CN102201499A - 电气处理装置及方法、以及探测单元 - Google Patents

电气处理装置及方法、以及探测单元 Download PDF

Info

Publication number
CN102201499A
CN102201499A CN201110082171XA CN201110082171A CN102201499A CN 102201499 A CN102201499 A CN 102201499A CN 201110082171X A CN201110082171X A CN 201110082171XA CN 201110082171 A CN201110082171 A CN 201110082171A CN 102201499 A CN102201499 A CN 102201499A
Authority
CN
China
Prior art keywords
film solar
solar cells
thin
electric processing
probe unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110082171XA
Other languages
English (en)
Inventor
宇田隆
日野卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micronics Japan Co Ltd
Original Assignee
Micronics Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010070658A external-priority patent/JP2011204905A/ja
Priority claimed from JP2010070657A external-priority patent/JP2011204904A/ja
Application filed by Micronics Japan Co Ltd filed Critical Micronics Japan Co Ltd
Publication of CN102201499A publication Critical patent/CN102201499A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种电气处理装置及方法、以及探测单元。本发明涉及一种包含具有吸附水的性质的材料的薄膜太阳能电池的电气处理装置。而且,本发明的电气处理装置包括:薄膜太阳能电池的电气处理所采用的探测单元;和吸引机构,其在采用所述探测单元对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。这样,可以以较短的时间稳定地进行薄膜太阳能电池的电气处理。

Description

电气处理装置及方法、以及探测单元
技术领域
本发明涉及一种电气处理装置及方法、以及探测单元,例如可以适用于检查构成薄膜太阳能电池的太阳能电池单元之间有无短路部、去除短路部等的电气处理。
背景技术
薄膜太阳能电池经由如下的切槽工序而被制造,即,使光透过性的基板侧电极、光电转换半导体层、以及背面电极层叠在长宽约1m的光透过性的玻璃等的基板上,再以一定的间隔(通常数mm~十mm左右)、一定的宽度(通常数十μm~一百μm左右)进行使构成薄膜太阳能电池的太阳能电池单元形成的切槽工序而被制造。在该制造工序中,可能会在相邻的太阳能电池单元之间产生短路部、或者可能会在同一太阳能电池单元的基板侧电极和背面电极之间产生短路部。又,在制造工序中,由于在光电转换半导体层形成有针孔、或者由于杂质的混入,在相邻的太阳能电池单元之间、同一太阳能电池单元的基板侧电极和背面电极之间产生同样的短路部的情况也比较多。
因此,以往,薄膜太阳能电池的制造工序中包含以下工序,即,检查所述短路部的有无,通过对被检测出的短路部施加反向偏置电压使得电流集中于所述短路部,通过产生的焦耳热使得短路部的导通部飞散,或使其氧化并绝缘化,以去除该短路部的工序。
薄膜太阳能电池的所述短路部的检测处理、去除处理、特性测定等的方法在专利文献1、2中揭示。专利文献2通过对太阳能电池单元施加电压来进行太阳能电池单元的特性测定、特性改善,在专利文献1中揭示了能够与这样的太阳能电池单元的表面接触的探针。
薄膜太阳能电池是对上述成为基板的玻璃板涂敷氧化锌、氧化铟锡、氧化锡等透明导电薄膜而做成基板侧电极,并在其上层叠形成在多结晶的氧化硅中混入有决定特性的少量的物质、分别为P层、I层、N层的光电转换半导体层。并且,银薄层等作为背面电极被设置在最上层。太阳光等的激励光从玻璃基板侧透过作为基板侧电极的透明导电薄膜到达氧化硅的各层,并被光激励而在上部的基板侧电极和背面电极之间产生电位差。
