CaO:21%; MgO:8%; Al 2O 3: 3.8%; Na 2O:8%; Fe 2O 3: 1.5%; Cr 2O 3: 0.7%; F:0.5%; TiO 2: 1.5%.

Claims (3)

1. a devitrified glass is characterized in that, the composition of this devitrified glass is: be that one or more auxiliary material in major ingredient and dedusting ash of stainless steel, quartz sand, flyash, the cullet is formed with the stainless steel slag; Wherein, the shared weight percent of each component is: stainless steel slag is 35 ~ 55%, and dedusting ash of stainless steel is 0 ~ 15%, and quartz sand is 0 ~ 42%, and flyash is 0 ~ 23%, and cullet is 0 ~ 55%, TiO 2Be 0 ~ 5%.
2. according to right 1 described devitrified glass, it is characterized in that, with one or more the auxiliary material in above-mentioned stainless steel slag and dedusting ash of stainless steel, quartz sand, flyash, the cullet be: SiO by composition allotment component 2Weight percent is 45 ~ 60%, the CaO weight percent is 20 ~ 28%, the MgO weight percent is 10 ~ 15%, Al 2O 3Weight percent is 2 ~ 9%, Na 2The O weight percent is 0 ~ 8%, Fe 2O 3Weight percent is 0.5 ~ 5%, Cr 2O 3Weight percent is 0.4 ~ 2.5%, the F weight percent is 0.5 ~ 1.5%, TiO 2Weight percent is 0.1 ~ 6%.
3. the preparation method of devitrified glass according to claim 1, it is levied and is, specifically may further comprise the steps:
(1) batching: the stainless steel slag weight percent is 35 ~ 55%; Addition material is one or more of dedusting ash of stainless steel, quartz sand, flyash and cullet, and the addition material weight percent amount is a quartz sand: 0 ~ 42%, and flyash: 0 ~ 23%, dedusting ash of stainless steel: 0 ~ 15%, cullet: 0 ~ 55%, TiO 2: 0 ~ 5%;
(2) batch mixing: the devitrified glass raw material that proportioning is good mixes;
(3) fusion: the raw material that mixes is heated to 1400 ~ 1600 ℃ is fused into glass solution and is incubated 1 ~ 3 hour;
(4) casting: glass melt is cast in 600 ~ 700 ℃ of stainless steel moulds is shaped;
(5) coring: the glass after will being shaped places in the process furnace, is heated to 650 ~ 900 ℃, coring 1 ~ 3 hour with the heat-up rate of 5 ~ 15 ℃/min;
(6) crystallization: the glass after the coring is heated to 850 ~ 1100 ℃, crystallization 1 ~ 3 hour with the heat-up rate of 5 ~ 15 ℃/min;
(7) annealing: stove is chilled to 600 ℃ of annealing 1 ~ 2 hour, makes devitrified glass through polishing, polishing.
CN 201110119884 2011-05-10 2011-05-10 Microcrystalline glass and preparation method thereof Expired - Fee Related CN102211874B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110119884 CN102211874B (en) 2011-05-10 2011-05-10 Microcrystalline glass and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110119884 CN102211874B (en) 2011-05-10 2011-05-10 Microcrystalline glass and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102211874A true CN102211874A (en) 2011-10-12
CN102211874B CN102211874B (en) 2013-06-05

