CN102210088B - 链式变换器、启动链式变换器的方法和静态补偿器系统 - Google Patents

链式变换器、启动链式变换器的方法和静态补偿器系统 Download PDF

Info

Publication number
CN102210088B
CN102210088B CN200880131898.9A CN200880131898A CN102210088B CN 102210088 B CN102210088 B CN 102210088B CN 200880131898 A CN200880131898 A CN 200880131898A CN 102210088 B CN102210088 B CN 102210088B
Authority
CN
China
Prior art keywords
phase
converter cells
power converter
convert device
chained convert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880131898.9A
Other languages
English (en)
Other versions
CN102210088A (zh
Inventor
J·R·斯文森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Grid Switzerland AG
Original Assignee
ABB T&D Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB T&D Technology AG filed Critical ABB T&D Technology AG
Publication of CN102210088A publication Critical patent/CN102210088A/zh
Application granted granted Critical
Publication of CN102210088B publication Critical patent/CN102210088B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种包含一个或多个相S1,S2,S3的链式变换器16。所述一个或多个相S1,S2,S3的每个包含一个或多个串联连接的变换器单元20,21,22,23;30,31,32,33;40,41,42,43。链式变换器16其特征在于连接到所述一个或多个相S1,S2,S3其中之一的变换器单元20,21,22,23;30,31,32,33;40,41,42,43的电源18。提供了一种成本高效的变换器启动。本发明还涉及相应的静态补偿器系统和方法。

