CN102211627B - Four-leg robot mechanism based on bionic design - Google Patents

Four-leg robot mechanism based on bionic design Download PDF

Info

Publication number
CN102211627B
CN102211627B CN201110106481A CN201110106481A CN102211627B CN 102211627 B CN102211627 B CN 102211627B CN 201110106481 A CN201110106481 A CN 201110106481A CN 201110106481 A CN201110106481 A CN 201110106481A CN 102211627 B CN102211627 B CN 102211627B
Authority
CN
China
Prior art keywords
bevel
motor
bevel gear
knee
gear
Prior art date
Application number
CN201110106481A
Other languages
Chinese (zh)
Other versions
CN102211627A (en
Inventor
严华
朱秋国
熊蓉
褚健
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to CN201110106481A priority Critical patent/CN102211627B/en
Publication of CN102211627A publication Critical patent/CN102211627A/en
Application granted granted Critical
Publication of CN102211627B publication Critical patent/CN102211627B/en

Links

Abstract

The invention relates to a four-leg robot mechanism based on a bionic design. The four-leg robot mechanism consists of a body frame and four legs. The body frame consists of a front plate and a rear plate, two sides of the body frame are provided with flexible handles, and the robot mechanism is convenient to convey; each leg comprises a hip, a huckle, a knee and a crural part; the hip realizes two freedom degrees by adopting a differential bevel gear; the hip and the huckle are connected by an expansion sleeve to realize fast and convenient assembly and disassembly; the bevel gear drive motion is adopted by the knee; the crural part comprises a large cylinder, a small cylinder, a conical spring and a force sensor; and the large cylinder and the small cylinder are connected through the conical spring, so that the external impact force generated in the walking process of the robot can be buffered, the force sensor on a sole can acquire ground acting force, and the external environment can be conveniently sensed in real time and the robot can be subjected to balanced control conveniently. Through the bionic design idea, a spinal cord and a flexible foot mechanism of the robot are stimulated and designed, the flexibility of the robot movement is improved, the impact of the ground to the robot is reduced, and the robot mechanism has a compact structure and is convenient to install.

Description

一种基于仿生设计的四腿机器人机构 A four-legged robot bionic design agency based

技术领域 FIELD

[0001] 本发明属于机器人领域,涉及一种基于仿生设计的四腿机器人机构。 [0001] The present invention belongs to the field of robotics, it relates to a four-legged robot mechanism based biomimetic design. 背景技术 Background technique

[0002] 随着人类对自然界认识的加深,越来越多的智能仿生器械被开发出来。 [0002] With the deepening human understanding of the natural world, more and more intelligent bionic devices have been developed. 智能仿生机器人以自然界中的生物作为研究对象,用机械结构模拟生物组织的运动,进而探索其运动机理。 Intelligent bionic robot creatures in nature as the object of study, with the movement of the mechanical structure simulation of biological tissues, which will explore the movement mechanism. 开发小型化、轻便化和适应性强的仿生四腿机器人对促进机器人学的发展具有重要意义,这类仿生机器人在科学研究、示范教学以及益智娱乐等方面具有广阔的应用和发展前景。 Development of small, lightweight and adaptable bionic four-legged robot has important significance for promoting the development of robotics, these biomimetic robots have broad application and development prospects in scientific research, teaching demonstration and educational entertainment.

[0003] 中国专利号CN 101927793 A公开了一种“匍匐与直立运动互变的变结构四足机器人结构”,该四足机器人有机体和固定在上面的四条肢体,每条肢体采用三个舵机控制,舵机间为串联结构,这种结构连接杆件多,结构复杂,不适用于要求小型、轻便的仿生机器人。 [0003] Chinese patent No. CN 101927793 A discloses a "variable structure creeping motion of the upright and tautomeric quadruped robot structure", the quadruped robot organism and fixed in the above four limbs, each limb using three servos control room, steering a tandem structure, which connecting rod and more complex structures, does not apply to the requirements of small, lightweight bionic robots. 同时该结构中机体是一个整体,限制了运动的灵活性。 Meanwhile, the structure of the body as a whole, limiting the flexibility of movement.

[0004] 中国专利号CN 101811525 A公开了一种“具有质心调整装置的液压驱动四足机器人移动机构”,该机器人机构的在躯干下面布置四条腿,均采用液压驱动,每条腿有具有冗余自由度,增加了机构控制的复杂性。 [0004] Chinese patent No. CN 101811525 A discloses a "center of mass adjusting device having a hydraulic driving mechanism moving quadruped robot" in the robot mechanism arranged below the torso four legs, are hydraulic drive, each leg having a redundant More than freedom, it increases the complexity of institutional control. 另外液压驱动提高了整套机构的体积和重量,不方便携带运输和拆装。 Further improved hydraulic drive mechanism of the entire volume and weight, convenient to carry and transport disassembly.

