CN102211627B - Four-leg robot mechanism based on bionic design - Google Patents
Four-leg robot mechanism based on bionic design Download PDFInfo
- Publication number
- CN102211627B CN102211627B CN201110106481A CN201110106481A CN102211627B CN 102211627 B CN102211627 B CN 102211627B CN 201110106481 A CN201110106481 A CN 201110106481A CN 201110106481 A CN201110106481 A CN 201110106481A CN 102211627 B CN102211627 B CN 102211627B
- Authority
- CN
- China
- Prior art keywords
- bevel gear
- motor
- robot
- cylinder
- knee
- Prior art date
Links
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 11
- 210000002414 Leg Anatomy 0.000 claims abstract description 35
- 210000003127 Knee Anatomy 0.000 claims abstract description 23
- 210000001624 Hip Anatomy 0.000 claims abstract description 15
- 210000000689 upper leg Anatomy 0.000 claims description 15
- 210000001699 lower leg Anatomy 0.000 claims description 13
- 210000000629 knee joint Anatomy 0.000 claims description 10
- 230000002522 swelling Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000005755 formation reactions Methods 0.000 claims description 3
- 238000000034 methods Methods 0.000 abstract description 3
- 210000000278 Spinal Cord Anatomy 0.000 abstract 1
- 238000010586 diagrams Methods 0.000 description 3
- 210000003414 Extremities Anatomy 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001808 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reactions Methods 0.000 description 2
- 210000001503 Joints Anatomy 0.000 description 1
- 239000006096 absorbing agents Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering processes Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003116 impacting Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004805 robotics Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000001519 tissues Anatomy 0.000 description 1
- 238000004642 transportation engineering Methods 0.000 description 1
Abstract
Description
Technical field
The invention belongs to the robot field, relate to a kind of four robot leg mechanisms based on Bionic Design.
Background technology
Along with the intensification of the mankind to realm of nature understanding, increasing intelligent bionic apparatus is developed.The intelligent bionic robot as research object, with the motion of physical construction imitated biological tissue, and then is explored its movement mechanism with the biology of occurring in nature.Development of miniaturized, lighting and adaptable bionical four robot legs are significant to the development that promotes robotics, and this type bio-robot has wide application and development prospect at aspects such as scientific research, demonstration teaching and intelligence development amusements.
That Chinese patent CN 101927793 A disclose is a kind of the variable-structure quadruped robot structure of upright motion change " crawl with "; This quadruped robot organism and four limbs that are fixed in the above; Every limbs adopt three steering wheel controls, and tiller room is a cascaded structure, and it is many that this structure connects rod member; Complex structure is not suitable for small-sized, the light bio-robot of requirement.Body is an integral body in this structure simultaneously, has limited the alerting ability of motion.
Chinese patent CN 101811525 A disclose a kind of " the hydraulic-driven quadruped robot travel mechanism with barycenter setting device "; Four legs of layout below trunk of this robot mechanism; All adopt hydraulic-driven; Every leg has and has redundant degree of freedom, has increased the complexity of mechanism controls.Hydraulic-driven has improved the volume and weight of sleeve mechanism in addition, is inconvenient to carry transportation and dismounting.
Chinese patent CN 101791994 A disclose " a kind of traveling gear of cam driving control type quadruped robot ", rear leg assemblies and the universal coupling assembling that is connected preceding rear leg assemblies before mechanism is divided into.Wherein the universal-joint coupling assembling only provides a passive mode of motion, can not be unfavorable for motion of mechanism and balance control to artificial to its control.
Summary of the invention
The objective of the invention is to overcome the deficiency of prior art; Provide a kind of structure compact more, install and carry convenient, more help improving robot motion's alerting ability, better absorb foot impacts power, have the four robot leg mechanisms based on Bionic Design of perception external environment condition effect.
