CN102207613A - 点源参考光畸变补偿数字全息相衬显微镜 - Google Patents

点源参考光畸变补偿数字全息相衬显微镜 Download PDF

Info

Publication number
CN102207613A
CN102207613A CN 201110148892 CN201110148892A CN102207613A CN 102207613 A CN102207613 A CN 102207613A CN 201110148892 CN201110148892 CN 201110148892 CN 201110148892 A CN201110148892 A CN 201110148892A CN 102207613 A CN102207613 A CN 102207613A
Authority
CN
China
Prior art keywords
optical fiber
fiber
microcobjective
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110148892
Other languages
English (en)
Inventor
张亦卓
王大勇
赵洁
杨登才
王云新
江竹青
万玉红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN 201110148892 priority Critical patent/CN102207613A/zh
Publication of CN102207613A publication Critical patent/CN102207613A/zh
Pending legal-status Critical Current

Links

Images

Abstract

点源参考光畸变补偿数字全息相衬显微镜,属于数字全息术技术领域。其在激光器出射端的前方安置有光纤耦合器,光纤耦合器与光纤分束器相连,光纤分束器接出两路光纤连接有光纤准直器和光纤夹持器,光纤准直器下方置有用于盛放样品的样品台,样品台连接在三维线性平移台上,样品台下方置有显微物镜的前端,显微物镜的后端的下方放置合束晶体,光纤夹持器与显微物镜对准合束晶体的两个相垂直的侧面;合束晶体下方置有CCD相机,CCD相机与计算机相连。本装置可以直接再现得到无二次相位畸变的三维再现像,而不需要再现后通过数值方法补偿再现像中存在的二次位相畸变,提高了计算效率,有利于实时观测的要求。