Description

链式变换器、启动链式变换器的方法和静态补偿器系统
技术领域
本发明涉及高压电力网络中电力补偿的领域,且具体地涉及基于链式变换器的静态补偿器。
背景技术
静态无功补偿器(SVC)系统已经在电力网络中使用许多年以用于控制电力网络中无功功率的产生和吸收,从而提供电压支持,提高瞬态稳定性以及抑制(damp)振荡。STATCOM(静态补偿器)是SVC的一种类型,其为基于电压源变换器(VSC)的装置,所述装置可以用作到电力网络的无功AC功率的源或阱。STATCOM在连接到DC电源时也可以提供有功功率。
图1图示现有技术的两级静态补偿器1,其不含有任何变压器以使电力网络电压逐步降低。静态补偿器1包含电压源变换器(VSC)2,该电压源变换器在其DC侧连接到电容器3且在其AC侧连接到电力网络8,该电力网络也记做电网。
传统两级VSC2包含三个相脚P1,P2,P3,每个相脚由两个串联连接的阀组成。相脚P1的两个阀标记于附图标记9a,9b处。每个阀9a,9b依次包含具有反并联二极管的晶体管,更精确地,为了操纵高电压,每个阀包含许多串联连接的晶体管,例如绝缘栅双极晶体管(IGBT),每个IGBT具有反并联二极管。
在每个相中经由相电抗器4,经由与开关6并联连接的启动电阻器5以及经由AC断路器7,VSC2连接到电网8,在图1该电网包含三相网络。每个相或者其中至少两个相包含这样的相电抗器、启动电阻器、开关和断路器。各个相连接到各个相脚P1,P2,P3的中间点,即连接在图中所示的各个阀之间。通过为所述相中的仅仅两个相配备与开关并联连接的启动电阻器,则有可能减少部件的数目。在下文中仅仅描述一个相从而简化描述,但是应理解所述相是类似的。
当连接电网的VSC2被激励和启动时,断路器7被切换从而提供从电网8经过启动电阻器5、相电抗器4并且经过VSC2的二极管的电流路径,从而对电容器3充电。当电容器电压达到预定电平时,通过闭合并联连接的开关6使启动电阻器5短路。由于启动电阻器5被短路,电容器电压将增大一点,且当电容器电压足够高时,VSC2的阀被解锁(deblocked)并开始切换。电容器电压接着被控制直至其基准值。
提供启动电阻器5从而保护VSC2的二极管免受太高和/或持续太久的电流浪涌损伤,其中在闭合AC断路器7时不使用启动电阻器5将出现所述电流浪涌。
施加在VSC2的阀且特别是二极管上的应力取决于若干因素,例如DC侧电容器3的大小、相电抗器4的大小以及电力网络8的电压电平。
除了阀之外,链式变换器包含许多串联连接的单元,每个单元包含电容器。当结合系统的总效应来看时,与上述的两级静态补偿器1相比,每个所述单元的DC电容器相当大。具有大电容器则要求在电容器被充分充电从而开始切换链式变换器的阀之前,具有在相对长时间段内经过二极管的相当大的电流。这进而使得要承担在变换器启动期间二极管被损伤的风险。
尽管启动电阻器和开关提供起作用的解决方案,但是该解决方案相当昂贵且期望降低变换器的成本。可以想到使用能够应对大电流的二极管,但是这仍然是昂贵的解决方案。
发明内容
本发明的目的是提供一种链式变换器,其克服或者至少减轻上述问题。特别地,本发明的目的是提供改进的链式变换器且还提供这种链式变换器的改进的启动过程。
本发明的另一目的是提供一种链式变换器,其中施加在所包含的二极管上的应力被最小化且相关损伤被消除。
本发明的又一目的是提供一种链式变换器,其具有成本高效的设计,消除了现有技术的启动电阻器和开关。
除其它之外的这些目的是通过如独立权利要求中所述的链式变换器和方法来实现。
依照本发明,提供了一种包含一个或多个相的链式变换器。所述一个或多个相的每个包含一个或多个串联连接的变换器单元。该链式变换器其特征在于连接到所述一个或多个相其中之一的变换器单元的电源。借助本发明,链式变换器单元的二极管不受到应力且提供了一种可靠的变换器。此外,借助该链式变换器的创新启动设置,启动电阻器和开关可以省略,因而提供了更加成本高效的解决方案。再者,通过使用合适数目的单元,该链式变换器可以容易地适应宽范围的电力网络电压。
依照本发明的实施例,每个变换器单元包含设置成H桥连接的四个阀。优选地,每个阀包含具有反并联二极管的绝缘栅双极晶体管。因此可以使用传统链式变换器部件。
依照本发明的另一实施例,该链式变换器包含连接成三角形(delta)配置的三个相。通过将相设置成三角形配置,所有相的DC电容器可以由连接到单独一个变换器单元的单个电源充电到它们的基准值。因此提供了一种成本非常高效的解决方案。
本发明还涉及相应的方法,并且涉及用于提供无功功率到电力网络的静态补偿器系统,由此实现了与上面相似的优点。
附图说明
图1图示现有技术两级静态补偿器。
图2图示依照本发明的链式变换器的一个单元。
图3图示依照本发明的链式变换器的实施例。
图4图示连接到电力网络的图3的链式变换器。
图5图示依照本发明的方法的步骤。
具体实施方式
图1已经在本申请的引言部分中予以描述且将不予以进一步描述。
在图2-图4中始终使用相同附图标记表示相同或相应的部分。
图2图示依照本发明的链式变换器的一个变换器链,也记做变换器单元。变换器单元10包含四个阀11,12,13,14,每个阀包含晶体管开关,比如绝缘栅双极晶体管(IGBT)。在下文中,使用IGBT作为实例,但是注意,也可以使用其它半导体器件,例如门极可关断晶闸管(GTO)或集成门极换流晶闸管(IGCT)。续流二极管(也记做反并联二极管)与每个IGBT并联连接。二极管在IGBT的相反方向上导通。阀11,12,13,14与电容器单元15连接成H桥设置。
