CN102211007A - 一种纳米管道的封装方法 - Google Patents

一种纳米管道的封装方法 Download PDF

Info

Publication number
CN102211007A
CN102211007A CN2010101380601A CN201010138060A CN102211007A CN 102211007 A CN102211007 A CN 102211007A CN 2010101380601 A CN2010101380601 A CN 2010101380601A CN 201010138060 A CN201010138060 A CN 201010138060A CN 102211007 A CN102211007 A CN 102211007A
Authority
CN
China
Prior art keywords
substrate
glass
nanotube
sheet glass
encapsulating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101380601A
Other languages
English (en)
Inventor
焦念东
王栋
董再励
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN2010101380601A priority Critical patent/CN102211007A/zh
Publication of CN102211007A publication Critical patent/CN102211007A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本发明涉及纳米技术领域,公开一种纳米管道的封装方法。将富含钠离子的玻璃覆盖于加工好的纳米管道Si基片上,通过对Si基片进行高温加热并向玻璃和Si基片施加一定高电压,利用玻璃与Si基片间的静电引力实现玻璃对纳米管道的键合封装。本发明的纳米管道封装方法可应用于生物医学领域微流控芯片中的管道封装,利用封装后的纳米管道可在纳米级尺度下对管道内流体及生物单分子特性进行检测和分析。

Description

一种纳米管道的封装方法
技术领域
本发明涉及纳米技术领域,具体是一种纳米管道的封装方法。
背景技术
近年来,微流控芯片(Microfluidic chip)技术在疾病诊断、药物筛选、环境检测等领域的研究与应用日益广泛,在降低生物试剂成本、提高效率、改善分析精度,提高生物学、医学研究水平等方面起到了重要作用。随着技术的发展,生物医学研究与应用已开始在分子、DNA、蛋白质层次展开,微流控技术已难以满足在分子水平上对样品进行更小尺度、更小剂量、更高灵敏度的检测分析等需求,因此更小尺度的芯片技术——“纳流控”开始成为新的关注热点。
纳流管道是指尺寸处于原子或分子量级的微小通道,至少有一维尺寸在纳米级。由于可达到超高分辨率和超高灵敏度,纳流管道在流体特性分析、单分子分析、超高速核酸分子测序、分子筛、生物膜离子通道模拟、药物疏运、电池、纳控晶体管等领域显示出重要的潜在应用前景。
封装技术是纳米管道制作过程中要解决的难点问题之一。在加工有纳米沟道的Si基片上面覆盖一层玻璃,并实现两者的有效封装,才能最终完成纳米管道的制作。在以往的纳米管道封装中,曾采用溅射的方法,但采用这种方法需要真空环境及复杂的设备,实现困难。
发明内容
为解决上述问题,本发明的目的是提供一种带有纳米管道的Si基片与玻璃之间的一种封装方法。
本发明技术方案为:
一种纳米管道的封装方法,将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至430~470摄氏度,并在玻璃片和Si基片上施加850V~950V的直流电压,Si基片为正极,玻璃片为负极。
优选方案为:加热至450摄氏度;在玻璃片和Si基片上施加900V的直流电压;所述玻璃片为富含钠离子的玻璃。
本发明原理是:在电压作用时,玻璃中的Na+将向负极方向漂移,在紧邻硅片的玻璃表面形成耗尽层,耗尽层宽度约为几微米。耗尽层带有负电荷,硅片带正电荷,硅片和玻璃之间存在较大的静电引力,使二者紧密接触,去掉电压后该电场也不会消失。另外,在比较高的温度下,紧密接触的硅/玻璃界面会发生化学反应,形成牢固的化学键,如Si-O-Si键等。
本发明具有如下优点:
工艺和设备简单,不需要特殊环境和复杂,且不使用任何粘合剂;
结合面内部应力小,由于使用的玻璃是一种富含阳离子的玻璃,其膨胀系统与硅相近,避免封装之后结合面热应力过大;
结合强度高,可以达到材料本身的强度。
附图说明
图1为本发明原理图。
具体实施方式
下面结合附图具体说明本发明。
实施例1:如图1所示,本发明提供一种纳米管道的封装方法,将需要封装的带有纳米管道6的Si基片3、玻璃片2清洗干净,跟金属片4一起放置在加热平台5上加热至430摄氏度,在Si基片3和玻璃片2之间施力900V的直流电压,其中Si基片3放置在金属片4上,金属片4接电源正极,导电棒1接电源负极与玻璃片2点接触。加热5分钟之后,会在Si基片和玻璃片之间形成一个牢固的结合面,从而完成Si基片上纳米管道的封装。本实施例中玻璃片2可使用厦门福芯微电子科技有限公司生产的Pyrex7740玻璃,该玻璃富含钠离子。
实施例2:本实施例与实施例1的区别为:加热温度为450摄氏度,加热时间为3分钟,在Si基片和玻璃之间施加850V的直流电压,其他条件与实施例1相同。
实施例3:本实施例与实施例1的区别为:加热温度为470摄氏度,加热时间为3分钟,在Si基片和玻璃之间施加950V的直流电压,其他条件与实施例1相同。