Description

点源参考光畸变补偿数字全息相衬显微镜
技术领域
本发明公开了一种用电源参考光实时畸变补偿的数字全息显微镜,属于数字全息术技术领域,可用于三维形貌实时测量,生物细胞成像。
背景技术
近年来生物医学的发展,推动了在生物细胞尺度上观测技术的发展。传统的光学显微镜,不能测量生物细胞的三维形貌;而共焦显微镜虽然分辨率较高,但由于要对生物样品做标定,会对其产生影响,不利于无损观测的需要。过去的二十年中,随着光电耦合器件的飞速发展,数字全息技术实现高速发展,并广泛运用于亚微米尺度的显微领域,如集成电路检测、生物细胞实时成像等。数字全息作为一种显微成像技术,其无损、实时、可获得定量相位分布的特点恰好是其在生物样品成像上的优势。活体生物细胞一般为透明结构,因此其相位图像方能提供更多独特的信息。不同于已有的相衬成像方法,数字全息技术不需要对活体生物样品进行标记、固定等处理就可获得观察对象定量的振幅和相位分布,从而实现对透明生物样品的成像并进行定量分析。数字全息技术还可以实现对生物样品形态的动态监测,继而可能用于获取细胞动态特性、细胞间的相互作用以及细胞对药物的反应等信息,期望为早期医学诊断和药物设计等提供一定的分析评价依据。
由于显微物镜的使用,在数字全息重建过程中引入了二次位相畸变,而无法得到准确的物体信息。现在普遍采用的补偿二次畸变的方法是在计算机中实时计算出畸变模型后,从再现像中直接减去得到物体信息。该方法效率较低,并且加重了计算机的负担。在实时观测的过程中,特别是当使用像素数较多的CCD相机做高分辨率观测时,会直接导致再现速度慢。
发明内容
为了解决数字全息显微镜实时观测过程中,数值方法畸变校正导致系统速度慢的问题,本发明提出了一种电源参考光畸变补偿数字全息相衬显微镜。
本发明采用如下技术方案:点源参考光畸变补偿数字全息相衬显微镜,包括有激光器5,光纤准直器1,光纤2,光纤分束器3,光纤耦合器4,光纤夹持器6,CCD相机7,合束晶体8,显微物镜9,计算机10,样品台11,三维线性平移台12,其特征在于:激光器5出射端的前方安置有光纤耦合器4,光纤耦合器4通过光纤与光纤分束器3相连,光纤分束器3接出两路光纤分别连接有光纤准直器1和光纤夹持器6,光纤准直器1下方置有用于盛放样品13的样品台11,样品台11连接在三维线性平移台12上,样品台11下方置有显微物镜9的前端,显微物镜9的后端的下方放置合束晶体8,光纤夹持器6与显微物镜9对准合束晶体8的两个相垂直的侧面;合束晶体8下方置有CCD相机7,CCD相机7与计算机10相连;
激光器5出射的光经过光纤耦合器4耦合进光纤,并被光纤分束器3分成两路:第一路是物光,通过一个光纤准直器1将光纤出射的发散球面光波准直成平行光,平行光竖直向下照射在水平放置的样品13上,穿过样品台11,显微物镜9,并通过合束晶体8后照射在CCD相机7上;另一路参考光,是直接由光纤末端出射的球面波,水平照射在合束棱镜8上,反射后与物光波干涉形成全息图被CCD相机7记录。
所述的物光经光纤准直器1准直成的平行光的直径为5mm。
所述的参考光从光纤2出射末端位置距离合束晶体8中心的距离,与显微物镜9的后焦面距离合束晶体中心的距离相等。
本发明可以取得如下有益效果:
该套发明可以直接再现得到无二次相位畸变的三维再现像,而不需要再现后通过数值方法补偿再现像中存在的二次位相畸变,提高了计算效率,有利于实时观测的要求。
附图说明
图1点源参考光畸变补偿数字全息相衬显微镜的结构原理图;
图2实施例1中CCD相机采到的全息图
图3实施例1中全息图经过数字全息再现后在电脑里所生成的三维显示图
图4实施例1中全息图经过数字全息再现后在电脑里所生成的灰度显示图;
图5图4的中心横切面图
图6实施例2中CCD相机采到的全息图
图7实施例2中全息图经过数字全息再现后在电脑里所生成的三维显示图
图8实施例2中全息图经过数字全息再现后在电脑里所生成的灰度显示图;
图9图2中一个细胞的横切面图
图中:1、光纤准直器,2、光纤,3、光纤分束器,4、光纤耦合器,5、激光器,6、光纤夹持器,7、CCD相机,8、合束晶体,9、显微物镜,10、计算机,11、样品台,12三维线性平移台,13、样品。
具体实施方式
下面结合附图和具体实施方式对于本发明做进一步的说明:
实施例1:
本实施例的布置方式如图1所示:
激光器5出射端的前方安置有光纤耦合器4,光纤耦合器4通过光纤与光纤分束器3相连,光纤分束器3接出两路光纤分别连接有光纤准直器1和光纤夹持器6,光纤准直器1下方置有用于盛放样品13的样品台11,样品台11下方置有显微物镜9的。。。前端,显微物镜9的。。,后端的下方放置合束晶体8,光纤夹持器6与显微物镜9对准合束晶体8的两个相垂直的侧面。合束晶体8下方置有CCD相机7。CCD相机7与计算机10相连。
激光器5出射的光经过光纤耦合器4耦合进光纤,并被光纤分束器3分成两路:第一路是物光,通过一个光纤准直器1将光纤出射的发散球面光波准直成平行光,平行光竖直向下照射在水平放置的样品13上,穿过样品台11,显微物镜9,并通过合束晶体8后照射在CCD相机7上;另一路参考光,是直接由光纤末端出射的球面波,水平照射在合束棱镜8上,反射后与物光波干涉形成全息图被CCD相机7记录;上述两路光有夹角。参考光从光纤出射末端位置,与显微物镜9的后焦面距离合束晶体中心的距离相等。
实验中用532nm绿光光源,4X显微物镜,数值孔径0.10。样品是微透镜阵列,视场中只能看到一个完整的透镜。图2所示为系统采到的全息图,图3为经过数字全息再现后在计算机中得到三维显示图,一个完整透镜和其两边两个透镜的边缘清晰可见;图4是图3的灰度显示图,图5是图四的中心切面图,可以清楚看到样品轮廓,以及该透镜的厚度和宽度定量信息。
实施例2:
本实施例的实验装置与实施例1的实验装置相同,如图1所示。
实验中用532nm绿光光源,10X显微物镜数值孔径0.25。样品是放在普通塑料培养皿中的3T3鼠源细胞。图6所示为系统采到的全息图,图7为经过数字全息再现后在计算机中得到三维显示图,可以清楚的看到视场中细胞的形貌;图8是图7的灰度显示图,可以清楚看到培养液中生长的细胞分布状态;图9是图8中一个细胞的中心剖面图,可以清楚看到该细胞的纵向厚度和横向宽度定量信息。