[0005] 中国专利号CN 101791994 A公开了“一种凸轮驱动控制式四足机器人的行走机构”,机构分为前后腿组件和连接前后腿组件的万向连接组件。 [0005] Chinese patent No. CN 101791994 A discloses "a cam mechanism actuated and controlled travel quadruped robot" gimbal mechanism is divided into front and rear leg assembly and the rear leg assembly connected to the front connection assembly. 其中万向节连接组件仅仅是提供一个被动的运动形式,不能对人为的对其控制,不利于机构的运动和平衡控制。 Wherein the gimbal connection assembly simply provide a passive form of exercise, it can not control its artificial, and is not conducive to movement balance control mechanism.

发明内容 SUMMARY

[0006] 本发明的目的是克服现有技术的不足,提供一种结构更加紧凑、安装和搬运更加方便,更有利于提高机器人运动灵活性、更好地吸收足部冲击力、具有感知外部环境作用的基于仿生设计的四腿机器人机构。 [0006] The object of the present invention is to overcome the disadvantages of the prior art, to provide a more compact structure, installation and handling easier, help to improve the flexibility of the robot movement, to better absorb the impact of the foot, having perceived the external environment four-legged robot mechanism based on bionic design effect.

[0007] 基于仿生设计的四腿机器人机构包括身体框架和四条腿部;四条腿部固定在身体框架上;四条腿部包括髋部、大腿部、膝部和小腿部;髋部连接大腿部,大腿部连接膝部,膝部连接小腿部;身体框架包括身体前板、身体后板、前转动法兰、后转动法兰、第一电机和柔性手柄;前转动法兰固定在身体前板上,后转动法兰固定在身体后板上,前转动法兰和后转动法兰构成转动副,第一电机固定在前转动法兰上,第一电机输出轴连接到后转动法兰,柔性手柄的两端分别固定在身体前板和身体后板上;髋部包括第二电机、第一正齿轮组、第一驱动固定架、第一太阳锥齿轮、行星锥齿轮、行星支架、第二太阳锥齿轮、第二驱动固定架、第二正齿轮组和第三电机;第二电机输出轴连接第一正齿轮组的输入轮,第三电机输出轴连接第二正齿轮组的输入轮,第 [0007] Based on four-legged robot mechanism of bionic comprises four legs and the body framework; four leg portion is fixed to the body frame; includes four legs hip, thigh, knee and lower leg; large hip links leg, thigh connected knee, lower leg connected to the knee; the body frame comprises a front body panel, rear body panel, a front flange is rotated, the rotation of the flange, the first motor and the flexible handle; before rotatably mounting flange in the front panel of the body, the rotation of the flange fixed to the rear body panel, front and rear flange rotatable flanges configured rotatable turning pair, a first motor fixed to the front flange is rotated, the rotation of the motor output shaft is connected to a first flange, both ends of the handle are fixed to the flexible plate and the rear body panel body; hip portion comprises a second motor, a first spur gear set, the first holder drive, a first bevel sun gear, planetary bevel gear, a planetary stent, a second bevel sun gear, a second drive mount, the second spur gear set and the third motor; a second input gear connected to a motor output shaft of the first spur gear set, a third motor output shaft connected to the second spur gear set the input wheel, the first 一正齿轮组的输出轮连接第一太阳锥齿轮,第二正齿轮组的输出轮连接第二太阳锥齿轮,第一太阳锥齿轮、第二太阳锥齿轮和行星锥齿轮与行星支架构成旋转运动副,第一驱动固定架和第二驱动固定架固定在身体前板上,同时支撑第一太阳锥齿轮和第二太阳锥齿轮和行星锥齿轮;大腿部包括胀紧套、大腿杆、第四电机和电机座,大腿杆与行星锥齿轮输出轴通过胀紧套固定,第四电机通过电机座固定在大腿杆内;膝部包括膝关节锥齿轮组、齿轮外壳和锥齿轮轴;第四电机输出轴上安装有膝关节锥齿轮组的输入锥齿轮,与膝关节轴上的膝关节锥齿轮组的输出锥齿轮相互啮合,齿轮外壳固定在大腿杆上,同时支撑膝关节轴;小腿部包括左小腿板、右小腿板、大圆筒、锥形弹簧、小圆筒和力传感器;左小腿板和右小腿板连接膝部中的锥齿轮轴两端,并与大 A positive output connected to a first wheel gear set sun bevel gear, an output sun wheel connected to the second bevel gear of the second spur gear set, a first bevel sun gear, a second sun bevel gears and planet bevel gears and planetary carrier constituting a rotational movement vice, the first drive and the second drive holder body before the fixation plate while supporting the first bevel gear and the second sun bevel gears and planet bevel sun gear; leg includes a large expansion sleeve, thigh bar, the four motors and motor seat, thigh bar with planetary bevel gears fixed to the output shaft by expanding tight, fourth motor by a motor fixed in the thigh bar holder; knee bevel gear set comprising a knee, the gear housing and the bevel gear shaft; fourth mounting the motor output shaft has an input bevel gear of the bevel gear set of the knee, the output bevel gear intermeshes with a bevel gear set knee knee shaft, the gear housing is fixed to the thigh bar, the knee while supporting the shaft; leg plate portion includes a left leg, right leg plates, large cylinder, a conical spring, a small cylinder and the force sensor; left leg and right leg plate bevel pinion shaft connected to both ends of the plate in the knee, and large 筒上端固定,大圆筒下端中空,小圆筒一端套在大圆筒内,两者通过锥形弹簧连接,销子插在大圆筒和小圆筒相互配合的槽内,小圆筒另一端安装有力传感器。 An upper fixed cylinder, the lower end of the large hollow cylinder, one end of the small cylindrical sleeve within the large cylinder, both connected by a conical spring, a pin is inserted in the large cylinder and a small cylinder cooperating slot, the other end of the small cylindrical mounting powerful sensor.

