CN102203803B - 使用图像处理对可视对象外观的建模 - Google Patents

使用图像处理对可视对象外观的建模 Download PDF

Info

Publication number
CN102203803B
CN102203803B CN200980142051.5A CN200980142051A CN102203803B CN 102203803 B CN102203803 B CN 102203803B CN 200980142051 A CN200980142051 A CN 200980142051A CN 102203803 B CN102203803 B CN 102203803B
Authority
CN
China
Prior art keywords
data item
model
vector
value
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980142051.5A
Other languages
English (en)
Other versions
CN102203803A (zh
Inventor
安德鲁·希尔
克里斯托弗·布鲁克·杰克逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI Innovation Group Co.,Ltd.
Original Assignee
4Sight Imaging Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 4Sight Imaging Ltd filed Critical 4Sight Imaging Ltd
Publication of CN102203803A publication Critical patent/CN102203803A/zh
Application granted granted Critical
Publication of CN102203803B publication Critical patent/CN102203803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/72Data preparation, e.g. statistical preprocessing of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种根据一组图像产生模型的计算机实施方法。该方法包括处理多个数据项,每个数据项表示所述图像组的一幅图像,以确定所述多个数据项之间的可变性;并且基于所述数据项和所述可变性而产生表示所述模型的模型数据,其中每个所述数据项对所产生的模型的影响,由各个所述数据项和所述可变性之间的关系所确定。