Claims (3)

1.点源参考光畸变补偿数字全息相衬显微镜,包括有激光器(5),光纤准直器(1),光纤(2),光纤分束器(3),光纤耦合器(4),光纤夹持器(6),CC 相机(7),合束晶体(8),显微物镜(9),计算机(10),样品台(11),三维线性平移台(12),其特征在于:激光器(5)出射端的前方安置有光纤耦合器(4),光纤耦合器(4)通过光纤与光纤分束器(3)相连,光纤分束器(3)接出两路光纤分别连接有光纤准直器(1)和光纤夹持器(6),光纤准直器(1)下方置有用于盛放样品(13)的样品台(11),样品台(11)连接在三维线性平移台(12)上,样品台(11)下方置有显微物镜(9)的前端,显微物镜(9)的后端的下方放置合束晶体(8),光纤夹持器(6)与显微物镜(9)对准合束晶体(8)的两个相垂直的侧面;合束晶体(8)下方置有CCD相机(7),CCD相机(7)与计算机(10)相连;
激光器5出射的光经过光纤耦合器(4)耦合进光纤,并被光纤分束器(3)分成两路:第一路是物光,通过一个光纤准直器(1)将光纤出射的发散球面光波准直成平行光,平行光竖直向下照射在水平放置的样品(13)上,穿过样品台(11),显微物镜(9),并通过合束晶体(8)后照射在CCD相机(7)上;另一路参考光,是直接由光纤末端出射的球面波,水平照射在合束棱镜(8)上,反射后与物光波干涉形成全息图被CCD相机(7)记录。
2.根据权利要求1所述的点源参考光畸变补偿数字全息相衬显微镜,其特征在于:所述的物光经光纤准直器(1)准直成的平行光的直径为5mm。
3.根据权利要求1所述的点源参考光畸变补偿数字全息相衬显微镜,其特征在于:所述的参考光从光纤(2)出射末端位置距离合束晶体(8)中心的距离,与显微物镜(9)的后焦面距离合束晶体中心的距离相等。
CN 201110148892 2011-06-03 2011-06-03 点源参考光畸变补偿数字全息相衬显微镜 Pending CN102207613A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110148892 CN102207613A (zh) 2011-06-03 2011-06-03 点源参考光畸变补偿数字全息相衬显微镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110148892 CN102207613A (zh) 2011-06-03 2011-06-03 点源参考光畸变补偿数字全息相衬显微镜

Publications (1)

Publication Number Publication Date
CN102207613A true CN102207613A (zh) 2011-10-05

Family

ID=44696529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110148892 Pending CN102207613A (zh) 2011-06-03 2011-06-03 点源参考光畸变补偿数字全息相衬显微镜

Country Status (1)