Family

ID=44743445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110119884 Expired - Fee Related CN102211874B (en) 2011-05-10 2011-05-10 Microcrystalline glass and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102211874B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491640A (en) * 2011-11-21 2012-06-13 北京科技大学 Method for preparing microcrystalline glass by synergetically processing municipal sludge through utilizing metallurgical slag
CN102584318A (en) * 2012-03-16 2012-07-18 北京科技大学 Method for preparing porous heat-insulating material from Cr-containing steel slag
CN103395995A (en) * 2013-08-01 2013-11-20 湖南永鑫环保科技有限公司 Production method for producing microcrystalline glass by using waste glass and smelting waste
CN103553340A (en) * 2013-11-05 2014-02-05 北京科技大学 Die casting process method and device for producing microcrystalline glass by using blast furnace slag
CN104445944A (en) * 2014-12-16 2015-03-25 北京科技大学 Method for preparing microcrystalline glass from hazardous solid wastes
CN104649579A (en) * 2013-11-19 2015-05-27 卢爱民 Energy-saving high-strength microcrystalline glass and preparation method thereof
CN104671664A (en) * 2015-01-19 2015-06-03 中国兵器科学研究院宁波分院 Method for preparing wear-resistant corrosion-resistant glass ceramics
CN104773958A (en) * 2015-04-01 2015-07-15 北京科技大学 Method for preparing hedenbergite glass ceramics by using lead slag
CN104944781A (en) * 2015-05-14 2015-09-30 南通大明玉新材料科技有限公司 Method for preparing microcrystalline material with waste residues of quartz sand
CN105271744A (en) * 2015-09-30 2016-01-27 江苏耀兴安全玻璃有限公司 Preparation method of microcrystalline glass
CN106082679A (en) * 2016-06-15 2016-11-09 北京科技大学 A kind of method that full waste material short route prepares devitrified glass
CN106396412A (en) * 2016-08-31 2017-02-15 望江宇花玻璃有限公司 Perovskite-based ceramic glass containing modified fly ash and preparation process of perovskite-based ceramic glass
CN107417123A (en) * 2017-07-28 2017-12-01 苏州大学 A kind of method for preparing devitrified glass using stainless steel slag and fluorite mine tailing
CN107915411A (en) * 2017-12-18 2018-04-17 北方工业大学 A kind of resource utilization method of aluminium ash
CN108516688A (en) * 2018-07-03 2018-09-11 四川名微晶科技股份有限公司 A method of using aluminium ash be main material production spinel crystallites glass
CN108558214A (en) * 2018-05-24 2018-09-21 苏州大学 A method of preparing devitrified glass using crystal waste slag and cullet
CN108689601A (en) * 2018-07-23 2018-10-23 环境保护部南京环境科学研究所 A method of preparing vitrified product using dedusting ash of stainless steel
CN105924013B (en) * 2016-04-25 2019-04-02 四川一名微晶科技股份有限公司 It is raw material using the devitrified glass and production method of the production of all-electric melting calendering technology using ferrochrome waste residue
CN110756759A (en) * 2018-07-28 2020-02-07 席文君 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe
CN112142333A (en) * 2020-09-30 2020-12-29 中国科学院过程工程研究所 Multi-source fluorine-containing waste residue microcrystalline glass solidified body and preparation method and application thereof
CN112142332A (en) * 2020-09-28 2020-12-29 西安建筑科技大学 Steel slag high-strength microcrystalline glass and preparation method thereof
CN113200682A (en) * 2021-04-12 2021-08-03 内蒙古科技大学 Method for preparing microcrystalline glass by adopting ferrochrome slag
CN114702243A (en) * 2022-04-11 2022-07-05 内蒙古科技大学 Method for cooperatively curing heavy metal Cr-Ni-Mn in stainless steel slag
CN114873919A (en) * 2022-06-18 2022-08-09 江西理工大学 TiO 2 Method for harmless and high-value utilization of reinforced stainless steel slag in large quantity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055724A (en) * 1991-04-26 1991-10-30 连云港市特种灯泡厂 Method for making nucleatede glass marble from phosphoric tailings
CN101020968A (en) * 2006-12-29 2007-08-22 金川集团有限公司 Process of comprehensively utilizing high temperature nickel smelting slag
CN101914639A (en) * 2010-09-08 2010-12-15 北京科技大学 Method for recycling iron on line from iron-containing industrial slag and preparing glass ceramics frit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055724A (en) * 1991-04-26 1991-10-30 连云港市特种灯泡厂 Method for making nucleatede glass marble from phosphoric tailings
CN101020968A (en) * 2006-12-29 2007-08-22 金川集团有限公司 Process of comprehensively utilizing high temperature nickel smelting slag
CN101914639A (en) * 2010-09-08 2010-12-15 北京科技大学 Method for recycling iron on line from iron-containing industrial slag and preparing glass ceramics frit