Four robot leg mechanisms based on Bionic Design comprise body frame and four shanks; Article four, shank is fixed on the body frame; Article four, shank comprises hip, huckle, knee and calf; Hip connects huckle, and huckle connects knee, and knee connects calf; Body frame comprises that plate behind health header board, the health, preceding rotation flange, back rotate flange, first motor and flexible handle; The preceding flange that rotates is fixed on the health header board; The back is rotated flange and is fixed on behind the health on the plate; The preceding flange that rotates rotates flange formation revolute pair with the back; Rotate before first motor is fixed on the flange, first motor output shaft is connected to the back and rotates flange, and the two ends of flexible handle are separately fixed at behind health header board and the health on the plate; Hip comprises second motor, the first commutating tooth wheels, the first drive fixing frame, first sun finishing bevel gear cuter, bevel planet gear, planet stent, second sun finishing bevel gear cuter, the second drive fixing frame, the second commutating tooth wheels and the 3rd motor; Second motor output shaft connects the wheel for inputting of the first commutating tooth wheels; The 3rd motor output shaft connects the wheel for inputting of the second commutating tooth wheels; The output wheel of the first commutating tooth wheels connects first sun finishing bevel gear cuter; The output wheel of the second commutating tooth wheels connects second sun finishing bevel gear cuter; First sun finishing bevel gear cuter, second sun finishing bevel gear cuter and bevel planet gear and planet stent constitute rotary motion pair, and the first drive fixing frame and the second drive fixing frame are fixed on the health header board, support first sun finishing bevel gear cuter and second sun finishing bevel gear cuter and the bevel planet gear simultaneously; Huckle comprises swelling cover, thigh bar, the 4th motor and motor cabinet, and thigh bar and bevel planet gear output shaft are fixing through the swelling cover, and the 4th motor is fixed in the thigh bar through motor cabinet; Knee comprises knee joint bevel gear set, gear casing and bevel gear shaft; The input finishing bevel gear cuter of knee joint bevel gear set is installed on the 4th motor output shaft, is meshing with each other with the output finishing bevel gear cuter of knee joint bevel gear set on the knee axis, gear casing is fixed on the thigh bar, supports knee axis simultaneously; Calf comprises left leg plate, right leg plate, large cylinder, cone-shaped spring, little cylinder and force gauge; The left leg plate is connected the bevel gear shaft two ends in the knee with the right leg plate; And it is fixing with the large cylinder upper end; Large cylinder lower end hollow, little cylinder one end is enclosed within the large cylinder, and both connect through cone-shaped spring; Pin is inserted in the groove that large cylinder and little cylinder cooperatively interact, and the roundlet tube other end is equipped with force gauge.
The present invention compared with prior art has the integral structure compact, the characteristics of easy installation and removal, and the body joints of adding makes robot be fit to the high-speed motion occasion more, and the shock absorber of shank and force gauge are guaranteed the motion control reliability easily.
Description of drawings
Fig. 1 is the whole pictorial diagram of four robot leg mechanisms;
Fig. 2 is four robot leg body frame pictorial diagram;
Fig. 3 is four robot leg list leg pictorial diagram;
Fig. 4 is four robot leg hip assembly drowings;
Fig. 5 is four robot leg huckles, knee and calf assembly drowing;
Among the figure: body frame 1; Shank 2; Health header board 3; Plate 4 behind the health; The preceding flange 5 that rotates; Flange 6 is rotated in the back; First motor 7; Flexible bandage 8; Hip 9; Huckle 10; Knee 11; Calf 12; Second motor 13; The first commutating tooth wheels 14; The first drive fixing frame 15; First sun finishing bevel gear cuter 16; Bevel planet gear 17; Planet stent 18; Second sun finishing bevel gear cuter 19; The second drive fixing frame 20; The second commutating tooth wheels 21; The 3rd motor 22; Swelling cover 23; Thigh bar 24; The 4th motor 25; Motor cabinet 26; Knee joint bevel gear set 27; Gear casing 28; Bevel gear shaft 29; Left leg plate 30; Right leg plate 31; Large cylinder 32; Cone-shaped spring 33; Roundlet tube 34; Force gauge 35.
