CN102201869A - 基于ofdm技术的太赫兹光载无线通信系统装置及方法 - Google Patents

基于ofdm技术的太赫兹光载无线通信系统装置及方法 Download PDF

Info

Publication number
CN102201869A
CN102201869A CN2011101377868A CN201110137786A CN102201869A CN 102201869 A CN102201869 A CN 102201869A CN 2011101377868 A CN2011101377868 A CN 2011101377868A CN 201110137786 A CN201110137786 A CN 201110137786A CN 102201869 A CN102201869 A CN 102201869A
Authority
CN
China
Prior art keywords
ofdm
signal
electric
communication system
system device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101377868A
Other languages
English (en)
Inventor
李瑛�
文双春
陆顺斌
郑之伟
范滇元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN2011101377868A priority Critical patent/CN102201869A/zh
Publication of CN102201869A publication Critical patent/CN102201869A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种基于OFDM技术的太赫兹光载无线通信系统装置及方法。基于OFDM技术的太赫兹光载无线通信系统装置包括中心站、基站和用户单元,中心站通过单模光纤与基站连接,基站将中心站产生的OFDM太赫兹波信号通过高频天线发射,最后由用户单元进行无线接收。本发明的装置及方法可以有效的解决光纤通信中的色散和偏振模色散方面所存在的问题,同时可以提高信道带宽的利用率,实现稳定的、长距离的通信。