Description

使用图像处理对可视对象外观的建模
本发明涉及用于处理图像的方法和装置。更特别地,而非排除地,本发明涉及用于根据一组图像产生模型的方法,该模型可用于确定输入图像是否为该组图像之一。本文所述的一些方法还允许识别与模型最对应的输入图像的区域。
在图像识别领域中熟知的是使用计算机。图像识别的一种特定应用是在工业检测领域。本文中,计算机具有图像,并且需要产生指示输入图像是否是一类图像中之一的输出数据。该类图像可以表示特定部件的可允许改变,其通过工业处理而进行操作。
已知的是使用表示该类图像的模型而实施上述的处理。通常通过接收和处理多幅训练图像而产生这种模型,多幅训练图像是该类感兴趣图像的实例。即,假设许多工业处理具有可允许的变化范围,那么多幅图联图像将是横跨可允许变化范围的实例,从而已产生的模型正确地表示可允许的变化范围。
虽然使用上述类型的模型已经获得了相当大的成功,但是其也具有缺点。一个缺点是通常难以产生足够精确的模型,例如因为多幅训练图像中的小部分可能不正确、不恰当地表示在可允许变化范围中的图像。在模型建立处理中包括这种图像而产生的模型,可能在事实上未处于该情况时而错误地指示输入图像处于可允许变化范围内。
使用上述类型模型的另一缺点是,通常当输入图像提供为模型确定未处于可允许的变化范围中时,未向操作者提供为何可能是该情况的信息,而仅向操作者提供输入图像与模型不相应的指示。
此外,一些现有技术中,当需要识别与模型最为符合的输入图像的区域时,如果该区域不足以满足这些模型,那么这些技术未能连贯地识别最符合模型的区域。即,当没有输入图像的区域足够地符合模型,通常有用的是提供识别仍然最符合模型的区域的信息。现有的技术通常不能实现这一点。
本发明实施例的一个木的是避免或缓解上述一个或多个问题。
根据本发明第一方面,提供了一种根据一组图像产生模型的方法。该方法包括处理多个数据项,每个数据项表示所述图像组的图像,以确定所述多个数据项之间的可变性。基于所述数据和所述可变性而产生模型,其中每个所述数据项对所产生的模型的影响,由各个所述数据项和所述可变性之间的关系所确定。
本发明因而允许在创建的模型中,特定数据项对所创建模型的影响由特定数据项和多个数据项之间的可变性之间的关系所确定。因而,远在正常可变性范围之外的数据项对已产生的模型具有相对低的影响。因而,认为所创建的模型是健全的模型,因为其未受处于该创建中使用的正常可变性范围之外的数据项而影响至过大的范围。
多个数据项的每一个可以是标准化的数据项。可以以任何便利的方式实施对数据项的标准化。
可以接收多个初始数据项,每个初始数据项包括多个元素。可以基于所述多个初始数据项的每一个中的元素值而计算每个元素的中值。已经发现以这种方式使用中值允许健全的标准化。更特别地,使用中值具有优于平均值的优点,假定中值未受少量无关值的过度影响。
可以基于所述多个初始数据项的每一个中的元素的值而计算用于每个元素的中值绝对偏差(MAD)值。此外,假定对外围(outlying)元素值是相对健全的,使用MAD是有利的。
该方法还可以包括参考各个中值和MAD值而处理各个数据项的每个元素,以确定各个数据项的标准化因子。随后通过向各个初始数据项应用所述标准化因子,可以产生用于每个初始出具向的各个标准化数据项。假定其使用中值和MAD值指的是其对于外围数据元素值的影响相对健全,该标准化方法是有利的。
基于所述数据项产生该模型可以包括将权重与每个所述数据项相关。权重可以基于所述可变性。权重可以设置使得最小化对外围数据项的影响。可以计算每个所述数据项的权重。
计算各个数据项的权重可以包括确定各个数据项和平均数据项之间的关系。平均数据项可以是中值数据项。使用中值数据项是优选地,因为这产生的权重以最小化外围数据项的影响的方式计算。
该方法可以包括确定指示每个所述数据项中的置信度的值。各个数据项的置信度可以基于各个数据项和平均数据项以及所述数据项的可变性之间的关系。
该方法还可以包括根据指示每个所述数据项中置信度的所述之而产生概率分布,并且基于所产生的分布而确定每个所述数据项的概率值。与特定数据项相关的权重可以是已确定概率值的函数。当所述概率在第一范围中,该函数可以提供第一权重值,而当指示概率的所述值处于第三范围中时,该函数可以提供为与第二范围内的权重值。
产生模型可以包括确定每个所述数据项和平均数据项之间的差别关系,以产生多个差值数据项。平均数据项可以是所述数据项的加权平均值,加权平均值基于已确定的权重。使用这种加权平均值在提供具有附加健全性的方法中是有利的。
已确定的权重可以应用于所述差值数据项,并且可以产生指示每个已加权差值数据项如何相对于每一个其他已加权差值数据项改变的矩阵。矩阵可以是协方差矩阵。
产生模型还可以包括建立所述系统的特征系统,以产生多个特征向量和特征值,并且创建包含至少一些所述多个特征向量的矩阵。这样一来,主成分分析得以执行。
产生所述多个特征向量和特征值还可以包括处理另一矩阵,所述另一矩阵的尺寸小于所述矩阵。更特别地,特征值可以获自于所述另一矩阵。
模型可以是统计模型。例如,模型可能具有如下形式:
m+Pb
其中m是平均数据项;
P是指示可允许变化的矩阵;以及
b是模型的范例实例。
每个数据项可以是矢量,而每个数据项的每个元素可以表示一个像素值。
根据本发明第二方面,提供了一种产生指示输入图像如何满足表示一组图像的模型的数据的方法。该方法包括处理表示输入图像的输入数据项以产生指示图像如何由模型恰当表示的数据。输入数据项包括多个元素,每个元素表示输入图像的各个图像元素。处理输入数据项以确定输入图像如何恰当的满足模型,包括确定输入数据项的每个元素应当对已产生的数据的影响,并且产生所述数据,从而输入数据项的每个元素具有已确定的影响。
以该方式使用影响确保不规则的输入数据项的元素对决定具有相对低的影响,由此当一些元素值(例如像素值)不规则时确保决定的健全性。
确定输入数据项的元素应当对已产生的数据的影响可以包括产生用于输入数据项的每个元素的加权数据项。所述加权数据项的每一个可以应用于每个关系,以产生指示输入图像如何恰当地满足模型的所述数据。
产生每个加权数据项可以包括确定输入数据项的元素和多个样本数据项的元素的可变性之间的关系。输入数据项的元素和多个样本数据项的元素的可变性之间的关系,可以是输入数据项和平均元素值的元素之间的差值与所述可变性之间的关系。
使用迭代处理可以产生每个所述加权数据项。
该方法还可以包括产生指示至少一些所述输入元素对所述决定的影响的输出数据。输出数据可以包括图形输出数据,指示对决定贡献相对较少的输入图像的像素。这样,可以向用户提供诊断反馈,例如使用合适的图形用户界面。
可以迭代地产生指示输入图像如何恰当地满足模型的数据。
输入数据项可以是标准化输入数据项。
根据本发明第三方面,提供了一种识别最为满足模型的图像区域的方法。该方法包括参考模型处理所述图像的第一区域,所述处理产生位移信息。参考模型处理所述图像的第二区域,其中基于所述位移信息选择第二区域。
这样,本发明第三方面产生可以用于聚焦和指导意于定位最为满足模型的图像区域的研究。这能够有利地提高定位最满足模型的图像区域的效率。
位移信息可以包括平移位移信息和/或旋转位移信息。
参考模型处理第一和/或第二图像区域包括实施如上参考本发明第二方面所述的处理。
根据本发明第四方面,提供了一种产生表示一类图像的模型的模型数据的方法。该方法包括处理多个样本数据项以产生所述模型数据,每个样本数据项包括位移信息。