近年来,作为光激励材料,除了氧化硅皮膜以外,还使用例如铜、铟、镓、硒等,又,背面电极由于不需要光的透过性,因此除银以外还可以使用大多数导电材料。
另一方面,作为基板侧电极,由于需要光透过性,能够使用的导电材料是有限的。其中,氧化锌除了具有作为太阳能电池电极的目的的良好的电阻率、光透过性以外,还是禁带宽为3.37eV左右的宽禁带半导体,通过掺杂铝、镓、氯或氟而使其低电阻化,而且氧化锌在还原气氛中的耐性优异,氧化锌还具有原料便宜等的特征,其有用性高。
现有技术文献
专利文献
专利文献1:日本专利特开平09-186212号公报
专利文献2:美国专利第4166918号公报
发明内容
发明要解决的问题
但是,在将上述氧化锌使用于基板侧电极时的薄膜太阳能电池的电特性中,有时会发现一系列的不稳定,例如,在被划槽的太阳能电池单元之间施加了电压的情况下,漏电流值收敛到一定值为止的过渡时间发生变动等。其原因被认为是以往由于太阳能电池单元内部的不纯物能级或结晶粒界、其他薄膜的层叠间的接合等导致这样的电特性的不稳定。
由于该薄膜太阳能电池的电特性的不稳定,至今为止,在薄膜太阳能电池的制造工序中,前面所述的所述短路部的检查处理、去除处理需要更花费较长的时间,或者处理精度有时会恶化。
因此,希望有一种能以较短的时间稳定地进行薄膜太阳能电池等的电气处理的电气处理装置及方法、以及探测单元。
解决问题的手段
第一发明的电气处理装置,其特征在于,包括:(1)薄膜太阳能电池的电气处理所采用的探测单元;和(2)吸引机构,其在采用所述探测单元对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
第二发明的电气处理方法,其特征在于,(1)其是对薄膜太阳能电池进行电气处理的电气处理方法,(2)在采用探测单元对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
第三发明的探测单元,其特征在于,具有:(1)与薄膜太阳能电池接触并对所述薄膜太阳能电池进行电气处理的探测单元主体;和(2)吸引机构,在采用所述探测单元主体对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元主体与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
发明的效果
采用本发明,可以以较短的时间稳定地进行薄膜太阳能电池的电气处理。
附图说明
图1是第一实施形态的电气处理装置的概略侧视图。
图2是示出氧化锌的薄膜导电电极的电气特性的实验样本的构成的说明图。
图3是示出氧化锌的薄膜导电电极的电气特性的实验结果的图表。
图4是第一实施形态的电气处理装置的概略截面图。
图5是第二实施形态的电气处理装置的概略侧视图。
图6是通过第二实施形态的吸引管嘴对薄膜太阳能电池进行减压扫描的立体图。
图7是第三实施形态的电气处理装置的概略侧视图。
图8是第三实施形态的探测单元的立体图。
图9是第三实施形态的探测单元基板以及吸引盖的概略上表面图。
图10是第一实施形态的变形实施形态的电气处理装置的概略截面图。
图11是第三实施形态的变形实施形态的探测单元基板的立体图。
符号说明
1……电气处理装置、10……探测单元、11……探测单元基板、12……探针、20……处理对象电池输送机构、30……吸引机构、31……吸引源、32……框体、321……狭缝、322……开口部、B……薄膜太阳能电池。
具体实施方式
(A)第一实施形态
以下,参照附图对本发明的电气处理装置以及方法的第一实施形态进行详细说明。
(A-1)关于薄膜太阳能电池的电气特性
首先,对在本发明的电气处理装置以及方法中成为处理对象的、将上述氧化锌使用于基板侧电极的薄膜太阳能电池的电气特性的实验结果进行说明。
至今为止,氧化锌示出高的水接触角,具有难以被水弄量湿的表面,但近年来,根据傅立叶转换红外分光分析或近红外吸收测定的结果等,也有认为作为与氧化锌同样的物质的氧化铝、氧化钛等与水分子的相互作用强,水分子的吸附量多。
本发明的发明者,在吸附于上述那样的使用氧化锌的基板侧电极(由氧化锌微粒的涂敷膜构成)的水分在薄膜太阳能电池的特性测定等电气处理中产生影响这一预想下进一步进行研究,其结果认为,是不是由于该吸附水分如同具有电容,为测定等而施加的电压对该吸附水分充电,因此由于吸附水分量的影响,被测定的特性无法稳定的得到。
接下来,对根据上述预想进行的有关氧化锌的薄膜导电电极的电特性的实验的结果进行说明。
图2是示出有关氧化锌的薄膜导电电极的电特性的实验样本的构成的说明图。