[0008] 本发明与现有技术相比具有整体结构简单紧凑,安装拆卸方便的特点,加入的身体关节令机器人更加适合高速运动场合,腿部的缓冲装置和力传感器使运动控制可靠性容易得到保证。 [0008] The prior art and the present invention has a simple and compact overall structure, easy installation and removal characteristics compared to the addition of the robot body to make a joint movement is more suitable for high speed applications, the cushioning device and the force sensor so that movement of the leg control reliability readily Guarantee.

附图说明[0009] 图I是四腿机器人机构整体实物图; BRIEF DESCRIPTION [0009] Figure I is a four-legged robot overall physical map means;

[0010] 图2是四腿机器人身体框架实物图; [0010] FIG. 2 is a four-legged robot of FIG physical body framework;

[0011] 图3是四腿机器人单腿实物图; [0011] FIG. 3 is a four-legged robot leg physical map;

[0012] 图4是四腿机器人髋部装配图; [0012] FIG. 4 is a four-legged robot assembly view of the hip;

[0013] 图5是四腿机器人大腿部、膝部和小腿部装配图; [0013] FIG 5 is a four-legged robot thigh, knee and lower leg assembly drawing;

[0014] 图中:身体框架I、腿部2、身体前板3、身体后板4、前转动法兰5、后转动法兰6、第一电机7、柔性绑带8、髋部9、大腿部10、膝部11、小腿部12、第二电机13、第一正齿轮组 [0014] FIG: body framework I, leg 2, the body front panel 3, rear body panel 4, the front flange 5 is rotated, the rotation of the flange 6, the first motor 7, the flexible tie 8, 9 hip, thigh 10, knee 11, lower leg 12, a second motor 13, a first spur gear set

14、第一驱动固定架15、第一太阳锥齿轮16、行星锥齿轮17、行星支架18、第二太阳锥齿轮19、第二驱动固定架20、第二正齿轮组21、第三电机22、胀紧套23、大腿杆24、第四电机25、电机座26、膝关节锥齿轮组27、齿轮外壳28、锥齿轮轴29、左小腿板30、右小腿板31、大圆筒32、锥形弹簧33、小圆筒34、力传感器35。 14, the first holder drive 15, a first bevel sun gear 16, planetary bevel gears 17, planet carrier 18, a second bevel sun gear 19, the second drive bracket 20, a second spur gear set 21, a third motor 22 , expansion sleeve 23, thigh bar 24, a fourth motor 25, the motor housing 26, the knee joint bevel gear set 27, gear housing 28, the bevel gear shaft 29, plate 30 left leg, right leg plate 31, large cylinder 32, the cone shaped spring 33, a small cylinder 34, the force sensor 35.

具体实施方式 detailed description

[0015] 以下结合附图进一步说明本发明。 [0015] The present invention is further described below in conjunction with the accompanying drawings.