这样,本发明第四方面产生了包括位移信息的模型,所述信息在将模型应用于输入图像时是有用的。
该方法还可以包括接收输入数据项和基于所述输入数据项的多个位移版本而产生样本数据项。
该处理可以包括执行主成分分析。
将意识到,本发明可以以任何便利的方式实施。例如,本发明的各方面不仅提供了方法,还提供了适当配置的装置。可以借助于合适的计算机程序实施本发明,所述计算机程序在合适的载体介质上实施。这种介质包括有形载体介质和无形载体介质。当使用计算机实施上述的方法时,可以借助于存储在计算机的合适存储器中的数字数据而表示各幅图像和各个模型。
现在将仅作为实例而参考随附附图描述本发明各个方面的实施例,其中:
图1是图像分析系统的示意图;
图2是示出在构建一组表示图像的样本矢量的健全统计模型中实施的处理的流程图;
图3是用于健全地标准化图2的处理中的一组样本矢量的处理的流程图;
图4是示出设置以产生用于该组样本矢量的权重的图2的处理的部分的流程图;
图5是示出处理以执行图2的处理中的已加权主成分分析的处理的流程图;
图6是示出设置以计算矩阵的特征系统的图5的处理的部分的流程图;
图7是示出实施以测试测试矢量与使用图2的处理所产生的健全统计模型的匹配的处理的流程图;
图8是示出训练实例的位移的示意性图示;
图9是示出如何能够使用已位移的训练实例以创建适用于图2的处理中的样本组的流程图;
图10是一组训练图像的图示;
图11是未按照该组训练图像的输入图像的图示;以及
图12是提供以指示测试图像中的缺陷像素的输出的图示。
现在参考图1,模型构建器模块1采用一组训练图像2作为输入。模型构建器模块1基于下文参考图2所述的训练图像2而构建统计模型3。模型构建器1基于该组训练图像而输出统计模型3。统计模型3是基于该组训练图像2中变化范围的模型。将模型3传递图像测试模块4,其参考统计模型3而处理测试图像5,以产生输出6,指示是否能够由模型充分正确地表示测试图像5。
参考图1所述的处理是,如果该组训练图像2表示特定类的图像,那么模型3是表示该类图像的模型。图像测试模块4随后可以确定测试图像5是否是以上述方式描述的模型3所表示的该类图像的成员。
现在参考图2,图1的模型构建器模块1在步骤S1接收形成该组训练图像2的样本组X。该组X包含s个未标准化样本矢量xj,其中j在1至s的范围内,而每个xj对应于图1的该组训练图像2的一个成员。每个矢量xj表示一幅训练图像2,而xj的每个元素表示各幅训练图像的一个像素。因而,每个矢量xj的尺寸为n,其中n是包含在训练图像中的像素数量。在步骤S2,将样本矢量xj健全地标准化以给出标准化的样本组X`,其包含用于如参考图3更详细描述的每个样本矢量xj的相应标准化样本矢量xj`。
在步骤S3,构建用于组X`的健全的零模式模型,并且在步骤S4,使用健全的零模式模型构建健全的匹配功能。之所以称为健全的零模式模型,因为其创建并不依赖于特征系统分析,并且同样地,该模型未包括特征矢量。可以说,特征矢量表示数据的“变化模式”,所述特征矢量从所述数据获得。因而,不具有特征矢量的模型称为“零模式”模型。在步骤S5,使用在步骤S4计算得的健全匹配函数,对每个样本矢量xj`计算可能性评估值pj。在步骤S6,基于可能性估计值pj而计算每个样本矢量xj`的权重wj。以这种方式计算的权重基于与每个矢量xj`相关的置信水平,置信水平指示在给出该组训练图像的变化时每个矢量xj`是否是该组训练图像的有效成员。将参考图4更详细地描述步骤S3至S6的处理。
这样,如果样本组X包括未正确地表示模型将表示的该类图像的至少一些矢量,那么本文所述的方法配置使得与未正确地表示该类图像的训练图像相关的矢量对所创建的模型具有相对低的影响。即,当在样本组X中存在错误时,这些错误对模型具有相对低的全面影响。这导致创建被认为是健全的模型。
在步骤S7,如参考图5更详细所述,在标准化样本组X`上实施已加权主成分分析。
现在,将参考示出在图2的步骤S2实施的处理的图3,更详细地描述健全地标准化样本组X以计算标准化样本组X`的处理。
参考图3,在步骤S10,对该组样本矢量X计算中心点矢量m。中心点矢量是尺寸为n的矢量,其中m、mi的每个元素是在样本组X上计算得的每个像素xi的中值。通过使用中值,减少或甚至消除输入矢量中异常值(outlier)像素的效果。更特别地,虽然一些已知的统计模型取决于基于每个像素的中值的中心点矢量,但是这些方法受到异常值像素的不合需要地影响。通过以上述方式使用中值而克服该问题。
在步骤S11,计算扩展矢量σ。扩展矢量是尺寸为n的矢量,其中σ、σi的每个元素是在样本组X上的每个像素xji的中值绝对偏差(MAD)。根据公式(1)计算MAD值σi
σi=median(|xji-mi|,j=1...s) (1)
同样,使用MAD作为扩展的测量值,对于确保异常值像素未过度地影响所创建的模型而言,是有效的。虽然如上所述这是使用MAD值的一个有利属性,但是当使用诸如标准偏差的测量值以指示扩展时未实现这种优点。
在步骤S12,对X中的每个样本矢量xj计算矢量模||xj||。根据下面所示的公式(2)计算矢量x的矢量模。
| | x | | = Σ i = 1 n | m i + W norm ( x i - m i , σ i ) ( x i - m i ) | - - - ( 2 )
函数Wnorm是根据下文所示的公式(3)计算的Cauchy函数。
W norm ( x i - m i , σ i ) = 1 ( 1 + ( x i - m i βσ i ) 2 ) - - - ( 3 )
参数β确定与不良数据相关的不利结果(penalty)。发明者已经发现对于3.5的β值是有效的。然而,将意识到的是,在公式(3)中可以使用其他β值,并且事实上,可以适当地使用与公式(3)中不同的加权函数。
在步骤S13,根据下文所示的公式(4),通过将在步骤S12计算得的矢量模||xj||应用于每个样本矢量xj,而计算标准化矢量xj`的标准化样本组X`。
xj`=||xj||-1xj,j=1...s (4)
根据前述讨论,将意识到,使用样本组X上的中值和MAD值以标准化输入矢量,减少了异常值像素或不良像素的影响。上述的标准化处理确保了当在样本组中包括不良实例是,该模型是具有弹性的。当样本组X包括表示并未正确表示样本组所表示的该类图像的一些训练图像的矢量时,仍然可能具有良好的辨别力。
现在将参考示出在图2的步骤S3至S6实施的处理的图4,更详细地描述计算权重wj的组W,其中每个wj对应于一个标准化的样本矢量xj`。
参考图4,在步骤S15,根据该组标准化样本矢量X`计算尺寸为n的中心点矢量m`,中心点矢量m`的每个元素是该组标准化样本矢量x`上的该元素的中值。在步骤S16,对于X`计算尺寸为n的扩展矢量σ`。扩展矢量σ`包括用于每个像素的MAD值。将意识到,以与在图3的步骤S10和S11以及与前述相同的方法,计算中心点矢量m`和扩展矢量σ`,但是现在将基于组X`,而非组X。
在步骤S17,计算剩余矢量rj的组R,每个矢量rj的尺寸为n,其中对于标准化训练组X`的每个成员计算一个剩余矢量rj。根据如下所示的公式(5)计算每个剩余矢量rj
rj=xj`-m`,j=1...s (5)
在步骤S18,计算匹配函数值fj的组F,其中每个fj对应于标准化训练组xj`的一个成员。根据如下所示的公式(6)计算匹配函数值的每个质量:
f j = Σ i = 1 n ( r ji σ i ` ) 2 , j = 1 . . . s - - - ( 6 )
其中rji是与样本矢量xj`相关的剩余矢量rj的第i个元素,而σi`是步骤S16计算的扩展矢量σ`的第i个元素。
在给出训练图像组中的变化范围,值fj指示矢量xj`表示由训练图像所表示的图像类的有效实例的可能性。较小的fj值指示矢量xj`更可能是有效实例,而当xj`=m`时产生的值fj=0。
在步骤S19,计算组F的中值mF,而在步骤S20,计算MAD,组F的σF。在步骤S21,为了便于计算根据公式(8)计算值k:
k=2(mFF)2 (8)
在步骤S22,计算概率pj的组P,其中每个概率pj基于该组F的匹配函数值fj。该方法假设匹配函数值fj形成χ2分布。采用χ2分布的假设以及组F中的值fj的中值和MAD,使用如下公式(9)所给出的标准算法计算值pj
pj=(mF/k)χ2(kfj/mF,k),j=1...s (9)
在步骤S23,对于组P中的每个概率pj,根据如下给出的公式(10)计算权重wj
wj=min(1,αpj) (10)
其中α=10,而函数min返回其自变量的最小值。可见的是,对于大于阈值的任何概率值pj,权重wj取值为1。小于0.1的概率值pj具有正比于其成比例的概率而逐渐减少的贡献。
再参考图2,已经描述了在步骤S6计算权重wj的处理。在图2的步骤S7,与标准化矢量xj`一同处理权重wj,以获得加权协方差矩阵C,并且在该加权协方差矩阵C上执行特征系统分析。
现在将参考示出了在图2的步骤S7处执行的处理的图5,而描述对从该组样本矢量X`产生的加权样本协方差矩阵执行特征系统分析的处理。
参考图5,在步骤S25,根据如下给出的公式(11)而计算加权原点矢量mW
m w = ( Σ j = 1 s w j ) - 1 Σ j = 1 s w j x ` j - - - ( 11 )
其中值是与样本矢量相关的权重wj,并且参考图4在图2的步骤S6计算。
在步骤S26,根据公式(12)对每个样本矢量xj`计算差矢量δxj
δxj=xj`-mw,j=1...s (12)
所期望的是,根据公式(12)给出的差矢量而确定协方差矩阵C。由公式(13)限定协方差矩阵:
C = ( Σ j = 1 s w j ) - 1 Σ i = 1 s w j ( δ x j δ x j T ) - - - ( 13 )
可以使用公式(14)创建矩阵C:
C=DDT (14)
其中D是由公式(15)限定的(n×s)加权数据矩阵:
D = ( w j Σ i = 1 s w i ) δ x j , j = 1 , . . . , s - - - ( 15 )
其中j是D的栏数。
在步骤S27,根据公式(15)构建矩阵D,而在步骤S28,计算由公式(14)限定的协方差矩阵C的特征系统。在步骤S29截短所创建的特征系统,以给出矩阵P,其中P是(n×t)的矩阵,而t是P中保留的特征矢量的数量。
在每个样本矢量中元素数量的值n小于或等于样本矢量的值s时,明确地构建矩阵C=DDT,并且在步骤S28确定其特征系统。可以使用用于计算特征矢量和特征值的任何已知方法。然而,通常的情况是,指示样本矢量数量的值s小于只是每个样本矢量中像素数量的值n。根据参考图6在下文描述的计算较简单的处理,可以执行步骤S28处的计算,其中经由较小的矩阵DTD的特征系统而建立C=DDT的特征系统,而正是如上所述的情况。
参考图6,在步骤S31,计算该(s×s)矩阵DTD的特征值λi和标准正交特征矢量qi。可以使用计算特征矢量和特征值的任何已知方法。
可示出的是,矩阵DTD的特征值λi也是如下所给出的矩阵DDT的特征值。
定义为:
(DTD)qi=λiqi (16)
在公式(16)的两侧乘以D,得到:
(DDT)(Dqi)=λi(Dqi) (17)
根据公式(16)和(17),可见的是,Dqi是矩阵DDT的特征矢量,而特征值λi是矩阵DDT和DTD共有的。为了维持DDT的特征矢量的标准正交性,在步骤S33如下设置pi和Dqi矢量的大小:
p i = 1 λ i Dq i - - - ( 18 )
如下确保特征矢量pi的标准正交性:
因而可见的是,在步骤S33使用较小(s×s)的矩阵DTD(其中s<n)的特征系统,以建立(n×n)矩阵DDT的特征系统。在s小于n的情况下,因而显著地在s远小于n的情况下,计算矩阵DDT的特征系统计算较不复杂。
C的每个特征值指示训练实例和与相应特征矢量相关的加权平均值的方差。以根据特征值幅度的下降而对特征值和相应的特征矢量排序。如参考图5所述的,在步骤S29,截短特征矩阵以得出(n×t)的矩阵P,其中n是每个输入矢量中元素的数量,而t是保留的特征矢量的数量。
通过选择相应于最大特征值的特征矢量,而确定保留的特征矢量的数量,所述特征值共计为总方差的预定比例,总方差是所有特征值的总和。例如,给出具有相应特征值(0.4、0.3、0.2、0.05、0.02、0.01、0.006、0.005、0.005、0.004)的10个特征矢量,并且选择方差的预定比例为0.95,保留第一比4个特征矢量,因为相应于所保留的特征矢量的第一批4个特征值总和为0.95,而总方差是1.0。
矩阵P形成图1的统计模型3的部分,并且传递至图像测试模块4,用于测试其他输入图像5。输入图像由候选矢量y所表示。图像测试模块4设置以确定是否能够找到表示在由已截短的特征系统所确定的空间中一点的矢量b,从而满足公式(20):
y=mw+Pb (20)
其中mw是模型的加权原点矢量,P是已截短的特征矩阵,而b是位置矢量,其表示由已截短的特征系统所定义的空间中的一点。
将意识到,通常不能找到矢量b而精确地满足公式(20),因而需要确定公式(21)给出的误差是否足够小,从而可以认为表示输入图像5的候选矢量y是模型所定义的该类图像的一个实例。
对于给定候选矢量y的重建误差yr由公式(21)给出:
yr=y-(mw+Pb) (21)
由公式(22)给出将参考b解决的问题:
Min(yrTWyr) (22)
其中W是正权重的(n×n)对角矩阵,其中权重反应了y的每个元素中的置信度。即,不将正权重的对角矩阵W施加于矢量yr的元素,而向每个元素给定相等的定值(rating),从而单一反常的元素可能对处理具有不成比例的效果。
公式(22)可以写成公式(23):
Min ( yr T Wyr ) = Min ( yr T W W yr ) = Min ( ( W ( y - ( m w + Pb ) ) T ( W ( y - ( m w + Pb ) ) ) = Min | | W ( y - ( m w + Pb ) ) | | 2 = Min | | W ( ( y - m w ) - Pb ) | | 2 - - - ( 23 )
使用公式(24)给出的已知结果:
关于z的Min||a-Bz||2具有(BTB)z=BTa的解决方案 (24)
对公式(23)的解决方法因而由公式(25)给出:
( W P ) T ( W P ) b = ( W P ) T W ( y - m w ) - - - ( 25 )
其可以简化以给出公式(26)
(PTWP)b=PTW(y-mw) (26)