图3图示依照本发明的链式变换器16。链式变换器16包含若干串列(string),在图中为3个串列,每个串列包含变换器单元。一个这样的串列在下文中记做相,并且相被理解为包含许多串联连接的变换器单元。所述变换器单元其中之一用虚线方框标出,且等同于图2中所图示并结合图2描述的变换器单元10。每个变换器单元20,21,22,23;30,31,32,33;40,41,42,43因而包含与DC电容器27设置成H桥设置的四个阀,其中每个阀进而包含具有反并联二极管26的IGBT25,如上所述。
每个相包含许多串联连接的变换器单元:第一相图示为包含变换器单元20,21,22,23;第二相包含变换器单元30,31,32,33;以及第三相包含变换器单元40,41,42,43,44。每个相连接到在图中附图标记L1,L2和L3处所图示的相电抗器。链式变换器16的相设置成三角形连接且链式变换器16可连接到在17示意性图示的电力网络。
依照本发明,一个变换器单元连接到例如电池的外部DC电源18。更具体地,变换器单元其中之一具有连接到其DC侧的电源18。电源18可以是例如2-3kV电池。借助电源18,链式变换器16的启动大幅改善,如将在下文所描述。
图4图示连接到电力网络17的图3的链式变换器16。链式变换器16的三个三角形连接的相在图中分别记做S1,S2和S3。每个相S1,S2,S3按传统方式设有记做CBa,CBb和CBc的断路器。
为了启动链式变换器16,电源18连接到相S1,S2,S3其中之一的变换器单元其中之一,如上所述。启动的这个第一步骤记做模式1。连接到电源18的变换器单元的IGBT被切换且因此链式变换器的变换器单元的所有DC电容器可以被充电。也就是说,由于三个相S1,S2,S3三角形连接,所有变换器单元的电容器电压可以被控制从而达到它们的基准值。当变换器单元的DC电容器完全充电时,电源18可以断开。可替换地,即使在变换器单元的DC电容器已经完全充电之后,电源18可以仍连接到变换器单元。开关装置24布置在电源18和变换器单元40的DC电容器之间,从而使得能够实现电源18的连接和断开。
注意,将电源18添加到单个相的单个变换器单元足以实现链式变换器16的启动。连接到电源18的变换器单元在此模式1中可以接地但是不必接地。在可替换实施例中,可以使用连接到各个变换器单元的两个或更多个电隔离的电源。
接着,启动模式2,其中相电压ua,ub,uc按传统方式同步到电网相电压ea,eb,ec从而具有相同的幅值、相同的频率和相,以便避免电流瞬态等。接着断路器CBa,CBb和CBc可以闭合且链式变换器16可以启动所期望的电力网络支持。在此模式2中,连接到电源18的变换器单元不能被接地。
链式变换器16由图4的附图标记19处示意性图示的控制装置控制,其例如用于实现变换器单元20,21,22,23,30,31,32,33,40,41,42,43的阀的开关,以及用于控制所有变换器单元的电容器电压等。同样的控制装置19可以用于控制电源18,即用于将电源18连接到一个变换器单元。电源18可以例如经由可控开关24连接到变换器单元。
变换器单元的数目可以取决于电力网络电压而适当地选择;网络电压越高,需要越多的变换器单元。例如,对于12kV的电力网络,仅仅几个变换器单元会是足够的,而操纵高达约100-130kV的电力网络将需要多于100个变换器单元。
本发明还提供相应的用于启动上述链式变换器16的方法。方法50包含将相S1,S2,S3其中之一的变换器单元连接到电压源18的第一步骤51。在下一个步骤,即步骤52,变换器单元20,21,22,23;30,31,32,33;40,41,42,43的DC电容器被充电到合适电平。在最后的步骤,即步骤53,相S1,S2,S3的相电压ua,ub,uc被同步到电力网络17的相电压ea,eb,ec。因此提供了一种启动链式变换器16的改进方式。
该方法还可包含另外的可选步骤。例如,可以包含另一步骤54:在将DC电容器充电到合适电平的步骤52完成之后,将电压源18从第一单元断开。
方法50可包含另外步骤55:当相S1,S2,S3已达到预定电压电平时,将相S1,S2,S3连接到电力网络17。将相S1,S2,S3连接到电力网络17可包含切换连接到各个相S1,S2,S3的各个断路器CBa,CBb,CBc
本发明还提供用于提供无功功率到电力网络17的静态补偿器系统29,见图4。这种静态补偿器系统29包含如上所述的链式变换器16,链式变换器16的所述一个或多个相S1,S2,S3的每个经由各个相电抗器L1,L2,L3以及经由各个断路器CBa,CBb,CBc而连接到电力网络17。
如上所述提供的无变压器的链式变换器16具有这样的设计,其中二极管不受到应力且不经受被损伤的风险。另外,借助链式变换器16的创新启动设置,较早使用的启动电阻器和开关可以省略,因此提供了更加成本高效的解决方案。所操纵的电压越高,该优点越突出。例如,与操纵诸如例如12kV的较低电压的电力网络相比,操纵高达约140kV的电压的电力网络更大程度地受益于启动电阻器和开关被省略,因为部件被调整规格以操纵的电压越高,部件变得越昂贵。