[0016] 如图1,2,3,4,5所示,基于仿生设计的四腿机器人机构包括身体框架I和四条腿部2 ;四条腿部2固定在身体框架I上;四条腿部2包括髋部9、大腿部10、膝部11和小腿部12 ;髋部9连接大腿部10,大腿部10连接膝部11,膝部11连接小腿部12 ;身体框架I包括身体前板3、身体后板4、前转动法兰5、后转动法兰6、第一电机7和柔性手柄8 ;前转动法兰5固定在身体前板3上,后转动法兰6固定在身体后板4上,前转动法兰5和后转动法兰6构成转动副,第一电机7固定在前转动法兰5上,第一电机7输出轴连接到后转动法兰6,柔性手柄8的两端分别固定在身体前板3和身体后板4上;髋部9包括第二电机13、第一正齿轮组14、第一驱动固定架15、第一太阳锥齿轮16、行星锥齿轮17、行星支架18、第二太阳锥齿轮19、第二驱动固定架20、第二正齿轮组21和第三电机22 ;第二电机13输出轴连接第 [0016] As shown in FIG 1,2,3,4,5, based on four-legged robot mechanism of bionic body framework comprises four legs, and I 2; four leg portion 2 is fixed to the body framework I; four legs 2 9 includes a hip portion, thigh 10, knee 11 and lower leg 12; 12 connected to the lower leg portion 9 is connected to the femoral hip 10, thigh 10 is connected to the knee 11, knee 11; body framework comprises I body front panel 3, rear body panel 4, the front flange 5 is rotated, the rotation of the flange 6, the first motor 7 and the flexible handle 8; front flange 5 is fixed on the rotation of the body front panel 3, the rotation of the flange 6 is fixed on the rear body panel 4, the front flange 5 is rotated and rotation of the flange 6 after the sub-rotated configuration, the first motor 7 is fixed on the front flange 5 is rotated, the first motor output shaft 7 is connected to the flange 6, a flexible both ends of the handle 8 are fixed on the front plate 3 and the body after the body plate 4; hip portion 9 includes a second motor 13, a first spur gear set 14, a first drive mount 15, a first bevel sun gear 16, planet bevel gear 17, planet carrier 18, a second bevel sun gear 19, the second drive bracket 20, a second spur gear set 21 and the third motor 22; 13 connecting the first output shaft of the second motor 一正齿轮组14的输入轮,第三电机22输出轴连接第二正齿轮组21的输入轮,第一正齿轮组14的输出轮连接第一太阳锥齿轮16,第二正齿轮组21的输出轮连接第二太阳锥齿轮19,第一太阳锥齿轮16、第二太阳锥齿轮19和行星锥齿轮17与行星支架18构成旋转运动副,第一驱动固定架15和第二驱动固定架20固定在身体前板3上,同时支撑第一太阳锥齿轮16和第二太阳锥齿轮19和行星锥齿轮17 ;大腿部10包括胀紧套23、大腿杆24、第四电机25和电机座26,大腿杆24与行星锥齿轮17输出轴通过胀紧套23固定,第四电机25通过电机座26固定在大腿杆24内;膝部11包括膝关节锥齿轮组27、齿轮外壳28和锥齿轮轴29 ;第四电机25输出轴上安装有膝关节锥齿轮组27的输入锥齿轮,与膝关节轴29上的膝关节锥齿轮组27的输出锥齿轮相互啮合,齿轮外壳28固定在大腿杆24上,同时支撑膝关节轴29 ;小腿部1 Input wheel of a spur gear set 14, a third motor output shaft 22 connected to the second input spur gear wheel group 21, a first set of output spur gear wheel 14 is connected to a first bevel sun gear 16, second spur gear group 21 an output sun wheel connected to the second bevel gear 19, a first bevel sun gear 16, a second bevel sun gear 19 and the planetary bevel gears 17 and the planetary carrier 18 constituting the sub-rotary motion, the first holder 15 and the second driver 20 drive bracket the front plate is fixed to the body 3, while supporting the first bevel sun gear 16 and the second sun bevel gears 19 and the planetary bevel gears 17; leg portion 10 includes a large expansion sleeve 23, thigh bar 24, the fourth motor 25 and the motor base 26, thigh bar 24 and the bevel gear 17 of the planetary output shaft 23 is fixed by the expansion sleeve, the fourth motor 25 is fixed in the thigh by the motor shaft 26 within the seat 24; knee 11 comprises a group of 27, and the bevel gear housing 28 a bevel gear knee gear shaft 29; a fourth output shaft of the motor 25 mounted with the input bevel gear 27 of the bevel gear set of the knee, the knee joint intermesh with bevel gear 29 on the knee joint shaft output bevel gear 27 is set, the gear housing 28 fixed to the thigh upper rod 24, while the shaft 29 supporting the knee; small leg 1 2包括左小腿板30、右小腿板31、大圆筒32、锥形弹簧33、小圆筒34和力传感器35 ;左小腿板30和右小腿板31连接膝部11中的锥齿轮轴29两端,并与大圆筒32上端固定,大圆筒32下端中空,小圆筒34 —端套在大圆筒32内,两者通过锥形弹簧33连接,销子插在大圆筒32和小圆筒34相互配合的槽内,小圆筒34另一端安装有力传感器35。 2 comprises a plate 30 the left leg, right leg plate 31, large cylinder 32, a conical spring 33, the small cylinders 34 and the force sensor 35; the left leg and the right leg plate 30 connected to plate 31 in the bevel gear shaft two knee 1129 end, and the large cylinder 32 fixed to the upper end, the lower end of the large hollow cylinder 32, the small cylinder 34 - in the large end of the cylindrical sleeve 32, both connected by a conical spring 33, the pin 32 is inserted in the large cylinder and a small cylinder 34 cooperating slot, the other end of the small cylinder 34 is mounted a force sensor 35.