虽然公式(26)的解决方案只是直接数学意义上的,该直接数学意义的解决方案计算量相当大。因而,如下在图像测试模块4中解出来公式(26),以确定值b,以计算量相对较小的方式提供yr的最小值。现在将参考图7进行描述。
参考图7,在步骤S40,将根据图3的处理标准化、并且相应于图1的输入图像5的测试矢量y,输入至图1的图像测试模块4。测试矢量y表示输入图像5,并且尺寸与图1的每幅训练图像2相同,而y的每个元素对应于每幅训练图像的一个像素。
在步骤S41,初始化尺寸为t的矢量b0的所有元素等于0。在步骤S42,初始化计数器变量c为1。计数器变量c指示有步骤S46至S51所限定的处理的当前迭代。在步骤S43,通过如下的公式(27)所示的,从测试矢量y的相应元素中逐点减去在图5的步骤S25计算得的已加权原点矢量mW的元素,而计算尺寸为n的初始误差矢量yr0
yri 0=yi-mw i,i=1...n (27)
在步骤S44,由如下的公式(28)计算尺寸为n的扩展矢量σ``:
σ i ` ` = c ii , i = 1 . . . n - - - ( 28 )
其中cii是协方差矩阵C的第i个对角元素。值cii是在训练组上与第i个元素相关的总加权方差。在步骤S45,计算权重的(n×n)对角矩阵W0。矩阵W0在对角线上的值由如下公式(29)所限定:
W i , i 0 = Cauchy ( yr i 0 , σ i ` ` ) = 1 ( 1 + ( yr i 0 βσ i ` ` ) 2 ) - - - ( 29 )
而W0的所有其他值等于0。每个值Wi,i指示在y的第i个像素中的置信度。参数β确定与不良数据相关的不利结果。发明者已经发现,β取值5.5,在公式(29)中是有效的。然而,将意识到,可以使用其他β值,并且确实可以使用其他加权函数。
为了下文所述的处理,在步骤S46,根据公式(30)重新定义矢量σ``:
σ i ` ` = ( c ii - Σ j = 1 t λ j p ij 2 ) , i = 1 . . . n - - - ( 30 )
其中pij是在图5的步骤S29计算得的矩阵P的第i,j个元素。在步骤S47,根据如下的公式(31)计算矢量b的第c次迭代bc
bc=bc-1+PTWc-1yrc-1 (31)
其中PT是在图5的步骤S29计算得的矩阵P的转置矩阵。在步骤S48,根据如下的公式(32)计算矢量y的当前近似值yc
yc=mw+Pbc (32)
在步骤S49,根据如下的公式(33)计算误差矢量的第c次迭代:
yrc=y-yc (33)
在步骤S50,根据如下的公式(34)计算矩阵W的第c次迭代:
Wc i,i=Cauchy(yri c,σi``),i=1...n (34)
其中函数Cauchy如公式(29)所定义。
在步骤S51,实施核查以确定是否应当实施步骤S47至S50的处理的其他迭代。在一个实施例中,实施少量预定次数的迭代,例如在1至10的范围内的次数,诸如2或3。如果将实施其他迭代,处理从步骤S51进行至步骤S52,其中在处理返回步骤S47之前,指示当前迭代的c值增加。如果已经实施预定次数的迭代,那么处理从步骤S51进行至步骤S53,其中确定了矢量bc的匹配质量。根据如下的公式(35)或(36)计算匹配质量:
f ′ = e ( 1 W ‾ - 1 ) ( M t n + ( 1 Σ i = 1 n w i ) Σ j = 1 n w j yr j 2 v j ) - - - ( 35 )
f = M t + Σ j = 1 n yr j 2 v j - - - ( 36 )
其中wi=Wi,i、yr=yrc,vj=(σj``)2,而矢量σ``如在图7的步骤S46所定义的,而Mt是Mahalanobis距离。Mahalanobis距离是标准化的距离度量衡,测量与模型所跨越的维度中模型的原点(即中心点矢量)的距离。通过公式(37)计算Mt
M t = Σ 1 i = 1 t b i 2 λ i - - - ( 37 )
其中t是从特征系统分析中保留的特征矢量和特征值的数量,而λi是第i个特征值,而bi是矢量bc的第i个元素。匹配函数f、f`中任一值越低,测试矢量y与模型的匹配越佳,当y=mw时,出现0值。
可见,当权重是每个单位时,f可以根据如下的公式(38)表示:
f ` = M t n + 1 n Σ j = n yr j 2 v j = f n - - - ( 38 )
函数f`加权有缺陷的像素,并且因而允许正确地确定非缺陷像素。根据参考图7所述的处理而对候选矢量y的每个像素计算的权重wi,而对每个像素加权。
输出尺寸为n的矢量wy,其中根据如下公式(39)计算wy
wyi=Wi,i,i=1...n (39)
上述的处理涉及确定由标准化测试矢量y表示的图像满足所创建模型的程度。在许多实际应用中,测试矢量y表示较大的输入图像的一部分。不能精确地预知感兴趣的对象位于较大的输入图像中。
需要确定最为满足所创建的模型的位于较大输入图像中的区域。随后可以确定是否已确定的区域足够好地满足模型,用于推断已确定的区域确实是模型所表示的该类图像的一个实例。可以使用由公式(35)所确定的匹配函数的质量以区分大图像的备选区域以确定最为满足模型的区域,同时可以使用公式(36)所确定的匹配函数的质量以评估在这种图像搜索期间发现的最为满足模型的区域,以确定最为满足模型的区域是否足够满足该模型,以认定该区域表示模型所表示的图像类型。
为了定位最为满足所创建模型的输入图像的区域,对于输入图像的不同区域重复实施参考图7所述的处理,每个区域由输入至图7的处理的一个测试矢量所表示。对于每个测试矢量,可以计算由公式(35)所限定的匹配函数f`的值。可以确定提供匹配函数f`的最佳(即最小)值的图像区域,是最可能充分表示模型实例的输入图像的区域。
通过认定输入图像为搜索点阵(grid),其可以便捷地由输入图像中的像素所限定,而可以实施上述处理。可以根据搜索点阵限定的输入图像的每个区域而创建各个测试矢量,并且将每个测试矢量输出至图7的处理,以形成匹配函数f`的值。每个测试矢量表示由搜索点阵上的特定位置和方向所限定的输入图像的一个区域。虽然该处理能够有效地确定输入图像的区域(由位置和方向所限定),其最优地表示了模型的实例,但是将意识到,假设必须对搜索点阵所限定的输入图像的每个区域重复进行图7的处理以及对匹配函数f`的值的计算,那么计算量较大。
为了减少搜索处理的计算量,可以使用更粗略定义的点阵实施对输入图像的初始搜索。由此,该初始搜索可以提供对表示输入图像中模型最佳实例的图像区域的评估。当已经以该方式识别图像区域时,可以通过以更高分辨率(即使用更精细定义的点阵)执行对已识别区域的进一步搜索,可以改进已确定的区域。基于这种技术的典型搜索方法可以使用乘以因子64的再采样的数据而开始搜索,并且基于该再采样的数据识别图像的区域。然后,后续搜索处理减少再采样(每个阶段乘以因子4),并且持续直到已经使用最高可能的分辨率实施例搜索。将意识到,假设以粗略分辨率处理整个输入图像,而仅适用最精细的分辨率以搜索相对小部分的输入图像,那么使用改变分辨率的这种类型的技术(有时称为“金字塔搜索”)可以在相当大的程度上减少计算复杂性。使用具有合适分辨率的模型,实施金字塔搜索技术的每个阶段。即,使用相对低的分辨率模型实施基于相对粗略点阵的搜索,而使用较高分辨率模型实施基于更精细点阵的搜索。然而,即使使用这种金字塔搜索技术,由于其内在计算复杂性,本文所述的方法仍然需要相当多的时间以执行。