Description

基于OFDM技术的太赫兹光载无线通信系统装置及方法
技术领域
本发明涉及能实现长距离传输高速率信号无线通信系统,具体是一种基于OFDM(正交频分复用)技术的太赫兹光载无线通信系统装置及方法。
背景技术
根据Edholm法则,无线通信的带宽需求每十八个月增长一倍。在过去的三十年中,无线通信的发展印证了这一规律。按照目前的无线传输能力,可以推断出十年后无线速率的需求将达到10Gbit/s以上。根据香农定理可知,取得如此高的无线传输速率,载波的频率要达到100G以上,从而进入了太赫兹频段(0.1~10THz)。太赫兹通信技术将是未来无线通信的主要手段。
由于太赫兹波信号在空气中传输距离短,且太赫兹电子器件发展还不成熟,直接的太赫兹无线通信难以成行。但是,太赫兹光载无线通信系统(Terahertz-Over-Fiber System,简称为TOF系统)可以很好的解决这一问题。TOF系统是在中心站中将太赫兹波和数据信号同时调制到光载波上,并通过光纤传输到基站,在基站中只需要进行光电转换和放大,将数据信号通过天线发送到用户端,因而基站的结构可变得简单。从而,TOF系统可以满足太赫兹波无线通信的要求。
太赫兹波的产生是降低造价和提高TOF系统性能的关键技术之一。至今为止,已提出适用于通信的太赫兹波产生方法有三种:全电子学倍频法,微波光子学方法和量子阱级联激光器。而对于TOF系统,微波光子学方法因其可以产生稳定的太赫兹波且结构简单被广泛采用。TOF系统的一大优点是可以通过光纤实现远程拉远后再进行无线传输,而光纤通信面临着色散(CD)和偏振模色散(PMD)两大问题。传统上,色散可以被色散补偿光纤(DCF)补偿。由于偏振模色散(PMD)的具有动态性,所以至今没有有效的方法补偿。
OFDM技术已在宽带数据通信和无线通信等领域中广泛应用。OFDM技术具有高的频谱效率、对时延扩张免疫、可以抗频率选择性衰落、信道均衡简单等特点。OFDM技术中的信道均衡可以运用到光纤通信。信道均衡加上信道编码可以帮助抑制色散(CD)和偏振模色散(PMD)。OFDM的高频谱效率也可以提高信号带宽的利用率。
因此,基于OFDM电信号调制的TOF系统可以有效的抑制色散(CD)和偏振模色散(PMD),同时可以提高信道带宽的利用率,实现稳定的、长距离的通信。
发明内容
本发明旨在提出一种基于OFDM技术的太赫兹光载通信系统的装置及方法,有效地解决光纤通信中的色散和偏振模色散方面所存在的问题,同时提高信道带宽的利用率,实现稳定的、长距离的通信。
为解决上述技术问题,本发明所采用的技术方案是:基于OFDM技术的太赫兹光载无线通信系统装置,包括中心站、基站和用户单元,中心站通过单模光纤与基站连接,基站将中心站产生的OFDM太赫兹波信号通过高频天线发射,最后由用户单元进行无线接收。
所述中心站包括单模激光器、微波信号源、电倍频器、强度调制器、光滤波器、光纤放大器和电OFDM产生单元,单模激光器,强度调制器、光滤波器、光纤放大器依次连接,微波信号源通过电倍频器与强度调制器连接,电OFDM产生单元与光纤放大器连接。
所述基站由光电探测器、电放大器和天线依次连接构成。
所述用户单元包括天线、本振、混频器和电OFDM检测解调单元,天线、混频器、电OFDM检测解调单元依次连接,本振与混频器连接。
所述强度调制器采用的是马赫-曾德尔强度调制器。
所述光滤波器采用光交错复用器。
所述光电探测器采用UTC-PD探测器。
基于OFDM技术的太赫兹光载无线通信系统装置的通信方法为:
1)中心站产生调制有电OFDM信号的一阶边带,通过光纤传输到基站;
2)基站将调制有电OFDM信号的一阶边带光电转换成电信号通过天线辐射给用户单元;
3)用户单元相干解调出原始OFDM信号,再输入到电OFDM检测解调单元完成通信。
作为优选方案,微波信号源采用市售的美国安捷伦公司E8257D型号信号发生器。由于马赫-曾德尔强度调制器(MZM)具有非线性的调制特性,进行模拟调制时会产生一系列谐波,因此本发明优选其作为强度调制器来实现光倍频。光滤波器可采用光交错复用器对光信号中心载波进行滤除。由于单一载流子渡越光电二极管(UTC-PD)的响应度较高,所以光电探测器选用UTC-PD。
本发明的工作原理及过程是:利用单模激光器产生一个连续光信号;同时,采用微波信号源产生一个低频微波信号,经过一个电信号倍频器在电域倍频后,产生高频微波信号,驱动强度调制器直接调制光信号:
由微波源信号ERF(t)=VRFcos(ωRFt+θ)驱动马赫-曾德尔强度调制器MZM,将微波信号调制在光载波E0=Acos(ωct)上,则输出的光信号可表示为:
E out ( t ) = A 2 { cos ( ω c t + V dc π V π + V RF V π π cos ( ω RF t ) + cos ( ω c t + V dc π V π cos ( ω RF t + θ ) ) ) } - - - ( 0 )