[0017] 本发明的工作过程如下:身体框架I上的第一电机7的输出轴带动后转动法兰6转动,可以实现身体前板3和身体后板4的相对运动,增强了机器人在高速运动场合的灵活性,机器人的搬运通过柔性手柄8能够很方便的实现,髋部9的第一太阳锥齿轮16、第二太阳锥齿轮19和行星锥齿轮17组成差动锥齿轮组合,第二电机13和第三电机22分别驱动第一太阳锥齿轮16和第二太阳锥齿轮19,两者运动传递到行星锥齿轮17,行星锥齿轮17的公转和自转实现屈/伸、内收/外展两个自由度的运动,结构紧凑,传动力矩增大,提高了机器人运动过程中的鲁棒性。 [0017] The operation of the present invention is as follows: the output shaft of the motor body of the first I frame 7 is rotated after the drive flange 6 is rotated, relative movement of the front plate 3 and the body after the body plate 4 can be achieved, enhancing the high-speed robot flexibility of movement of the case, the handle by a flexible transfer robot 8 can easily achieve the hip portion of the first bevel gear 9 of the sun 16, a second bevel sun gear 19 and the planetary bevel gears constituting the differential bevel gear assembly 17, the second motor 13 and third motor 22 drive the first sun gear 16 and the second sun bevel bevel gear 19, is transmitted to both the motion of bevel gear 17, planetary bevel gears 17 to achieve the revolution and rotation of flexion / extension, adduction / outer show two degrees of freedom of movement, compact structure, driving torque is increased to improve the robustness of the movement of the robot. 大腿杆24与行星锥齿轮17输出轴通过胀紧套23固定,采用这种方式方便了对机器人腿部的安装和拆卸,大腿杆24中固定第四电机25,合理分配腿部重心,更有利于机器人的平衡控制,通过第四电机25输出轴的转动,将动力传递到锥齿轮轴29,左小腿板30和右小腿板31固定在锥齿轮轴29两端,这样就实现了大腿部10和小腿部12的相对运动。 Thigh bar 24 and the planetary bevel gear 17 the output shaft 23 through the expansion sleeve is fixed, in this way to facilitate the installation and removal of the legs of the robot, and thigh bar 24 fixed to the fourth motor 25, a reasonable allocation of gravity legs, more beneficial balance control of the robot, by a fourth motor 25 rotates the output shaft, the power is transmitted to the bevel gear shaft 29, left leg and right leg plates 30 at both ends of the plate 31 is fixed a bevel gear shaft 29, thus achieving the thigh 10 and the lower leg 12 of the relative movement. 大圆筒32中空,小圆筒34套在大圆筒32内,两者通过锥形弹簧33连接,销子插在大圆筒32和小圆筒34相互配合的槽内,可以防止小圆筒34从大圆筒32中脱落,小圆筒34另一端安装有力传感器35,在足底受到冲击时,小圆筒34通过压缩锥形弹簧33与大圆筒32之间产生相对移动,减缓了冲力对身体运动的影响,以适应崎岖的地面。 Large hollow cylinder 32, the small cylindrical sleeve 34 within the large cylinder 32, both connected by a conical spring 33, the pin 32 is inserted in the large cylinder and a small cylinder cooperating groove 34, the small cylinder 34 can be prevented from off the large cylinder 32, the other end of the small cylinder 34 is mounted a force sensor 35, when subjected to foot shock, the small cylinder 34 relative movement, slowing the momentum of the moving body 32 by the compression between the conical spring 33 and the large cylinder the impact to fit the rugged ground. 同时,足底的力传感器35用于采集地面的作用力,便于实时感知外部环境以及对机器人进行平衡控制。 Meanwhile, the foot force sensor 35 for collecting the ground force, the external environment and the live perceptual balance control of the robot.