The specific embodiment
Further specify the present invention below in conjunction with accompanying drawing.
Like Fig. 1,2,3, shown in 4,5, comprise body frame 1 and four shanks 2 based on four robot leg mechanisms of Bionic Design; Article four, shank 2 is fixed on the body frame 1; Article four, shank 2 comprises hip 9, huckle 10, knee 11 and calf 12; Hip 9 connects huckle 10, and huckle 10 connects knee 11, and knee 11 connects calf 12; Body frame 1 comprises that plate 4 behind health header board 3, the health, preceding rotation flange 5, back rotate flange 6, first motor 7 and flexible handle 8; The preceding flange 5 that rotates is fixed on the health header board 3; The back is rotated flange 6 and is fixed on behind the health on the plate 4; The preceding flange 5 that rotates rotates flange 6 formation revolute pairs with the back; Rotate before first motor 7 is fixed on the flange 5, first motor, 7 output shafts are connected to the back and rotate flange 6, and the two ends of flexible handle 8 are separately fixed at behind health header board 3 and the health on the plate 4; Hip 9 comprises second motor 13, the first commutating tooth wheels 14, the first drive fixing frame 15, first sun finishing bevel gear cuter 16, bevel planet gear 17, planet stent 18, second sun finishing bevel gear cuter 19, the second drive fixing frame 20, the second commutating tooth wheels 21 and the 3rd motor 22; Second motor, 13 output shafts connect the wheel for inputting of the first commutating tooth wheels 14; The 3rd motor 22 output shafts connect the wheel for inputting of the second commutating tooth wheels 21; The output wheel of the first commutating tooth wheels 14 connects first sun finishing bevel gear cuter 16; The output wheel of the second commutating tooth wheels 21 connects second sun finishing bevel gear cuter 19; First sun finishing bevel gear cuter 16, second sun finishing bevel gear cuter 19 and bevel planet gear 17 constitute rotary motion pairs with planet stent 18, and the first drive fixing frame 15 and the second drive fixing frame 20 are fixed on the health header board 3, support first sun finishing bevel gear cuter 16 and second sun finishing bevel gear cuter 19 and the bevel planet gear 17 simultaneously; Huckle 10 comprises swelling cover 23, thigh bar 24, the 4th motor 25 and motor cabinet 26, and thigh bar 24 is fixing through swelling cover 23 with bevel planet gear 17 output shafts, and the 4th motor 25 is fixed in the thigh bar 24 through motor cabinet 26; Knee 11 comprises knee joint bevel gear set 27, gear casing 28 and bevel gear shaft 29; The input finishing bevel gear cuter of knee joint bevel gear set 27 is installed on the 4th motor 25 output shafts, is meshing with each other with the output finishing bevel gear cuter of knee joint bevel gear set 27 on the knee axis 29, gear casing 28 is fixed on the thigh bar 24, supports knee axis 29 simultaneously; Calf 12 comprises left leg plate 30, right leg plate 31, large cylinder 32, cone-shaped spring 33, roundlet tube 34 and force gauge 35; Left leg plate 30 is connected bevel gear shaft 29 two ends in the knee 11 with right leg plate 31; And fix with large cylinder 32 upper ends; Large cylinder 32 lower end hollows, roundlet tube 34 1 ends are enclosed within the large cylinder 32, and both connect through cone-shaped spring 33; Pin is inserted in the groove that large cylinder 32 and roundlet tube 34 cooperatively interact, and roundlet tube 34 other ends are equipped with force gauge 35.