其中,VRF为微波信号的幅度,Vπ为MZM的半波电压,Vdc为直流偏置电压,ωRF为微波源频率,ωc为光载波频率,θ为微波信号的相位。
(1)式中置θ=π,Vdc=Vπ/2,通过Bessel展开,近似表示为:
E out ( t ) ≅ A 2 { J 0 ( x ) cos ( ω c t ) - J 1 ( x ) [ sin ( ( ω c - ω RF ) t ) + sin ( ( ω c + ω RF ) t ) ] } - - - ( 2 )
其中
Figure BDA0000063649900000043
表示为MZM的调制深度。
由上可知,双边带调制信号的光谱能量主要集中在频率为ωc的中心载波和频率分别为(ωcRF)和(ωcRF)的两个一阶边带上,(ωcRF)和(ωcRF)两个一阶边带的频率差两倍于微波驱动信号频率。这两个一阶边带由同一个光源调制产生,因此是相干的。利用光滤波器滤除中心载波频率成分,只保留相干的两个一阶边带,再将剩余的两个一阶边带通过光纤放大器进行功率放大后,输入到光电探测器,可以得到的电信号为,
I = R [ P 1 + P 2 + 2 P 1 P 2 cos ( ( ω 1 - ω 2 ) t + ( φ 1 - φ 2 ) ) ] - - - ( 3 )
其中,R表示为光电探测器转换效率,ω1,ω2分别表示为输入到光电探测器两个光波的频率,φ1,φ2分别表示为输入到光电探测器两个光波的相位,P1,P2分别表示为输入到光电探测器两个光波的光功率。
cRF)和(ωcRF)的两个一阶边带同一个光源调制产生,是相干的光波,即φ12为常量,其频率差为微波源频率ωRF的两倍,因而可以通过光电探测器拍频产生电太赫兹信号。
数字基带信号经过OFDM调制后可以得到:
s ( t ) = Σ k = - N / 2 + 1 N / 2 c k e j ω k t , ωk=2π(k-1)/ts                        (4)
其中N为子载波数,
Figure BDA0000063649900000052
为4-QAM数字数据,ωk为第k个子载波的角频率,ts为符号周期;然后对基带OFDM信号的实部和虚部进行频率为ωIF的中频同相/正交(I/Q)调制,得到中频OFDM信号,可以表示成:
V IF ( t ) = Re ( Σ k = - N / 2 + 1 N / 2 c k e j ω k t . e j ω IF t ) - - - ( 5 )
Re(.)表示取实部。式(5)可以表示成三角函数形式:
V IF ( t ) = P ( t ) cos ( ω IF t + φ ( t ) ) - - - ( 6 )
其中P(t)=Q2(t)+I2(t),
Figure BDA0000063649900000055
Figure BDA0000063649900000056
分别表示OFDM基带信号的实部和虚部。
激光二极管(LD)发出的连续光波(CW),表示为
Figure BDA0000063649900000057
其中P0为光载波功率,ωc为光载波的角频率,输入到直流偏置电压为vπ的MZM调制器中被两路互为推挽信号的射频信号Vm(t)=Vmcos(ωRFt)以载波抑制方式调制,输出的载波抑制光波信号可以表示为:
E out ( t ) = - P 0 J 1 ( x ) [ cos ( ω c t - ω RF t ) + cos ( ω c t + ω RF t ) ] - - - ( 7 )
其中
Figure BDA0000063649900000061
Vπ为调制器半波电压,输出的信号只包含一阶上边带和一阶下边带,其余的边带信号和中心载波都由于功率太小而被忽略。中频OFDM信号驱动直流偏置电压为vπ的MZM调制器以载波抑制调制的方式调制到一阶边带,可以表示为:
E out 1 ( t ) = - P 0 J 1 ( x ) { cos ( ω c t - ω RF t + + V IF ( t ) )
+ cos ( ω c t + ω RF t + V IF ( t ) ) } - - - ( 8 )
该信号经过色散光纤传输到基站,由于色散的影响,每个频率成分将有不同的相移,定义
Figure BDA0000063649900000064
表示各个频率分量的相移,其中ωi表示频率分量相对于光中心载波ωc的频率偏移,L为传输距离。将VIF(t)代入上式,可以得到:
Figure BDA0000063649900000065
Figure BDA0000063649900000066
由于调制器的调制深度很小,式(9)中忽略了子载波之间的交叉调制影响。该信号经过光电检测器拍频产生中心频率为2ωRF的电毫米波信号可以表示为:
Figure BDA0000063649900000067