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491640A (en) * 2011-11-21 2012-06-13 北京科技大学 Method for preparing microcrystalline glass by synergetically processing municipal sludge through utilizing metallurgical slag
CN102584318A (en) * 2012-03-16 2012-07-18 北京科技大学 Method for preparing porous heat-insulating material from Cr-containing steel slag
CN103395995A (en) * 2013-08-01 2013-11-20 湖南永鑫环保科技有限公司 Production method for producing microcrystalline glass by using waste glass and smelting waste
CN103553340A (en) * 2013-11-05 2014-02-05 北京科技大学 Die casting process method and device for producing microcrystalline glass by using blast furnace slag
CN104649579A (en) * 2013-11-19 2015-05-27 卢爱民 Energy-saving high-strength microcrystalline glass and preparation method thereof
CN104649579B (en) * 2013-11-19 2019-10-11 卢爱民 Energy saving high devitrified glass and preparation method
WO2016095180A1 (en) * 2014-12-16 2016-06-23 北京科技大学 Microcrystalline glass prepared from hazardous solid wastes, and preparation method therefor
CN104445944A (en) * 2014-12-16 2015-03-25 北京科技大学 Method for preparing microcrystalline glass from hazardous solid wastes
CN104671664A (en) * 2015-01-19 2015-06-03 中国兵器科学研究院宁波分院 Method for preparing wear-resistant corrosion-resistant glass ceramics
CN104773958A (en) * 2015-04-01 2015-07-15 北京科技大学 Method for preparing hedenbergite glass ceramics by using lead slag
CN104944781A (en) * 2015-05-14 2015-09-30 南通大明玉新材料科技有限公司 Method for preparing microcrystalline material with waste residues of quartz sand
CN105271744A (en) * 2015-09-30 2016-01-27 江苏耀兴安全玻璃有限公司 Preparation method of microcrystalline glass
CN105924013B (en) * 2016-04-25 2019-04-02 四川一名微晶科技股份有限公司 It is raw material using the devitrified glass and production method of the production of all-electric melting calendering technology using ferrochrome waste residue
CN106082679A (en) * 2016-06-15 2016-11-09 北京科技大学 A kind of method that full waste material short route prepares devitrified glass
CN106082679B (en) * 2016-06-15 2018-10-02 北京科技大学 A kind of method that full waste material short route prepares devitrified glass
CN106396412A (en) * 2016-08-31 2017-02-15 望江宇花玻璃有限公司 Perovskite-based ceramic glass containing modified fly ash and preparation process of perovskite-based ceramic glass
CN107417123A (en) * 2017-07-28 2017-12-01 苏州大学 A kind of method for preparing devitrified glass using stainless steel slag and fluorite mine tailing
CN107915411A (en) * 2017-12-18 2018-04-17 北方工业大学 A kind of resource utilization method of aluminium ash
CN108558214A (en) * 2018-05-24 2018-09-21 苏州大学 A method of preparing devitrified glass using crystal waste slag and cullet
CN108516688A (en) * 2018-07-03 2018-09-11 四川名微晶科技股份有限公司 A method of using aluminium ash be main material production spinel crystallites glass
CN108689601A (en) * 2018-07-23 2018-10-23 环境保护部南京环境科学研究所 A method of preparing vitrified product using dedusting ash of stainless steel
CN110756759A (en) * 2018-07-28 2020-02-07 席文君 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe
CN110756759B (en) * 2018-07-28 2022-03-29 泰安特夫德新材料科技有限公司 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe
CN112142332A (en) * 2020-09-28 2020-12-29 西安建筑科技大学 Steel slag high-strength microcrystalline glass and preparation method thereof
CN112142333A (en) * 2020-09-30 2020-12-29 中国科学院过程工程研究所 Multi-source fluorine-containing waste residue microcrystalline glass solidified body and preparation method and application thereof
CN113200682A (en) * 2021-04-12 2021-08-03 内蒙古科技大学 Method for preparing microcrystalline glass by adopting ferrochrome slag
CN114702243A (en) * 2022-04-11 2022-07-05 内蒙古科技大学 Method for cooperatively curing heavy metal Cr-Ni-Mn in stainless steel slag
CN114702243B (en) * 2022-04-11 2023-09-05 内蒙古科技大学 Method for cooperatively solidifying heavy metal Cr-Ni-Mn in stainless steel slag
CN114873919A (en) * 2022-06-18 2022-08-09 江西理工大学 TiO 2 Method for harmless and high-value utilization of reinforced stainless steel slag in large quantity
CN114873919B (en) * 2022-06-18 2023-11-28 江西理工大学 TiO 2 Method for strengthening mass harmless and high-value utilization of stainless steel slag

Also Published As

Publication number Publication date
CN102211874B (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN102211874B (en) Microcrystalline glass and preparation method thereof
CN102807323B (en) Method for recycling and reusing solid waste and glass prepared by using solid waste as raw material
CN103539357B (en) A kind of Silicon-slag microcrystalline glass and preparation method thereof
CN100383071C (en) Sludge microcrystalline glass and its preparation method
CN102167513B (en) A kind of technology of preparing of silicophosphate enamel
CN107417123B (en) Method for preparing microcrystalline glass by using stainless steel slag and fluorite tailings
CN106082679B (en) A kind of method that full waste material short route prepares devitrified glass
CN106116161B (en) A method of preparing devitrified glass using yellow phosphorus furnace slag and chromium slag
CN102491640A (en) Method for preparing microcrystalline glass by synergetically processing municipal sludge through utilizing metallurgical slag
CN104071983B (en) A kind of sintering process method utilizing fluorite mine tailing to produce microcrystal glass plate
CN104193171A (en) Silicon manganese alloy slag glass ceramic and preparation method thereof
CN110776268A (en) Cement clinker and preparation method and application thereof
CN103232164B (en) Coffee microcrystal glass plate and production method thereof
CN105130190A (en) Glass ceramics generated by taking granite tailings as main raw material, and preparation method for glass ceramics
CN109369026B (en) Method for producing yellow phosphorus and preparing high-calcium complex phase glass ceramics simultaneously by electric furnace method
CN107879631B (en) Ingredient quenching and tempering material suitable for blast furnace slag microcrystalline glass and quenching and tempering method thereof
CN104071984B (en) A kind of calendering technology method utilizing fluorite mine tailing to produce microcrystal glass plate
CN1030602C (en) Method for manufacturing colored glass ceramics containing lithium tailings more than 80 percent
CN109354425B (en) Composite mineralizer suitable for calcining white sulphoaluminate cement clinker and preparation method thereof
CN114409257B (en) Nitrate-free environment-friendly steel plate enamel medium-temperature titanium creamy yellow overglaze and preparation method thereof
CN104003631B (en) Germanium tailings portland cement as primary raw material and preparation method thereof is carried with brown coal
CN103819173B (en) A kind of method utilizing iron ore waste residue produced sintering brick
CN104692680A (en) Preparation method for phosphorous slag Portland cement clinker
CN113548801B (en) Method for preparing microcrystalline glass by utilizing fly ash
CN104030563A (en) Colored glass and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

CF01 Termination of patent right due to non-payment of annual fee