Claims (9)

1.一种包含以三角形配置连接的三个相(S1,S2,S3)的链式变换器(16),所述相(S1,S2,S3)的每个包含一个或多个串联连接的变换器单元(20,21,22,23;30,31,32,33;40,41,42,43),所述变换器单元(20,21,22,23;30,31,32,33;40,41,42,43)包含与DC电容器设置成H桥设置的四个阀,其特征在于,连接到所述相(S1,S2,S3)其中之一的仅一个变换器单元(20,21,22,23;30,31,32,33;40,41,42,43)的所述DC电容器的单个电源(18)。
2.根据权利要求1所述的链式变换器(16),其中每个阀(11,12,13,14)包含具有反并联二极管的绝缘栅双极晶体管。
3.根据前述权利要求中任意一项所述的链式变换器(16),其中所述电源(18)经由开关装置(24)连接到所述一个变换器单元,藉此所述电源(18)可以被断开。
4.根据前述权利要求1-2中任意一项所述的链式变换器(16),其中所述电源(18)设置成由控制装置(19)控制,其用于将电源(18)与所述变换器单元(20,21,22,23;30,31,32,33;40,41,42,43)连接/断开。
5.一种用于提供无功功率到电力网络(17)的静态补偿器系统,包含根据权利要求1-4中任意一项所述的链式变换器(16),所述链式变换器(16)的所述相(S1,S2,S3)的每个经由各个相电抗器(L1,L2,L3)以及经由各个断路器(CBa,CBb,CBc)连接到所述电力网络(17)。
6.一种启动包含以三角形配置连接的三个相(S1,S2,S3)的链式变换器(16)的方法,所述相(S1,S2,S3)的每个包含一个或多个变换器单元(20,21,22,23;30,31,32,33;40,41,42,43),所述变换器单元(20,21,22,23;30,31,32,33;40,41,42,43)包含与DC电容器设置成H桥设置的四个阀,其特征在于下述步骤:
-将所述相(S1,S2,S3)其中之一的仅一个变换器单元连接到电压源(18),
-将所述变换器单元(20,21,22,23;30,31,32,33;40,41,42,43)的DC电容器充电到合适电平,以及
-将所述相(S1,S2,S3)的相电压(ua,ub,uc)同步到电力网络(17)的相电压(ea,eb,ec)。
7.根据权利要求6所述的方法,包含下述另外步骤:在将所述DC电容器充电到合适电平的步骤之后,将所述电压源(18)从所述变换器单元断开。
8.根据权利要求6或7所述的方法,包含下述另外步骤:当所述相(S1,S2,S3)已达到预定电压电平时,将所述一个或多个相脚(S1,S2,S3)连接到电力网络(17)。
9.根据权利要求7所述的方法,其中将所述相(S1,S2,S3)连接到电力网络(17)的步骤包含切换连接到所述相(S1,S2,S3)的相应一个的相应断路器(CBa,CBb,CBc),藉此实现与所述电力网络(17)的所述连接。
CN200880131898.9A 2008-11-07 2008-11-07 链式变换器、启动链式变换器的方法和静态补偿器系统 Expired - Fee Related CN102210088B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/065160 WO2010051854A1 (en) 2008-11-07 2008-11-07 Chain-link converter, method for starting chain-link converter and static compensator system

Publications (2)

Publication Number Publication Date
CN102210088A CN102210088A (zh) 2011-10-05
CN102210088B true CN102210088B (zh) 2015-11-25

Family

ID=40328786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880131898.9A Expired - Fee Related CN102210088B (zh) 2008-11-07 2008-11-07 链式变换器、启动链式变换器的方法和静态补偿器系统