最后经过毫米波相干解调去除ωRF分量,进行中频I/Q解调后,得到OFDM基带信号。
本发明将高频电信号通过强度调制器在调制端将其调制到光波上,产生双边带光信号,实现光倍频,再将OFDM信号调制到一阶边带上,通过光电探测器得到OFDM太赫兹波信号,在通过天线传输给用户单元,最后相干解调后输入到电OFDM检测解调单元完成通信。用外部调制的方法产生太赫兹波,一方面处于成本上考虑,由于光学上的光源、光放大器件、调制器都已经商用了,技术非常成熟,价格相对便宜。另一方面,频率为100GHz以上的太赫兹信号在电域上非常难处理,面临无法突破的电子瓶颈。而用外部调制器产生的太赫兹波,具有相位噪声低、器件带宽要求低的优点,再加上太赫兹波如今还没有合适的低损耗的传输介质,其在大气和普通介质中传输损耗很大,而两个频率差为数百吉赫兹的一阶光边带信号在光纤中传输损耗小、且信号可以利用光纤放大器放大,因而产生的太赫兹信号的功率可以得到保障。而且OFDM信号可以很好的消除色散和偏振模色散的影响,提高整个通信系统的性能。
附图说明
图1为本发明的实现方案结构示意图。
其中:
1:中心站(CS);2:单模光纤;3:基站(BS);4:用户单元(CU);
1-1:单模激光器;1-2:强度调制器;1-3:电倍频器;1-4微波信号源;1-5:光滤波器;1-6:强度调制器;1-7:光纤放大器;1-8:电OFDM产生单元;3-1:光电探测器;3-2:电放大器;3-3:天线;4-1:天线;4-2混频器;4-3:本振;4-4:电OFDM检测与解调单元。
具体实施方式
下面结合具体实施例和附图,对本发明作具体说明。
由图1所示,本实施例提出一种基于OFDM技术的太赫兹光载无线通信装置,包含的部件及其功能分别说明如下:
中心站1,用于产生调制有OFDM信号的一阶边带光信号;
单模光纤2,用于传输调制有OFDM信号的一阶边带光信号;
基站3,用于辐射OFDM太赫兹信号;
用户单元4,用于接收并解调OFDM太赫兹信号;
单模激光器1-1,用于产生指定波长的单纵模光载波;
强度调制器1-2,用于对指定波长的单纵模光载波进行双边带调制,本实例优选采用马赫-曾德尔强度调制器(MZM);
电倍频器1-3,用于将低频微波信号源电四倍频为高频的微波信号,本实例采用市售的电倍频器;
微波信号源1-4,用于产生可调频率的低频微波信号,本实施例采用市售的微波信号发生器;
光滤波器1-5,用于滤除调制信号的中心载波,保留两个一阶边带;
强度调制器1-6,用于将电OFDM信号调制到一阶光边带上;
光纤放大器1-7,用于对光太赫兹波信号功率进行放大;
光电探测器3-1,用于将光OFDM太赫兹信号转变为电OFDM太赫兹信号,本实施例采用市售的光电探测器;
电放大器3-2,用于对电OFDM太赫兹信号进行功率放大;
天线3-3,用于将电OFDM太赫兹信号以太赫兹波的形式发射出去,本实施例采用市售的太赫兹天线;
天线4-1,用于接收太赫兹波信号,实施例采用市售的太赫兹天线;
混频器4-2,用于对OFDM太赫兹信号的相干解调;
本振4-3,用于对OFDM太赫兹信号相干解调,本实施例采用市场售的太赫兹源;
电OFDM检测与解调单元4-4,用于检测与解调OFDM信号。
本发明所采用的基于OFDM技术的太赫兹光载无线通信装置工作工程如下:
利用单模激光器1-1产生一个连续光信号;采用市售的美国安捷伦公司E8257D型号信号发生器发出微波信号1-4,再经过电信号倍频器1-3的倍频和放大后,驱动强度调制器1-2实现光信号的双边带调制;再通过光滤波器1-5滤除调制光信号的中心载波,得到两个一阶边带信号,其频率差间隔为太赫兹频段;接着电OFDM产生单元1-8输出信号与两个一阶边带信号驱动强度调制器1-6,将OFDM信号调制到两个一阶边带上;通过光纤放大器1-7对调制有OFDM信号的一阶边带信号功率进行放大,经过光纤2传输到基站3;然后利用光电探测器3-1,产生电太赫兹波信号,通过电放大器3-2进行功率放大后经天线3-3发射给用户单元4;用户单元天线4-1接收到的OFDM太赫兹信号与本振一起驱动混频器4-2,解调出OFDM信号,最后送入电OFDM检测和解调单元4-3,完成通信。
本实施例利用强度调制器将电倍频后的微波信号调制到光信号上,实现双边带调制,产生光生太赫兹波信号,再通过两级调制的方式将OFDM信号调制到太赫兹波上。与以往的产生太赫兹波信号方式相比,本实施例结合了电子学和光子学产生太赫兹波的方式。有效的克服了两者的不足,不仅大大提高了无限传输的信息荣来那个,而且使得太赫兹波可以通过光纤进行远距离传输。除此之外,通过传输OFDM信号可以很好的克服光纤传输过程中遇到的色散和偏振模色散等问题。基于OFDM技术的太赫兹光载无线系统延续了光纤-无线系统结构简单、成本低、可移植性好的特点,此外借助光纤介质还可以实现对光太赫兹信号的长距离传输,更利于太赫兹波的实际应用。