Working process of the present invention is following: the output shaft of first motor 7 on the body frame 1 drives the back and rotates flange 6 rotations; Can realize the relative motion of plate 4 behind health header board 3 and the health; Strengthened the alerting ability of robot in the high-speed motion occasion, the carrying of robot can realize through flexible handle 8 very easily, and first sun finishing bevel gear cuter 16, second sun finishing bevel gear cuter 19 and the bevel planet gear 17 of hip 9 are formed the bevel type differential gears combination; Second motor 13 and the 3rd motor 22 drive first sun finishing bevel gear cuter 16 and second sun finishing bevel gear cuter 19 respectively; Both Motion Transmission are to bevel planet gear 17, and the revolution of bevel planet gear 17 and rotation realize the motion of flexion/extension, two degree of freedom of interior receipts/abduction, compact conformation; Driving torque increases, and has improved the robustness in robot motion's process.Thigh bar 24 is fixing through swelling cover 23 with bevel planet gear 17 output shafts, adopts this mode to make things convenient for the Assembly &Disassembly to the robot shank, fixing the 4th motor 25 in the thigh bar 24; Reasonable distribution shank center of gravity; The balance control that more helps robot through the rotation of the 4th motor 25 output shafts, arrives bevel gear shaft 29 with transmission of power; Left leg plate 30 is fixed on bevel gear shaft 29 two ends with right leg plate 31, has so just realized the relative motion of huckle 10 and calf 12.Large cylinder 32 hollows, roundlet tube 34 are enclosed within the large cylinder 32, and both connect through cone-shaped spring 33; Pin is inserted in the groove that large cylinder 32 and roundlet tube 34 cooperatively interact, and can prevent that roundlet tube 34 from coming off from large cylinder 32, and roundlet tube 34 other ends are equipped with force gauge 35; Receive when impacting in the vola; Roundlet tube 34 relatively moves through producing between compression cone-shaped spring 33 and the large cylinder 32, has slowed down the influence of impulse force to body movement, to adapt to rugged ground.Simultaneously, the force gauge 35 in vola is used to gather ground-surface application force, is convenient to the real-time perception external environment condition and robot is carried out balance control.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110106481A CN102211627B (en) | 2011-04-27 | 2011-04-27 | Four-leg robot mechanism based on bionic design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110106481A CN102211627B (en) | 2011-04-27 | 2011-04-27 | Four-leg robot mechanism based on bionic design |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102211627A CN102211627A (en) | 2011-10-12 |
CN102211627B true CN102211627B (en) | 2012-10-17 |
Family
ID=44743207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110106481A CN102211627B (en) | 2011-04-27 | 2011-04-27 | Four-leg robot mechanism based on bionic design |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102211627B (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102390457B (en) * | 2011-12-30 | 2013-06-05 | 上海大学 | Leg mechanism for four-legged robots |
CN102689660B (en) * | 2012-01-13 | 2013-12-18 | 河南科技大学 | Robot balance device and wheel-leg robot using same |
CN102582714B (en) * | 2012-01-31 | 2013-08-07 | 山东大学 | Hydraulic-drive lower-limb mechanism with load bearing capability of biped robot |
CN102700644B (en) * | 2012-06-08 | 2014-10-15 | 上海交通大学 | Wheel and foot combined all-terrain robot running device |
CN102830716A (en) * | 2012-08-22 | 2012-12-19 | 中科宇博(北京)文化有限公司 | Mechanical joint and neck and tail structures of bionic mechanical dinosaur |