Country Status (7)

Country Link
US (1) US8514597B2 (zh)
EP (1) EP2342808B1 (zh)
CN (1) CN102210088B (zh)
AU (1) AU2008363966B2 (zh)
CA (1) CA2743319C (zh)
MX (1) MX2011004827A (zh)
WO (1) WO2010051854A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2443729B1 (en) 2009-06-15 2019-07-31 General Electric Technology GmbH Converter
US8599591B2 (en) * 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
KR101507560B1 (ko) 2009-07-31 2015-04-07 알스톰 그리드 유케이 리미티드 구성 가능한 하이브리드 컨버터 회로
EP2534742B8 (en) 2010-02-09 2016-02-24 General Electric Technology GmbH Converter for high voltage dc dc transmission
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US8934268B2 (en) 2010-04-08 2015-01-13 Alstom Technology Ltd Power electronic converter for use in high voltage direct current power transmission
KR101719393B1 (ko) 2010-04-15 2017-03-23 제네럴 일렉트릭 테크놀러지 게엠베하 하이브리드 2-레벨 및 멀티레벨 hvdc 컨버터
JP2012015984A (ja) * 2010-06-04 2012-01-19 Sony Corp クロック逓倍回路、固体撮像装置及び位相シフト回路
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
CN103141018B (zh) * 2010-07-30 2015-12-16 阿尔斯通技术有限公司 包括用于处理dc侧短路的全桥单元的hvdc转换器
US20140146586A1 (en) * 2011-04-15 2014-05-29 Siemens Aktiengesellschaft Multilevel converter and method of starting up a multilevel converter
WO2012143037A2 (en) * 2011-04-18 2012-10-26 Abb Technology Ag Method in a voltage source chain-link converter, computer programs and computer program products
AU2011370308A1 (en) 2011-06-08 2013-12-19 Alstom Technology Ltd High voltage DC/DC converter with cascaded resonant tanks
CA2838775C (en) 2011-06-10 2016-08-16 Abb Technology Ag Method for energizing a chain-link converter, controller, computer programs and computer program products
EP2549614A1 (de) * 2011-07-21 2013-01-23 Siemens Aktiengesellschaft Ermittlung des Gleichstromanteils in Blindleistungskompensatoren mit Mulitlevel-Umrichter
CN103891121B (zh) 2011-08-01 2016-11-23 阿尔斯通技术有限公司 直流-直流转换器组件
CN102291016A (zh) * 2011-08-02 2011-12-21 中国电力科学研究院 一种电气化铁路电能质量调节器
CN102957151A (zh) * 2011-08-22 2013-03-06 台达电子企业管理(上海)有限公司 一种用于可再生能源系统的功率补偿装置及其方法
US9209693B2 (en) * 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
CN103959634B (zh) 2011-11-17 2017-09-01 通用电气技术有限公司 用于hvdc应用的混合ac/dc转换器
RU2578171C1 (ru) * 2011-12-15 2016-03-20 Сименс Акциенгезелльшафт Преобразователь с конфигурацией треугольника
EP2795780B1 (en) * 2011-12-19 2020-07-08 ABB Schweiz AG Black start of a modular multilevel voltage source converter
JP5971685B2 (ja) * 2012-02-20 2016-08-17 株式会社東芝 電力変換装置
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
US9893532B2 (en) 2012-10-05 2018-02-13 Enphase Energy, Inc. System and method for a mesh power system
CN103267917B (zh) * 2013-06-06 2016-03-30 新风光电子科技股份有限公司 一种大容量无功补偿装置满载试验的方法和装置
WO2015003737A1 (de) * 2013-07-08 2015-01-15 Siemens Aktiengesellschaft Mehrstufiger stromrichter zur blindleistungskompensation und zugehöriges betriebsverfahren
DE102013221830A1 (de) * 2013-10-28 2015-04-30 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
US9413221B1 (en) 2013-12-04 2016-08-09 Google Inc. Power conversion using a series of power converters
EP3142239A1 (en) * 2015-09-08 2017-03-15 ABB Technology AG Precharging of a modular multilevel converter
CN108432108B (zh) 2015-12-18 2020-09-08 Abb电网瑞士股份公司 具有三角形配置的模块化多电平转换器中的电压平衡
US10193340B2 (en) * 2017-03-15 2019-01-29 American Superconductor Corporation Multi-level cascaded H-bridge STATCOM circulating cooling fluid within enclosure
US10130009B2 (en) 2017-03-15 2018-11-13 American Superconductor Corporation Natural convection cooling for power electronics systems having discrete power dissipation components
US10734916B2 (en) * 2017-04-21 2020-08-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
DE10103031A1 (de) * 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230837B1 (en) * 2006-03-27 2007-06-12 North Carolina State University Method and circuit for cascaded pulse width modulation
US7710082B2 (en) * 2007-10-18 2010-05-04 Instituto Potosino De Investigacion Cientifica Y Technologica (Ipicyt) Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
US7869234B2 (en) * 2009-03-25 2011-01-11 Ametek, Inc. Poly-phase AC/DC active power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
DE10103031A1 (de) * 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Cascaded Converter-Based StatCom with Energy Storage;Chang Qian et al.;《IEEE》;20021231;正文544-549页、图1-2、附录 *