Claims (1)

1. 一种基于仿生设计的四腿机器人机构,其特征在于包括身体框架(I)和四条腿部(2);四条腿部(2)固定在身体框架(I)上;四条腿部(2)包括髋部(9)、大腿部(10)、膝部(11)和小腿部(12);髋部(9)连接大腿部(10),大腿部(10)连接膝部(11),膝部(11)连接小腿部(12);身体框架(I)包括身体前板(3)、身体后板(4)、前转动法兰(5)、后转动法兰(6)、第一电机(7)和柔性手柄(8);前转动法兰(5)固定在身体前板(3)上,后转动法兰(6)固定在身体后板(4)上,前转动法兰(5)和后转动法兰(6)构成转动副,第一电机(7)固定在前转动法兰(5)上,第一电机(7)输出轴连接到后转动法兰¢),柔性手柄(8)的两端分别固定在身体前板(3)和身体后板(4)上;髋部(9)包括第二电机(13)、第一正齿轮组(14)、第一驱动固定架(15)、第一太阳锥齿轮(16)、行星锥齿轮(17)、行星 A four-legged robot mechanism based on the biomimetic design, comprising a frame body (I) and four legs (2); four legs (2) fixed to the body frame (I); four legs (2 ) includes a hip portion (9), thigh (10), knee (11) and lower leg (12); hip portion (9) connected to the thigh (10), thigh (10) connected to the knee (11), knee (11) connecting the lower leg (12); a frame body (I) includes a body front panel (3), the body plate (4), rotation of the front flange (5), the rotation of the flange ( 6), a first motor (7) and a flexible handle (8); rotation of the front flange (5) fixed to the front plate body (3), the rotation of the flange (6) is fixed to the rear plate body (4), rotation of the front flange (5) and the post-rotation flange (6) constituting the turning pair, (7) a first motor output shaft (7) rotatably fixed to the front flange (5), a first motor coupled to the rotatable flange ¢), the flexible ends of the handle (8) are fixed to the front plate of the body (3) and a rear body plate (4); hip portion (9) comprises a second motor (13), a first spur gear set (14) a first holder drive (15), a first bevel sun gear (16), planetary bevel gear (17), a planetary 架(18)、第二太阳锥齿轮(19)、第二驱动固定架(20)、第二正齿轮组(21)和第三电机(22);第二电机(13)输出轴连接第一正齿轮组(14)的输入轮,第三电机(22)输出轴连接第二正齿轮组(21)的输入轮,第一正齿轮组(14)的输出轮连接第一太阳锥齿轮(16),第二正齿轮组(21)的输出轮连接第二太阳锥齿轮(19),第一太阳锥齿轮(16)、第二太阳锥齿轮(19)和行星锥齿轮(17)与行星支架(18)构成旋转运动副,第一驱动固定架(15)和第二驱动固定架(20)固定在身体前板(3)上,同时支撑第一太阳锥齿轮(16)和第二太阳锥齿轮(19)和行星锥齿轮(17);大腿部(10)包括胀紧套(23)、大腿杆(24)、第四电机(25)和电机座(26),大腿杆(24)与行星锥齿轮(17)输出轴通过胀紧套(23)固定,第四电机(25)通过电机座(26)固定在大腿杆(24)内;膝部(11)包括膝关节锥齿轮组(27)、 Frame (18), a second bevel sun gear (19), a second holder drive (20), a second spur gear set (21) and a third motor (22); (13) connecting the first output shaft of the second motor spur gear set (14) of the input gear, a third motor (22) connected to an output shaft of the spur gear set (21) of the second input gear, a first spur gear set (14) connected to an output of the first sun wheel bevel gear (16 ), second spur gear set (21) connected to the output of the second sun bevel gear wheel (19), a first bevel sun gear (16), a second bevel sun gear (19) and a planetary bevel gear (17) and the planet carrier (18) constituting the rotational movement of the sub, the first holder drive (15) and a second holder drive (20) is fixed to the front plate body (3), while supporting the first bevel sun gear (16) and second sun bevel gear (19) and a planetary bevel gear (17); the thigh (10) comprises a expansion sleeve (23), the thigh bar (24), fourth motor (25) and the motor base (26), the thigh bar (24) (17) the output shaft through the planetary bevel gears expansion sleeve (23) is fixed, the fourth motor (25) is fixed in the thigh bar (24) by the motor base (26); knee (11) comprises a bevel gear set knee (27), 轮外壳(28)和锥齿轮轴(29);第四电机(25)输出轴上安装有膝关节锥齿轮组(27)的输入锥齿轮,与锥齿轮轴(29)上的膝关节锥齿轮组(27)的输出锥齿轮相互啮合,齿轮外壳(28)固定在大腿杆(24)上,同时支撑锥齿轮轴(29);小腿部(12)包括左小腿板(30)、右小腿板(31)、大圆筒(32)、锥形弹簧(33)、小圆筒(34)和力传感器(35);左小腿板(30)和右小腿板(31)连接膝部(11)中的锥齿轮轴(29)两端,并与大圆筒(32)上端固定,大圆筒(32)下端中空,小圆筒(34) —端套在大圆筒(32)内,两者通过锥形弹簧(33)连接,销子插在大圆筒(32)和小圆筒(34)相互配合的槽内,小圆筒(34)另一端安装有力传感器(35)。 Wheel housing (28) and a bevel gear shaft (29); and a fourth motor input bevel gear mounting (25) has an output shaft bevel gear sets of the knee (27), the shaft with the bevel gear on the knee joint bevel gear (29) an output bevel gear set (27) engage each other, the gear housing (28) fixed to the thigh bar (24), while supporting the bevel pinion shaft (29); small leg portion (12) includes a left leg plate (30), right leg plate (31), a large cylinder (32), conical spring (33), a small cylinder (34) and a force sensor (35); left leg plate (30) and the right calf plate (31) connected to the knee (11) the bevel gear shaft (29) ends, and an upper end fixed to the large diameter cylinder (32), a large cylinder (32) the lower end of a hollow, small cylinders (34) - in the large end of the cylindrical sleeve (32), through both cone spring (33) is connected to a pin inserted in the large diameter cylinder (32) and a small cylinder (34) cooperating groove (34) the other end of the small cylindrical mounting a force sensor (35).
CN201110106481A 2011-04-27 2011-04-27 Four-leg robot mechanism based on bionic design CN102211627B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110106481A CN102211627B (en) 2011-04-27 2011-04-27 Four-leg robot mechanism based on bionic design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110106481A CN102211627B (en) 2011-04-27 2011-04-27 Four-leg robot mechanism based on bionic design