Country Link
CN (1) CN102207613A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590067A (zh) * 2012-02-09 2012-07-18 江苏大学 一种利用普通显微镜可进行血细胞相位成像的加载装置
CN103257441A (zh) * 2013-05-13 2013-08-21 北京工业大学 一种非相干数字全息三维动态显微成像系统与方法
CN106996753A (zh) * 2017-03-28 2017-08-01 哈尔滨工业大学深圳研究生院 基于led显微条纹投影的微小三维形貌测量系统及方法
CN108303020A (zh) * 2017-12-26 2018-07-20 华南师范大学 一种数字全息与微分干涉联合的双通道相移相位测量显微镜
CN109724511A (zh) * 2019-01-29 2019-05-07 嘉应学院 一种数字全息显微的二次相位误差补偿方法及其装置
CN110017776A (zh) * 2019-05-17 2019-07-16 山东大学 基于顺序移位和切比雪夫多项式拟合的数字全息显微镜像差绝对校准方法及系统
CN110487171A (zh) * 2019-05-30 2019-11-22 北京工业大学 多功能散斑干涉装置成像系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971253A (zh) * 2006-10-19 2007-05-30 上海大学 数字全息显微测量装置
CN201382849Y (zh) * 2009-03-17 2010-01-13 西北工业大学 一种基于数字全息术的流场显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971253A (zh) * 2006-10-19 2007-05-30 上海大学 数字全息显微测量装置
CN201382849Y (zh) * 2009-03-17 2010-01-13 西北工业大学 一种基于数字全息术的流场显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《光学技术》 20071130 周文静等 数字全息显微测量技术的发展与最新应用 870-874 1-3 第33卷, 第6期 2 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590067A (zh) * 2012-02-09 2012-07-18 江苏大学 一种利用普通显微镜可进行血细胞相位成像的加载装置
CN102590067B (zh) * 2012-02-09 2014-02-12 江苏大学 一种利用普通显微镜可进行血细胞相位成像的加载装置
CN103257441A (zh) * 2013-05-13 2013-08-21 北京工业大学 一种非相干数字全息三维动态显微成像系统与方法
CN103257441B (zh) * 2013-05-13 2016-10-26 北京工业大学 一种非相干数字全息三维动态显微成像系统与方法
CN106996753A (zh) * 2017-03-28 2017-08-01 哈尔滨工业大学深圳研究生院 基于led显微条纹投影的微小三维形貌测量系统及方法
CN108303020A (zh) * 2017-12-26 2018-07-20 华南师范大学 一种数字全息与微分干涉联合的双通道相移相位测量显微镜
CN109724511A (zh) * 2019-01-29 2019-05-07 嘉应学院 一种数字全息显微的二次相位误差补偿方法及其装置
CN110017776A (zh) * 2019-05-17 2019-07-16 山东大学 基于顺序移位和切比雪夫多项式拟合的数字全息显微镜像差绝对校准方法及系统
CN110017776B (zh) * 2019-05-17 2020-11-27 山东大学 基于移位和多项式拟合的全息像差绝对校准方法及系统
CN110487171A (zh) * 2019-05-30 2019-11-22 北京工业大学 多功能散斑干涉装置成像系统

Similar Documents

Publication Publication Date Title
CN102122063A (zh) 倒置式数字全息显微镜
CN102207613A (zh) 点源参考光畸变补偿数字全息相衬显微镜
CN105050475B (zh) 激光扫描观察装置和激光扫描方法
WO2021143707A1 (zh) 一种双模态显微成像系统和方法
CN101375786B (zh) 一种荧光内窥成像方法及装置
CN203053862U (zh) 数字全息显微折射率断层成像装置
KR20170013855A (ko) 큰 손상되지 않은 조직 샘플들을 이미징하기 위한 방법들 및 디바이스들
CN202342011U (zh) 一种反射式激光共聚焦皮肤显微镜
CN102579080A (zh) 一体化整合的便携式共焦光声显微成像方法及装置
CN108913599A (zh) 一种活细胞原位培养长时程多模信息检测方法及系统
Liu et al. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture
CN106707482A (zh) 一种宽视场多尺度高分辨率显微成像系统和方法
CN102389288A (zh) 一种激光共聚焦显微内窥镜
CN201974574U (zh) 倒置式数字全息显微镜
CN202351503U (zh) 点源参考光畸变补偿数字全息相衬显微镜
Rajan et al. A portable live-cell imaging system with an invert-upright-convertible architecture and a mini-bioreactor for long-term simultaneous cell imaging, chemical sensing, and electrophysiological recording
Casteleiro Costa et al. Functional imaging with dynamic quantitative oblique back-illumination microscopy
Lai et al. High-speed laser-scanning biological microscopy using FACED
CN207721799U (zh) 一种相机与oct共光路成像装置
CN202191264U (zh) 内窥镜
CN204855930U (zh) 增强现实显微镜
CN202421745U (zh) 光纤数字全息散斑去除成像系统
CN102058387A (zh) 一种新型三维立体电子胆道镜系统及其使用方法
CN103006326A (zh) 视野可调双视频融合成像系统
CN113514442A (zh) 基于四芯光纤光操控的动态散斑荧光显微成像方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111005