CN103661658B (en) * | 2012-09-10 | 2015-12-30 | 中国科学院沈阳自动化研究所 | A kind of string mends device inspection robot mechanism |
CN103204194B (en) * | 2013-04-09 | 2015-09-23 | 北京交通大学 | Imitative baby's Four-feet creeping robot |
CN103264734B (en) * | 2013-04-22 | 2015-06-17 | 浙江大学 | Sole ground touch sensing mechanism of legged robot |
CN103407513B (en) * | 2013-05-13 | 2015-08-19 | 清华大学 | Adopt the level land walking method for dynamic biped robot of spring coupling |
CN103318289A (en) * | 2013-07-04 | 2013-09-25 | 北京理工大学 | Modular hydraulic-drive four-leg robot with variable leg shape structures |
CN103481963B (en) * | 2013-09-13 | 2016-06-01 | 北京航空航天大学 | A kind of foot device with two-stage buffering being applicable to barrier-surpassing robot |
CN103600786A (en) * | 2013-10-30 | 2014-02-26 | 李天豪 | Intelligent doraemon |
CN103802909A (en) * | 2014-02-25 | 2014-05-21 | 中国人民解放军军事交通学院 | Leg linkage mechanism of quadruped robot |
CN103979034B (en) * | 2014-05-19 | 2016-04-06 | 北京交通大学 | Single-power leg mechanism four feet walking robot |
CN104149872B (en) * | 2014-09-01 | 2016-05-11 | 安徽理工大学 | A kind of complex road surface transfer robot based on parallel institution |
CN104309717B (en) * | 2014-10-30 | 2016-05-11 | 郑州轻工业学院 | There is the change body modularization four feet walking robot of energy-storage function |
CN105892558B (en) * | 2015-01-26 | 2018-08-17 | 郝成武 | A kind of robot toes bearing capacity balance mechanism |
CN104875813B (en) * | 2015-05-26 | 2018-04-06 | 上海大学 | A kind of electric drive small-sized bionic quadruped robot |
CN105109572A (en) * | 2015-08-26 | 2015-12-02 | 北京航空航天大学 | Single-leg structure for wheel-legged type robot in leg-arm mixing operation |
CN106672104B (en) * | 2015-11-10 | 2018-11-06 | 中国人民解放军军械工程学院 | A kind of flat polypody pedestrian system of terrain self-adaptive based on phase difference |
CN105947012A (en) * | 2016-05-10 | 2016-09-21 | 南京航空航天大学 | Differential gear driving robot leg mechanism and control method |
RU2642020C2 (en) * | 2016-06-24 | 2018-01-23 | Павел Михайлович Близнец | Pacing device |
CN106005090B (en) * | 2016-07-08 | 2018-01-23 | 燕山大学 | A kind of flexible four leg walking robots of double swing-bar |
CN107457802B (en) * | 2017-09-13 | 2020-10-09 | 北京理工大学 | Humanoid robot tumble protection device |
CN108394485B (en) * | 2018-02-11 | 2019-12-06 | 嘉兴学院 | Multifunctional multi-foot bionic robot system based on pneumatic system |
CN108748183A (en) * | 2018-06-13 | 2018-11-06 | 芜湖捷创科技信息咨询有限公司 | A kind of foot formula walking robot |
CN109018063A (en) * | 2018-08-15 | 2018-12-18 | 重庆大学 | A kind of four-footed emulated robot |
CN109018064A (en) * | 2018-08-24 | 2018-12-18 | 北京理工大学 | Leg foot type bionic machine mouse |
CN109501883A (en) * | 2018-12-30 | 2019-03-22 | 北华航天工业学院 | Pedipulator structure and legged type robot |
CN109941370B (en) * | 2019-01-04 | 2020-07-24 | 上海海事大学 | Four-legged walking robot based on three-axis linkage control structure |
CN110154012B (en) * | 2019-05-24 | 2020-08-04 | 东北大学 | Four-footed bionic robot and control method thereof |
CN111003074A (en) * | 2019-11-07 | 2020-04-14 | 清华大学 | Parallel wheel-foot type robot leg structure and mobile robot |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929585A (en) * | 1996-11-19 | 1999-07-27 | Sony Corporation | Robot system and its control method |
EP1110679A1 (en) * | 1999-03-10 | 2001-06-27 | Mitsubishi Heavy Industries, Ltd. | Working robot |
WO2002011956A1 (en) * | 2000-08-04 | 2002-02-14 | Robottec Co., Ltd. | Multiple-legged walking apparatus |
CN2928631Y (en) * | 2006-07-27 | 2007-08-01 | 浙江大学 | Wave foot walking robot |
CN101269678A (en) * | 2008-05-16 | 2008-09-24 | 武汉理工大学 | Wheeled robot with traveling system |