此外,有时需要不将搜索限制于基于像素的点阵,而作为替代地以子像素分辨率进行搜索。即,使用插值法而根据输入图像产生较高分辨率的数据,并且可以以例如在x和y方向上为+/-0.5像素的分辨率搜索较高分辨率的数据。可以使用局部最优技术有效地实施以子像素分辨率进行的搜索,其中由匹配函数f`的在先评估结果确定搜索的方向,这是基于如下假设,即匹配函数值提供了搜索区域内的单一最小值(即,假设匹配函数值是二次项)。虽然以子像素分辨率的搜索提供了改进的结果,但是将意识到的是,这种搜索加剧了计算复杂性的问题。
根据对搜索技术的前述描述,将意识到,虽然可以使用上述搜索模式以识别最为满足模型的输入图像的区域,但是处理可能具有不合要求的计算复杂性。
为了克服上述问题,可以实施现在描述的处理。
图8示出了矩形10,其指示用于产生模型的实例。图8还示出了矩形11,其指示矩形10位移δx所表示的实例。矩形12指示矩形10位移-δx所表示的实例。类似地,矩形13指示矩形10位移δy所表示的实例,而矩形14指示矩形10位移-δy所表示的实例。将意识到,由矩形10所表示的实例还可以位移角度δθ和-δθ。
通过基于输入的实例以及每个输入实例的位移版本(如矩形11、12、13、14所表示的)建立模型,可以将上述的处理应用于测试矢量,并且用于指导如下所述的搜索处理。
图9是示出实施以创建表示训练图像的每个输入矢量的位移版本的处理的流程图。
在步骤S60,接收输入矢量。随后,重复步骤S61至S66的处理(下文所述)七次,以创建包括在样本组X中的七个样本矢量。每个输入矢量以多种预定方式位移,尤其是+/-δx、+/-δy以及+/-δθ。δx、δy和δθ可以取任何合适值。在一个实施例中,δx和δy取值为+/-0.5像素,而δθ取值为+/-0.5°。步骤S61至S66的每次传递创建了一个样本矢量,基于非位移版本的输入矢量,或者基于各自使用一个所示位移的输入矢量的六个位移版本中之一。
在步骤S61,确定将施加至输入矢量的位移量。在步骤S62,实施核查以确定是否应当重新采样训练图像,其将是必须的,除非步骤S61确定无需任何位移。如果需要重新采样,在处理进行至步骤S64之前,处理进行至S63,其中实施重新采样。如果无需任何重新采样,处理从步骤S62直接进行至步骤S64。
在步骤S64,将在步骤S61所确定的位移量编码在所创建的样本矢量中。更特别地,组成样本矢量的像素值增加分别表示δx、δy和δθ的三个元素。随后,在步骤S65,将添加位移量的样本矢量添加至样本组X。
处理从步骤S65进行至步骤S66,其中实施核查以确定是否保留输入矢量的位移进行处理。如果是这种情况,那么处理从步骤S66进行至步骤S61。否则,处理在步骤S67处结束。
上述的处理提供了放大的样本组X,其可以输入至参考图2所述的处理中。以上述参考图3所述方式标准化输入矢量的样本矢量的像素值。此外,指示位移量的矢量的附加元素也标准化,从而与每个位移值(δx、δy和δθ)相关的方差类似于与矢量的每个像素相关的方差。这通过将每个位移值乘以合适的比例因子而实现。在图4的步骤16中,在标准化的训练矢量的组上计算像素扩展矢量σ`。这些值的中值由下式给出:
σ M = median ( σ i ′ ) , i = 1 . . . n - - - ( 40 )
那么,将施加至非像素元素的比例因子由下式给出:
α x = σ M / ∂ x ;
α θ = σ M / ∂ θ
在已经以上述方式创建样本组之后,使用图2的处理可以创建模型。模型将不仅编码可见外观,还编码位移量。更特别地,当处理测试矢量以产生表示测试矢量的模型空间中的点b,测试矢量的模型重建(mw+Pb)将包括知识位移的元素。位移元素从矢量中提取,并且随后通过取公式(41)用于标准化位移元素的比例因子的倒数(即)而适当地缩放,以便于将在矢量上编码的值转换回像素/角度位移。一旦已经提取了位移值,可以使用它们以指导搜索。更特别地,为其创建测试矢量的输入图像内的下一位置,由从矢量(mw+Pb)中提取的位移信息所确定,因而允许搜索更有效地聚焦,并且因而降低总计算复杂度。
将意识到,参考图8和9所述的处理受限于通过在创建样本组X中使用的位移尺寸而指导搜索。因而,在一些实施例中,可以使用金字塔搜索技术,其中使用粗略分辨率搜索而确定合适的区域。随后,较精细的分辨率搜索可以使用上述参考图8和9所述的受指导的搜索技术。受指导的搜索技术可以提供有用信息的分辨率,由创建样本组X中使用的位移幅度所决定。将意识到,所使用的位移幅度可以由技术将应用于的应用所确定。此外,在一些实施例中,每个输入图像可能经历相同方向但是不同幅度的多个位移。
上文已经描述的是,将图7的处理重复应用于多个测试矢量可以允许参考匹配函数f`的值而确定最为满足模型的输入图像的区域。在已经确定提供匹配函数f`的最优值的测试矢量,那么计算由公式(36)为该测试矢量所限定的匹配函数f的值。产生的f值随后可以使用下列方法而转换成概率:
在已经如参考图1所述的而构建模型3之后,将参考图7的模型匹配处理应用至每个标准化训练矢量x′j,j=1...s。使用公式(36)评估因而产生的相应的矢量组bj,j=1...s,以产生一组匹配函数值的质量,F={fj,j=1...s},相应于标准化训练矢量的组。计算和记录组F的中值、mF和MAD、σF。使用函数f的χ2分布的假设,随后,可以使用由如下的公式(42)给出的标准算法,而将由公式(36)所限定的函数f的任何特定值转换成概率。
p=(mF/k)χ2(kf/mF,k) (42)
其中:
k=2(mFF)2 (43)
随后,可以将产生的概率值与阈值比较,以确定最为满足模型的输入图像的区域是否足够满足模型,以推断输入图像的已确定区域表示模型表示的该类图像的实例。
现在参考图10,示出了图像20的训练组,相应于图1的训练图像2。每个白色正方形21是训练图像。将识别的图像部分是圆环22。虽然图像都很相似,但是它们并不相同,并且细节有所改变。例如,限定圆环的线的厚度根据图像而改变。可以认为图像20的训练组表示可接受的变化范围。
在图像20的训练组的每幅图像中,如图10中的亮灰色框23所示,选择对应于将识别的部分(例如圆环)的区域。
将图像20的训练组的已识别区域转换成一组训练矢量。该组训练矢量传递至图1的模型构建模块1,并且基于该组训练矢量构建模型3。图11示出了将测试的测试图像24,以确定是否是基于根据图像20的训练组所产生的模型的可接受图像。可见测试图像20的区域25与所有图像的训练组不同。因而,需要的是图像测试模块4识别基于训练组20不可接受的测试图像24。
当将上述的处理应用于根据测试图像产生的测试矢量时,产生的匹配函数f的值产生了低于阈值的概率值,从而确定测试图像24不完美地满足模型。原因是,图7的处理产生了权重矢量wy,一个权重与已处理的测试矢量的每个元素相关(即,一个权重与测试图像的每个像素相关)。具有低相关权重的像素是与模型偏离最多的像素,并且这样,可以向操作者提供有用的信息,指示测试图像的区域是测试图像不能满足模型的原因。
图12示出了向操作者提供的输出,指示像素26高亮显示为与模型偏离最多的像素。
虽然上述已经描述了本发明的优选实施例,将意识到的是,可以对所述实施例进行各种修改,而不脱离由随附权利要求所限定的本发明的精神和范围。尤其,本发明意于对特征是描述性的,而非限制性。