Claims (8)

1.一种基于OFDM技术的太赫兹光载无线通信系统装置,包括中心站、基站和用户单元,其特征在于,中心站通过单模光纤与基站连接,基站将中心站产生的OFDM太赫兹波信号通过高频天线发射,最后由用户单元进行无线接收。
2.根据权利要求1所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述中心站包括单模激光器、微波信号源、电倍频器、强度调制器、光滤波器、光纤放大器和电OFDM产生单元,单模激光器,强度调制器、光滤波器、光纤放大器依次连接,微波信号源通过电倍频器与强度调制器连接,电OFDM产生单元与光纤放大器连接。
3.根据权利要求1所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述基站由光电探测器、电放大器和天线依次连接构成。
4.根据权利要求1所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述用户单元包括天线、本振、混频器和电OFDM检测解调单元,天线、混频器、电OFDM检测解调单元依次连接,本振与混频器连接。
5.根据权利要求2所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述强度调制器采用的是马赫-曾德尔强度调制器。
6.根据权利要求2所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述光滤波器采用光交错复用器。
7.根据权利要求3所述的基于OFDM技术的太赫兹光载无线通信系统装置,其特征在于,所述光电探测器采用UTC-PD探测器。
8.根据权利要求1所述的基于OFDM技术的太赫兹光载无线通信系统装置的通信方法,其特征在于,该方法为:
1)中心站产生调制有电OFDM信号的一阶边带,通过光纤传输到基站;
2)基站将调制有电OFDM信号的一阶边带光电转换成电信号通过天线辐射给用户单元;
3)用户单元相干解调出原始OFDM信号,再输入到电OFDM检测解调单元完成通信。
CN2011101377868A 2011-05-25 2011-05-25 基于ofdm技术的太赫兹光载无线通信系统装置及方法 Pending CN102201869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101377868A CN102201869A (zh) 2011-05-25 2011-05-25 基于ofdm技术的太赫兹光载无线通信系统装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101377868A CN102201869A (zh) 2011-05-25 2011-05-25 基于ofdm技术的太赫兹光载无线通信系统装置及方法

Publications (1)

Publication Number Publication Date
CN102201869A true CN102201869A (zh) 2011-09-28

Family

ID=44662280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101377868A Pending CN102201869A (zh) 2011-05-25 2011-05-25 基于ofdm技术的太赫兹光载无线通信系统装置及方法

Country Status (1)