Claims (3)

1.一种纳米管道的封装方法,其特征在于:将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至430~470摄氏度,并在玻璃片和Si基片上施加850V~950V的直流电压,Si基片为正极,玻璃片为负极。
2.根据权利要求1所述的封装方法,其特征在于:将洗净后的Si基片与富含钠离子的玻璃片叠放在一起,加热至450摄氏度。
3.根据权利要求1所述的封装方法,其特征在于:在玻璃片和Si基片上施加900V的直流电压。
CN2010101380601A 2010-04-02 2010-04-02 一种纳米管道的封装方法 Pending CN102211007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101380601A CN102211007A (zh) 2010-04-02 2010-04-02 一种纳米管道的封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101380601A CN102211007A (zh) 2010-04-02 2010-04-02 一种纳米管道的封装方法

Publications (1)

Publication Number Publication Date
CN102211007A true CN102211007A (zh) 2011-10-12

Family

ID=44742680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101380601A Pending CN102211007A (zh) 2010-04-02 2010-04-02 一种纳米管道的封装方法

Country Status (1)

Country Link
CN (1) CN102211007A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118073479A (zh) * 2024-04-19 2024-05-24 太原科技大学 用于柔性太阳能电池封装的静电键合设备
CN118073479B (zh) * 2024-04-19 2024-07-05 太原科技大学 用于柔性太阳能电池封装的静电键合设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439843A (zh) * 2008-10-10 2009-05-27 北京大学 一种微型原子气室封装设备及工艺技术方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439843A (zh) * 2008-10-10 2009-05-27 北京大学 一种微型原子气室封装设备及工艺技术方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118073479A (zh) * 2024-04-19 2024-05-24 太原科技大学 用于柔性太阳能电池封装的静电键合设备
CN118073479B (zh) * 2024-04-19 2024-07-05 太原科技大学 用于柔性太阳能电池封装的静电键合设备

Similar Documents

Publication Publication Date Title
Ren et al. Chemical recognition in cell-imprinted polymers
Cho et al. Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane
Taff et al. A scalable addressable positive-dielectrophoretic cell-sorting array
Karnik et al. Effects of biological reactions and modifications on conductance of nanofluidic channels
Choi et al. Digital microfluidics
Asokan et al. Two-dimensional manipulation and orientation of actin− myosin systems with dielectrophoresis
Nakano et al. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device
CN102513170B (zh) 用于在微容器特别是微通道中操纵小包的装置
Yamamoto et al. Nanofluidic devices and applications for biological analyses
Li et al. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis
US9994839B2 (en) Microfluidic devices to extract, concentrate and isolate molecules
CN102628870B (zh) 一种实现蛋白质快速荧光标记的微纳流控芯片及方法
US20160258849A1 (en) Container, biologically relevant material purification cartridge, and biologically relevant material purification cartridge assembly kit
KR101575056B1 (ko) 모세관을 이용한 단백질 농축 소자 및 그 제조 방법
Liu et al. Recent progress in microfluidic biosensors with different driving forces
US8366899B2 (en) Isoelectric focusing systems and methods
Borberg et al. Light-controlled selective collection-and-release of biomolecules by an on-chip nanostructured device
Li et al. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review
US20150362459A1 (en) Method and System for Concentrating Particles from a Solution
Johnson et al. Integrated hybrid polystyrene–polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection
KR101710885B1 (ko) 모세관을 이용한 단백질 농축 장치 및 이를 이용한 농축 방법
Chen et al. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips
Tseng et al. Micro/nanofluidic devices for single cell analysis
Son et al. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces
US20220305491A1 (en) Scalable systems and methods for automated biosystem engineering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111012