Claims (19)

1.一种根据一组图像产生模型的计算机实施方法,该方法包括:
处理多个数据项,每个数据项表示所述图像组的一幅图像,以确定所述多个数据项之间的可变性,其中每个数据项是一个矢量,且每个数据项的每个元素表示由该数据项所表示的图像的一个像素值,以及所述可变性包括指示所述多个数据项中每一个像素值的中值绝对偏差的扩展矢量;
基于所述数据项和所述可变性而产生表示所述模型的模型数据,其中每个所述数据项对已产生的模型的影响,由与所述数据项中的每一个相关联的权重所确定,以及每个权重都基于所述数据项中的相应之一和所述扩展矢量的关系。
2.根据权利要求1所述的方法,其中所述多个数据项的每一个是标准化数据项。
3.根据权利要求2所述的方法,还包括:
接收多个初始数据项,每个初始数据项包括多个元素;
根据每个元素在所述多个初始数据项的每一个中的多个值,确定针对该元素的中值。
4.根据权利要求3所述的方法,还包括:
基于每个元素在所述多个初始数据项的每一个中的多个值,确定针对该元素的中值绝对偏差。
5.根据权利要求4所述的方法,还包括:
参考中值和中值绝对偏差而处理各个初始数据项的每个元素,以确定各个初始数据项的标准化因子;以及
通过向各个初始数据项应用所述标准化因子,而产生各个标准化数据项。
6.根据权利要求1所述的方法,还包括对每个所述数据项计算权重。
7.根据权利要求6所述的方法,其中对各个数据项计算权重包括确定各个数据项和平均数据项之间的关系。
8.根据权利要求7所述的方法,其中所述平均数据项是中值数据项。
9.根据权利要求7或8所述的方法,还包括确定指示每个所述数据项中置信度的值。
10.根据权利要求9所述的方法,其中各个数据项的置信度基于各个数据项和平均数据项以及所述数据项的可变性之间的关系。
11.根据权利要求10所述的方法,还包括根据指示每个所述数据项中置信度的所述值而产生概率分布,并且基于所产生的分布确定每个所述数据项的概率值。
12.根据权利要求11所述的方法,其中与特定数据项相关的权重是已确定的概率值的函数。
13.根据权利要求12所述的方法,其中当所述概率位于第一范围中时,所述函数提供第一权重值,而当所述概率位于第二范围中时,所述函数提供第二权重值。
14.根据权利要求1所述的方法,其中产生所述模型包括:
确定每个所述数据项和平均数据项之间的差别关系,以产生多个差值数据项;
将所述权重应用于所述差值数据项;以及
产生矩阵,指示每个已加权差值数据项如何参考其他已加权差值数据项而改变。
15.根据权利要求14所述的方法,其中产生所述模型还包括:
在所述矩阵上执行特征系统分析,以产生多个特征矢量;以及
创建包含至少一些所述多个特征矢量的矩阵。
16.根据权利要求15所述的方法,其中产生所述多个特征矢量还包括产生多个特征值,其中通过处理另一矩阵而产生所述多个特征值,所述另一矩阵尺寸小于所述矩阵。
17.根据权利要求1所述的方法,其中所述模型是统计模型。
18.根据权利要求17所述的方法,其中所述模型具有如下形式:
m+Pb
其中m是平均数据项;
P是指示可允许变化的矩阵;以及
b是模型的实例。
19.一种根据一组图像产生模型的计算机实施装置,该计算机实施装置包括:
用于处理多个数据项的装置,每个数据项表示所述图像组的一幅图像,以确定所述多个数据项之间的可变性,其中每个数据项是一个矢量,且每个数据项的每个元素表示由该数据项所表示的图像的一个像素值,以及所述可变性包括指示所述多个数据项中每一个像素值的中值绝对偏差的扩展矢量;
用于基于所述数据项和所述可变性而产生表示所述模型的模型数据的装置,其中每个所述数据项对已产生的模型的影响,由与所述数据项中的每一个相关联的权重所确定,以及每个权重都基于所述数据项中的相应之一和所述扩展矢量的关系。
CN200980142051.5A 2008-08-21 2009-08-14 使用图像处理对可视对象外观的建模 Active CN102203803B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0815318A GB2462851B (en) 2008-08-21 2008-08-21 Image processing
GB0815318.1 2008-08-21
PCT/GB2009/001985 WO2010020758A1 (en) 2008-08-21 2009-08-14 Visual object appearance modelling using image processing