如图2所示,在玻璃板210上准备了两个薄膜导电电极220-1、220-2,所述两个薄膜导电电极220-1、220-2由80μm的槽230分割并被绝缘分离,且涂敷有厚度大约400nm的氧化锌。
图2所示实验装置通过未图示的电源在薄膜导电电极220-1、220-2之间施加直流电压80V。又,通过未图示的检查装置,在施加了电压时对薄膜导电电极220-1、220-2之间的电流值(漏电流值)进行测定。这与薄膜太阳能电池的实际的检查工序中的漏电流测定、测定各单元之间的绝缘电阻的检查相同。
图3示出对图2所示的薄膜导电电极220-1、220-2之间施加了电压的实验中的施加电压波形和施加了电压时的漏电流波形。
图3(a)是在第一环境(23℃,40%RH)的状态下放置了24小时之后的薄膜导电电极220-1、220-2之间的漏电流测定实验的结果。图3(b)是在第二环境(23℃,80%RH)的状态下放置了24小时之后的薄膜导电电极220-1、220-2之间的漏电流测定实验的结果。
比较图3(a)、图3(b)各自的图中央所示出的漏电流值的话,可知图3(a)的漏电流值在电压施加之后马上表示出约数μA的稳定的漏电流值,但图3(b)中的漏电流经过较长的时间都没有收敛。
根据图3所示的实验结果,验证了以下的预想,即薄膜导电电极220-1、220-2动作为作为其主要成分的氧化锌所吸附的水分恰如具有电容,被施加的电压产生的电荷被充电至该吸附水分,因此表示出该吸附水分的吸附状态、吸附量等的因素会影响电特性的稳定,是漏电流收敛到固有漏电流为止的时间产生偏差的原因。
即,将以上的实验结果一起考虑的话,可以清楚地发现,使用了将以氧化锌作为代表的水分吸附能力大的材料作为主成分的薄膜层构成的太阳能电池单元的电特性不稳定的主要原因之一在于,尽管以往认为是疏水性,但使用氧化锌等的水分吸附能力大的材料的薄膜层具有因吸附水分而损坏电气稳定性的可能性。
由此,要使得使用氧化锌的薄膜导电电极的薄膜太阳能电池的电特性稳定,就需要去除薄膜太阳能电池的吸附水分的吸附水分去除处理。
作为去除薄膜太阳能电池的吸附水分的方法,考虑有对太阳能电池基板加热的方法,但太阳能电池装置一般都是超过一平方米的大面积,对该太阳能电池基板适用加热工序,会产生以下很多的问题,例如对于大面积基板的加热源的配置、成本、加热所要的能量等的问题,还有基板整体升温花费时间导致效率低下、难以得到均匀的加热状态等问题。
又,作为去除薄膜太阳能电池的吸附水分的其他方法,还考虑有将空气流喷在薄膜太阳能电池整个面、或者要进行电气处理的区域的方法,但除了后述那样的吸附水分去除的极限之外,存在于太阳能电池基板上的吸附水分以外的尘埃等比较零乱,例如划槽残渣会混入其他的单元间引起不规则导通可能会使单元发生故障,而且,通过将空气流喷射在薄膜太阳能电池上,由于空气流而脱离的吸附水分被送到空气流的流出方向从而产生新的吸附、或者含有吸附水分的空气流扩散到基板整体,在再吸附这些水分时,吸附水分在基板上分布不均匀,已经测定了这些情况的单元、进行了再吸附时太阳能电池单元以及电极可能会在不均匀劣化的状态下被发货。还有,近年来,基于新材料开发的软材料的使用、对被进一步薄膜化的太阳能电池喷射空气流可能会造成物理损伤,因此并不能期待其发展前途。对于吸附水分、尘埃的扩散,也想到了将空气流的流动方向控制为一定,但是对于如太阳能电池基板那样的具有大面积的基板侧测定装置,由于通过设置在内部的整流板来控制巨大的喷射气流,因此无法避免装置大型化以及成本的增大。
而且,如后述那样,除了薄膜太阳能电池的表面的吸附水分以外的、吸附在薄膜太阳能电池各层内部的吸附水分的去除通过所述各个方法也依然不能实现。
可见,上述的薄膜太阳能电池的特性测定、短路部去除等所使用的电气处理装置的被改善的方法是通过测定时、或者电气处理时的处理方法、尤其是探测单元的改善等来达成的,因此,作为本发明的目的的所述课题的解决通过能够高效率地进行薄膜太阳能电池的吸附水分的去除的吸引机构来达成。并且,利用该吸引机构,通过减压使得上述薄膜太阳能电池的吸附水分、光电转换层的同样的吸附水分的蒸汽压下降,由此环境温度下的沸点下降导致这样的吸附水分的脱离。关于这样的效果,虽然通过例如空气流等的喷射可以期待一些效果,但是如果准备了被干燥到相当程度的气流、和切断作用于形成各层的材料粒子与吸附水分粒子之间的分子间凝聚力(例如,Van Der Waals吸附力等)的强的流速等,吸附在薄膜太阳能电池的各层的表面的水分的脱离可以期待某种程度的效果。这样的薄膜太阳能电池的表面的吸附水分的去除虽然能期待某种程度的效果,但如上所述,存在于薄膜太阳能电池各层内部的吸附水分无法通过该气流去除。尤其是由于,存在于它们内部的吸附水分在上述那样的各层内部的寄生电容形成中占据了较大的部分。