Also Published As

Publication number Publication date
EP2342808A1 (en) 2011-07-13
CN102210088A (zh) 2011-10-05
WO2010051854A1 (en) 2010-05-14
AU2008363966B2 (en) 2015-08-13
CA2743319C (en) 2016-05-10
CA2743319A1 (en) 2010-05-14
US20110205768A1 (en) 2011-08-25
MX2011004827A (es) 2011-05-30
US8514597B2 (en) 2013-08-20
EP2342808B1 (en) 2014-10-29
AU2008363966A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
CN102210088B (zh) 链式变换器、启动链式变换器的方法和静态补偿器系统
Tang et al. A LCC and MMC hybrid HVDC topology with DC line fault clearance capability
KR101797796B1 (ko) Dc측 단락을 핸들링하기 위해 풀브리지 셀을 포함하는 hvdc 컨버터
Nami et al. Analysis of modular multilevel converters with DC short circuit fault blocking capability in bipolar HVDC transmission systems
US10256745B2 (en) Multilevel converter with reduced AC fault handling rating
RU2652690C2 (ru) Модульный многоточечный вентильный преобразователь для высоких напряжений
US20150214834A1 (en) Converter for hvdc transmission and reactive power compensation
EP2671310B1 (en) Power electronic converter
AU2009351884B2 (en) Converter cell module, voltage source converter system comprising such a module and a method for controlling such a system
US20110019449A1 (en) Power converter apparatus
SE521885C2 (sv) Strömriktare
US20180026519A1 (en) Multilevel converter with energy storage
Sadigh et al. Dynamic voltage restorer based on stacked multicell converter
Zhang et al. T-type modular dc circuit breaker (t-breaker) for future dc networks
US11757368B2 (en) Transformer arrangement
Zhao et al. A novel T-type half-bridge cell for modular multilevel converter with DC fault blocking capability
CN113690919A (zh) 具有电网换相的变流器的变流器装置和用于启动其的方法
EP3476031B1 (en) Protection of semiconductors in power converters
WO2018215071A1 (en) Energy storage system
WO2013044940A1 (en) A vsc-hvdc terminal without a full transformer and with a series capacitor
Beheshtaein et al. A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs
KR20200007164A (ko) 고조파 주입 기능을 가진 지그재그 변압기를 활용한 mmc hvdc 시스템
EP4333288A1 (en) Solid-state motor starter
Saleki et al. A Half-Bridge Modular Multilevel Converter Topology with DC Fault Tolerance Capability
SU1163416A1 (ru) Способ управлени симметрирующим устройством

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180503

Address after: Baden, Switzerland

Patentee after: ABB Switzerland Co.,Ltd.

Address before: Zurich

Patentee before: ABB TECHNOLOGY Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210519

Address after: Baden, Switzerland

Patentee after: ABB grid Switzerland AG

Address before: Baden, Switzerland

Patentee before: ABB Switzerland Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20211107