Publications (2)

Publication Number Publication Date
CN102203803A CN102203803A (zh) 2011-09-28
CN102203803B true CN102203803B (zh) 2016-11-09

Family

ID=39812414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980142051.5A Active CN102203803B (zh) 2008-08-21 2009-08-14 使用图像处理对可视对象外观的建模

Country Status (5)

Country Link
US (1) US8761450B2 (zh)
EP (1) EP2327045A1 (zh)
CN (1) CN102203803B (zh)
GB (1) GB2462851B (zh)
WO (1) WO2010020758A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431386B1 (en) 2004-08-02 2022-08-30 Genghiscomm Holdings, LLC Transmit pre-coding
JP5605228B2 (ja) * 2011-01-07 2014-10-15 富士ゼロックス株式会社 画像処理装置及びプログラム
US10551247B1 (en) 2015-04-27 2020-02-04 National Technology & Engineering Solutions Of Sandia, Llc Global analysis peak fitting for chemical spectroscopy data
JP6707920B2 (ja) * 2016-03-14 2020-06-10 株式会社リコー 画像処理装置、画像処理方法、およびプログラム
US10637705B1 (en) 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access
US10637544B1 (en) 2018-04-24 2020-04-28 Genghiscomm Holdings, LLC Distributed radio system
WO2020176442A1 (en) * 2019-02-25 2020-09-03 Walmart Apollo, Llc Systems and methods of product recognition through multi-model image processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004831A (zh) * 2007-01-25 2007-07-25 北京大学 基于数字图像变换域系数统计模型的水印嵌入及提取方法
WO2007120558A2 (en) * 2006-04-11 2007-10-25 Sony Corporation Image classification based on a mixture of elliptical color models

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365596A (en) * 1992-12-17 1994-11-15 Philip Morris Incorporated Methods and apparatus for automatic image inspection of continuously moving objects
US5596690A (en) * 1993-07-21 1997-01-21 Xerox Corporation Method and apparatus for operating on an object-based model data structure to produce a second image in the spatial context of a first image
US7038680B2 (en) * 2002-01-09 2006-05-02 Xerox Corporation System for graphical display and interactive exploratory analysis of data and data relationships
AU2003301795A1 (en) 2002-11-07 2004-06-07 Honda Motor Co., Ltd. Video-based face recognition using probabilistic appearance manifolds
JP4442119B2 (ja) * 2003-06-06 2010-03-31 オムロン株式会社 画像認識装置および画像認識方法、並びに、画像認識装置のティーチング装置およびティーチング方法
US7657102B2 (en) * 2003-08-27 2010-02-02 Microsoft Corp. System and method for fast on-line learning of transformed hidden Markov models
US7774344B2 (en) * 2005-12-29 2010-08-10 Microsoft Corporation Displaying key differentiators based on standard deviations within a distance metric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120558A2 (en) * 2006-04-11 2007-10-25 Sony Corporation Image classification based on a mixture of elliptical color models
CN101004831A (zh) * 2007-01-25 2007-07-25 北京大学 基于数字图像变换域系数统计模型的水印嵌入及提取方法

Also Published As

Publication number Publication date
GB0815318D0 (en) 2008-09-24
US20110150325A1 (en) 2011-06-23
US8761450B2 (en) 2014-06-24
EP2327045A1 (en) 2011-06-01
CN102203803A (zh) 2011-09-28
GB2462851B (en) 2010-09-15
GB2462851A (en) 2010-02-24
WO2010020758A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
CN102203803B (zh) 使用图像处理对可视对象外观的建模
Dewi et al. Synthetic Data generation using DCGAN for improved traffic sign recognition
Deng et al. Peephole: Predicting network performance before training
Davoudi et al. Structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs
Hoover et al. Allowing the data to speak freely: The macroeconometrics of the cointegrated vector autoregression
Lee et al. Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances
US20200027528A1 (en) Systems and methods for predicting chemical reactions
US11275874B2 (en) Method for constructing a 3D digital model from a 2D plan
Luleci et al. Generative adversarial networks for labeled acceleration data augmentation for structural damage detection
US20030063780A1 (en) System and method of face recognition using proportions of learned model
Shore et al. Spectral goodness of fit for network models
CN108682007A (zh) 基于深度随机森林的jpeg图像重采样自动检测方法
US20230160993A1 (en) High-resolution sound source map obtaining and analyzing method and system using artificial intelligence neural network
Nero et al. Concept recognition in production yield data analytics
CN103310229B (zh) 一种用于图像分类的多任务机器学习方法及其装置
Muin et al. Human–Machine Collaboration Framework for Bridge Health Monitoring
Omer et al. Image anomalies detection using transfer learning of ResNet-50 convolutional neural network
Rofatto et al. An artificial neural network-based critical values for multiple hypothesis testing: data-snooping case
US20210374535A1 (en) Method, apparatus, and non-temporary computer-readable medium
Masalmah et al. A full algorithm to compute the constrained positive matrix factorization and its application in unsupervised unmixing of hyperspectral imagery
Olieman et al. Fitness-based linkage learning in the real-valued gene-pool optimal mixing evolutionary algorithm
Christensen et al. Revised network loadings
Mok Reject inference in credit scoring
Xu et al. Knowledge transfer between buildings for seismic damage diagnosis through adversarial learning
Wickert et al. Supporting the Management of Humanitarian Operations Concerning Migration Movements with Remote Sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240112

Address after: British North Yorkshire

Patentee after: AI Innovation Group Co.,Ltd.

Address before: British summer

Patentee before: 4SIGHT IMAGING Ltd.