Publications (2)

Publication Number Publication Date
CN102211627A CN102211627A (en) 2011-10-12
CN102211627B true CN102211627B (en) 2012-10-17

Family

ID=44743207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110106481A CN102211627B (en) 2011-04-27 2011-04-27 Four-leg robot mechanism based on bionic design

Country Status (1)

Country Link
CN (1) CN102211627B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390457B (en) * 2011-12-30 2013-06-05 上海大学 Leg mechanism for four-legged robots
CN102689660B (en) * 2012-01-13 2013-12-18 河南科技大学 Robot balance device and wheel-leg robot using same
CN102582714B (en) * 2012-01-31 2013-08-07 山东大学 Hydraulic-drive lower-limb mechanism with load bearing capability of biped robot
CN102700644B (en) * 2012-06-08 2014-10-15 上海交通大学 Wheel and foot combined all-terrain robot running device
CN102830716A (en) * 2012-08-22 2012-12-19 中科宇博(北京)文化有限公司 Mechanical joint and neck and tail structures of bionic mechanical dinosaur
CN103661658B (en) * 2012-09-10 2015-12-30 中国科学院沈阳自动化研究所 A kind of string mends device inspection robot mechanism
CN103204194B (en) * 2013-04-09 2015-09-23 北京交通大学 Imitative baby's Four-feet creeping robot
CN103264734B (en) * 2013-04-22 2015-06-17 浙江大学 Sole ground touch sensing mechanism of legged robot
CN103407513B (en) * 2013-05-13 2015-08-19 清华大学 Adopt the level land walking method for dynamic biped robot of spring coupling
CN103318289A (en) * 2013-07-04 2013-09-25 北京理工大学 Modular hydraulic-drive four-leg robot with variable leg shape structures
CN103481963B (en) * 2013-09-13 2016-06-01 北京航空航天大学 A kind of foot device with two-stage buffering being applicable to barrier-surpassing robot
CN103600786A (en) * 2013-10-30 2014-02-26 李天豪 Intelligent doraemon
CN103802909A (en) * 2014-02-25 2014-05-21 中国人民解放军军事交通学院 Leg linkage mechanism of quadruped robot
CN103979034B (en) * 2014-05-19 2016-04-06 北京交通大学 Single-power leg mechanism four feet walking robot
CN104149872B (en) * 2014-09-01 2016-05-11 安徽理工大学 A kind of complex road surface transfer robot based on parallel institution
CN104309717B (en) * 2014-10-30 2016-05-11 郑州轻工业学院 There is the change body modularization four feet walking robot of energy-storage function
CN105892558B (en) * 2015-01-26 2018-08-17 郝成武 A kind of robot toes bearing capacity balance mechanism
CN104875813B (en) * 2015-05-26 2018-04-06 上海大学 A kind of electric drive small-sized bionic quadruped robot
CN105109572A (en) * 2015-08-26 2015-12-02 北京航空航天大学 Single-leg structure for wheel-legged type robot in leg-arm mixing operation
CN106672104B (en) * 2015-11-10 2018-11-06 中国人民解放军军械工程学院 A kind of flat polypody pedestrian system of terrain self-adaptive based on phase difference
CN105947012A (en) * 2016-05-10 2016-09-21 南京航空航天大学 Differential gear driving robot leg mechanism and control method
RU2642020C2 (en) * 2016-06-24 2018-01-23 Павел Михайлович Близнец Pacing device
CN106005090B (en) * 2016-07-08 2018-01-23 燕山大学 A kind of flexible four leg walking robots of double swing-bar
CN107457802A (en) * 2017-09-13 2017-12-12 北京理工大学 A kind of anthropomorphic robot falls down protection device
CN108394485B (en) * 2018-02-11 2019-12-06 嘉兴学院 Multifunctional multi-foot bionic robot system based on pneumatic system
CN108748183A (en) * 2018-06-13 2018-11-06 芜湖捷创科技信息咨询有限公司 A kind of foot formula walking robot
CN109018063A (en) * 2018-08-15 2018-12-18 重庆大学 A kind of four-footed emulated robot
CN109941370A (en) * 2019-01-04 2019-06-28 上海海事大学 A kind of four feet walking robot based on three-shaft linkage control structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929585A (en) 1996-11-19 1999-07-27 Sony Corporation Robot system and its control method
EP1110679A1 (en) 1999-03-10 2001-06-27 Mitsubishi Heavy Industries, Ltd. Working robot
WO2002011956A1 (en) 2000-08-04 2002-02-14 Robottec Co., Ltd. Multiple-legged walking apparatus
CN2928631Y (en) 2006-07-27 2007-08-01 浙江大学 Wave foot walking robot
CN101269678A (en) 2008-05-16 2008-09-24 武汉理工大学 Wheeled robot with traveling system
CN101422907A (en) 2008-12-16 2009-05-06 吉林大学 Under-actuated bipod walking robot hip-joint mechanism
CN101580083A (en) 2009-06-04 2009-11-18 浙江大学 Knee joint mechanism of humanoid robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929585A (en) 1996-11-19 1999-07-27 Sony Corporation Robot system and its control method
EP1110679A1 (en) 1999-03-10 2001-06-27 Mitsubishi Heavy Industries, Ltd. Working robot
WO2002011956A1 (en) 2000-08-04 2002-02-14 Robottec Co., Ltd. Multiple-legged walking apparatus
CN2928631Y (en) 2006-07-27 2007-08-01 浙江大学 Wave foot walking robot
CN101269678A (en) 2008-05-16 2008-09-24 武汉理工大学 Wheeled robot with traveling system
CN101422907A (en) 2008-12-16 2009-05-06 吉林大学 Under-actuated bipod walking robot hip-joint mechanism
CN101580083A (en) 2009-06-04 2009-11-18 浙江大学 Knee joint mechanism of humanoid robot