Country Link
CN (1) CN102201869A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544985A (zh) * 2011-12-31 2012-07-04 湖南大学 基于调制不稳定性的光纤型太赫兹波产生装置及方法
CN102710305A (zh) * 2012-04-19 2012-10-03 惠州Tcl移动通信有限公司 一种基于太赫兹无线通信的数据传输方法及系统
CN103259598A (zh) * 2013-05-21 2013-08-21 桂林电子科技大学 基于ira码的ofdm光纤无线通信方法和系统
CN103873151A (zh) * 2014-03-10 2014-06-18 北京遥测技术研究所 一种兼容微波、激光和量子通信的星载集成通信系统
CN104363051A (zh) * 2014-11-24 2015-02-18 北京邮电大学 一种光纤无线一体化系统
CN105141372A (zh) * 2015-09-16 2015-12-09 成都福兰特电子技术股份有限公司 太赫兹无线通讯系统
CN108092929A (zh) * 2017-12-27 2018-05-29 北京理工大学 一种用于太赫兹通信的同步方法
CN108521300A (zh) * 2018-06-06 2018-09-11 东莞理工学院 一种光载无线射频信号产生装置及方法
CN112235026A (zh) * 2020-11-06 2021-01-15 郑州大学 一种mimo-ofdma太赫兹通信系统的混合波束设计方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794953A (zh) * 2010-02-01 2010-08-04 湖南大学 基于光学四波混频效应的太赫兹波产生装置及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794953A (zh) * 2010-02-01 2010-08-04 湖南大学 基于光学四波混频效应的太赫兹波产生装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姚建铨等: "《太赫兹通信技术的研究与展望》", 《中国激光》 *
李瑛: "《微波光子学中的毫米波产生及应用研究》", 《中国博士学位论文全文数据库(电子期刊)》 *
董泽等: "《基于60GHz光毫米波的光纤无线传输系统实验研究》", 《中国激光》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544985A (zh) * 2011-12-31 2012-07-04 湖南大学 基于调制不稳定性的光纤型太赫兹波产生装置及方法
CN102710305A (zh) * 2012-04-19 2012-10-03 惠州Tcl移动通信有限公司 一种基于太赫兹无线通信的数据传输方法及系统
CN103259598A (zh) * 2013-05-21 2013-08-21 桂林电子科技大学 基于ira码的ofdm光纤无线通信方法和系统
CN103873151A (zh) * 2014-03-10 2014-06-18 北京遥测技术研究所 一种兼容微波、激光和量子通信的星载集成通信系统
CN103873151B (zh) * 2014-03-10 2016-05-04 北京遥测技术研究所 一种兼容微波、激光和量子通信的星载集成通信系统
CN104363051A (zh) * 2014-11-24 2015-02-18 北京邮电大学 一种光纤无线一体化系统
CN105141372A (zh) * 2015-09-16 2015-12-09 成都福兰特电子技术股份有限公司 太赫兹无线通讯系统
CN108092929A (zh) * 2017-12-27 2018-05-29 北京理工大学 一种用于太赫兹通信的同步方法
CN108092929B (zh) * 2017-12-27 2020-07-28 北京理工大学 一种用于太赫兹通信的同步方法
CN108521300A (zh) * 2018-06-06 2018-09-11 东莞理工学院 一种光载无线射频信号产生装置及方法
CN108521300B (zh) * 2018-06-06 2023-06-16 东莞理工学院 一种光载无线射频信号产生装置及方法
CN112235026A (zh) * 2020-11-06 2021-01-15 郑州大学 一种mimo-ofdma太赫兹通信系统的混合波束设计方法

Similar Documents

Publication Publication Date Title
CN102201869A (zh) 基于ofdm技术的太赫兹光载无线通信系统装置及方法
CN101964683B (zh) 串并联调制光学倍频毫米波RoF系统及其QPSK/16QAM调制方法
CN101777953B (zh) 传输两路信号的光双边带调制装置和方法
CN102710333B (zh) 基于PON/RoF的全双工有线/无线混合接入方法和系统
US20120294616A1 (en) Optical communication system, optical transmitter, optical receiver, and optical transponder
CN101895495A (zh) 正交双偏振差分四相相移键控发射与接收的方法及其系统
CN103414516B (zh) 基于同/外差探测的双向有线/无线混合光接入方法与系统
CN101350671B (zh) 光QPSK调制方式的光学倍频毫米波RoF系统及其生成方法
CN111953425B (zh) 高灵敏度光子辅助超宽带毫米波接收机
Hussien et al. Comprehensive investigation of coherent optical OFDM-RoF employing 16QAM external modulation for long-haul optical communication system
CN101674136B (zh) OFDM调制方式的光学倍频毫米波RoF信号生成系统及方法
CN102427387A (zh) 光通信方法和系统
CN103595477A (zh) 数据信号上变频方法和装置
Zhu et al. Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach–Zehnder modulator to overcome chromatic dispersion
Zhu et al. A novel OCS millimeter-wave generation scheme with data carried only by one sideband and wavelength reuse for uplink connection
CN103067331B (zh) 一种qam光矢量信号产生及远程外差探测装置
CN102324979A (zh) 一种光学四倍频毫米波光载无线通信系统
Wang et al. Photonic filterless scheme to generate V-band OFDM vector mm-wave signal without precoding
CN111917475B (zh) 基于单个调制器同时提供有线和单边带无线业务的系统
CN102255662A (zh) 一种光载无线系统
CN102412899B (zh) 一种高频谱利用率的偏振复用毫米波RoF系统
CN204967822U (zh) 一种自由空间光通信可调谐光相干探测ofdm装置
CN103414503B (zh) 采用相位分集接收相干光正交频分复用接入信号的系统
Zhang Development of millimeter-wave radio-over-fiber technology
CN102811093A (zh) 一种并联调制光学倍频毫米波RoF系统及其QPSK调制方式

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110928