CN101422907A (en) * | 2008-12-16 | 2009-05-06 | 吉林大学 | Under-actuated bipod walking robot hip-joint mechanism |
CN101580083A (en) * | 2009-06-04 | 2009-11-18 | 浙江大学 | Knee joint mechanism of humanoid robot |
-
2011
- 2011-04-27 CN CN201110106481A patent/CN102211627B/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929585A (en) * | 1996-11-19 | 1999-07-27 | Sony Corporation | Robot system and its control method |
EP1110679A1 (en) * | 1999-03-10 | 2001-06-27 | Mitsubishi Heavy Industries, Ltd. | Working robot |
WO2002011956A1 (en) * | 2000-08-04 | 2002-02-14 | Robottec Co., Ltd. | Multiple-legged walking apparatus |
CN2928631Y (en) * | 2006-07-27 | 2007-08-01 | 浙江大学 | Wave foot walking robot |
CN101269678A (en) * | 2008-05-16 | 2008-09-24 | 武汉理工大学 | Wheeled robot with traveling system |
CN101422907A (en) * | 2008-12-16 | 2009-05-06 | 吉林大学 | Under-actuated bipod walking robot hip-joint mechanism |
CN101580083A (en) * | 2009-06-04 | 2009-11-18 | 浙江大学 | Knee joint mechanism of humanoid robot |
Also Published As
Publication number | Publication date |
---|---|
CN102211627A (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103610568B (en) | Human-simulated external skeleton robot assisting lower limbs | |
CN103330635B (en) | Wear type lower limb assistant robot, folding method thereof and hand luggage for carrying | |
CN104873360B (en) | A kind of upper limb healing exoskeleton robot driving based on lasso trick | |
CN101810533B (en) | Walking aid exoskeleton rehabilitation robot | |
CN102113949B (en) | Exoskeleton-wearable rehabilitation robot | |
CN103610524B (en) | A kind of Portable energy storage ectoskeleton power-assisting robot | |
CN103029130B (en) | Humanoid robot | |
CN103481964B (en) | A kind of Six-foot walking robot with obstacle climbing ability | |
CN201168163Y (en) | Rehabilitation robot for anklebone | |
CN104228993B (en) | A kind of biped robot of quick walking | |
CN102579227B (en) | Hand and wrist exoskeleton rehabilitation training device | |
CN102274107B (en) | Fixed exoskeleton rehabilitation training manipulator | |
CN204450526U (en) | The ectoskeleton servomechanism that a kind of pneumatic muscles drives | |
CN103735386A (en) | Wearable lower limb exoskeleton rehabilitation robot | |
CN102285390B (en) | Elastically driven walking leg in hybrid connection for walking robot | |
CN104401419A (en) | Novel biped humanoid robot system based on pneumatic artificial muscles | |
CN103006416B (en) | Mechanical lower-limb rehabilitation robot walker device | |
CN103519974B (en) | Rehabilitation walking aid | |
CN105726263A (en) | Wearable hand exoskeleton rehabilitation training robot | |
CN104552276A (en) | Pneumatic-muscle-driven exoskeleton assisting mechanism | |
CN102309393A (en) | Exoskeleton type upper limb rehabilitation robot | |
CN103538644B (en) | A kind of robot with rolling movement and sufficient formula walking function | |
CN106420257A (en) | Upper limb rehabilitation exoskeleton robot based on serial elastic drivers and method | |
CN106240669B (en) | Robot walking device | |
CN105943308A (en) | Hand exoskeleton device for rehabilitation training |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C06 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
GR01 | Patent grant | ||
C14 | Grant of patent or utility model | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20111012 Assignee: Zhejiang Guozi Robot Technology Co., Ltd. Assignor: Zhejiang University Contract record no.: 2013330000081 Denomination of invention: Four-leg robot mechanism based on bionic design Granted publication date: 20121017 License type: Exclusive License Record date: 20130422 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model |