Also Published As

Publication number Publication date
CN102211627A (en) 2011-10-12

Similar Documents

Publication Publication Date Title
CN103610524B (en) A kind of Portable energy storage ectoskeleton power-assisting robot
CN104257490A (en) Method for folding wearable lower limb assisting robots
CN103054692A (en) Wearable lower limb exoskeleton walking-assisted robot
CN103315880B (en) Hand external skeleton rehabilitation system based on memory alloy driving
CN101810532B (en) Lower limbs rehabilitation training robot
CN104552276B (en) The ectoskeleton servomechanism that pneumatic muscles drives
CN101121424A (en) Double-foot robot lower limb mechanism with multiple freedom degree
CN102113949A (en) Exoskeleton-wearable rehabilitation robot
CN100482301C (en) Bionic locust jumping robot
CN101570220A (en) Reversible and amphibious multi-legged robot with variable postures
CN2827822Y (en) Mechanical crab
CN202537871U (en) Hand and wrist exoskeleton rehabilitation training device
CN103029130B (en) Humanoid robot
CN103479502B (en) Ankle joint rehabilitation device
CN203060231U (en) Wearable lower limb exoskeleton walking-assisting robot
CN102512307A (en) Multi-position lower limb rehabilitation training robot
CN104401419B (en) A kind of new biped humanoid robot system based on Pneumatic artificial muscle
CN103610569A (en) Wearable lower limb power-assisting device and control method thereof
CN100469538C (en) Wall gecko imitation mini-robot
CN1191150C (en) Multifeet walking robot and its control device
Aliman et al. Design and development of lower limb exoskeletons: A survey
CN102670377A (en) Exoskeleton wearable lower limb rehabilitation training robot device
CN1338357A (en) Miniaturized bionic 6-leg robot
CN104490565A (en) Seven-degree-of-freedom exoskeletal rehabilitation robot for upper limbs
CN103919659A (en) Automatic shoulder joint rehabilitation training device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model