(A-2)第一实施形态的构成和动作
图1是第一实施形态的电气处理装置1的概略侧视图。
电气处理装置1具有探测单元10、处理对象电池输送机构20、以及吸引机构30。电气处理装置1采用探测单元10与处理对象的薄膜太阳能电池B电连接,进行规定的电气处理(例如,上述的短路部的检查处理、去除处理)。另外,薄膜太阳能电池B中使用的是上述的氧化锌的基板侧薄膜电极。
又,虽然图1中省略了图示,但电气处理装置1还具有控制各部分的动作的控制部、使探测单元10动作的驱动源等为了对薄膜太阳能电池B进行电气处理所需要的其他构成。
处理对象电池传送结构20具有传送电动机、输送带等,在未图示的控制部的控制下,将薄膜太阳能电池B输送到电气处理位置,通过探测单元10进行电气处理,在电气处理结束之后,将薄膜太阳能电池B输送到下一个工序。
探测单元10具有安装有多个探针(端子)12的探测单元基板11。
探测单元10在未图示的控制部的控制下,能够相对于薄膜太阳能电池B进行相对的上下活动。探测单元10在处理对象电池输送机构20将薄膜太阳能电池B搬出搬入至规定的检查处理位置时等,位于上方的待机位置,不会妨碍薄膜太阳能电池B的输送。探测单元10在对薄膜太阳能电池B进行电气处理时使探针12与薄膜太阳能电池B的电极接触并使得两者电连接。
关于探测单元基板11以及探针12的构成,设置为与现有的对薄膜太阳能电池进行电气处理的构成相同。另外,设置于探测单元基板11的探针12的数量、位置与设于所接触并电连接的薄膜太阳能电池B的电极相对应,是根据需要来设定的。
吸引机构30在由探测单元10对薄膜太阳能电池B进行处理之前,对薄膜太阳能电池B的至少进行电气处理的区域减压并进行吸附水分的去除处理。
电气处理装置1在薄膜太阳能电池B被搬入时,首先通过吸引机构30进行上述那样的减压处理,其后进行探测单元10的电气处理。
吸引机构30具有吸引源31以及框体32。
框体32被安装为覆盖处理对象电池输送机构20,使得被输送至处理对象电池输送机构20上的薄膜太阳能电池B为大致密闭状态。框体32的材质最好是气密性、刚性高的材料,此处出于耐腐蚀性的考虑采用SUS构成框体32,但是也可采用其他的材料,例如金属或树脂性的材料(例如塑料、橡胶等)。
又,框体32上设有用于将处理对象电池输送机构20上的薄膜太阳能电池B搬入的搬入口、用于将该薄膜太阳能电池B搬出的搬出口,为了将被搬入框体32内的薄膜太阳能电池B保持为大致密闭状态,在搬入口以及搬出口具有开闭机构。通过减压的控制情况、其他的构成将开闭机构简单化,或者也可以省略。
探测单元基板11具有使探测单元10上下活动的驱动机构112,驱动机构112如图1所示,可以固定在框体32的上侧的内表面。
电气处理装置1主体的未图示的控制部、电源等与探测单元基板11之间通过电缆111连接。如图1所示,电缆111通过设在框体32上的孔323连接于电气处理装置1主体侧。另外,孔323与电缆111间的间隙通过堵缝等被埋,但也可以采用其他方法确保密闭性。又,电缆111的长度最好具有不妨碍探测单元基板11上下活动程度的富余。
图4是电气处理装置1的概略截面图。另外,在图4中,探测单元10以及吸引源31等的图示省略。
如图1、4所示,在框体32的侧面,在处理对象电池输送机构20的输送薄膜太阳能电池B的输送路径的附近沿水平方向(沿输送路径的方向)设有狭缝321。又,在框体32的上部分具有开口部322,在开口部322连接有吸引源31。另外,关于框体32,开口部322的位置并还没有限定,但位于对薄膜太阳能电池B进行减压处理的位置的上方附近(在图1的例中,在探测单元10的上方附近)可以高效地进行减压处理。
吸引源31从框体32的开口部322对框体32的内部进行减压吸引。作为吸引源31,可以采用能适合该目的的公知的进行减压吸引的装置。
通过吸引源31对框体32内的内部进行减压时,通过从狭缝321等设置在框体32和薄膜太阳能电池B之间的间隙部将外部的空气导入框体32内,而产生气流。从薄膜导电电极和薄膜太阳能电池B的各面脱离的吸附水分通过该气流被排除,吸附水分从框体32内的排除可以高效地进行。
吸引源14的吸引压力可以调节,其控制方法可以适用公知的方法。吸引源14的减压吸引压力根据工序等进行适当控制。
又,吸引源14的吸引的开始根据工序等在适当的时刻进行,例如在对于薄膜太阳能电池B的电气处理开始之前开始吸引等。
(A-3)第一实施形态的效果
根据第一实施形态,可以得到以下效果。
在电气处理装置1中,通过设置吸引机构30,对薄膜太阳能电池B中的减压区域去除吸附水分,可以保持对薄膜太阳能电池B进行电气处理时的电气稳定。关于采用了具有如所述图3所示的特性的氧化锌电极的薄膜太阳能电池,可以缩短对于薄膜太阳能电池B的电气处理所需要的时间,而且可以提高处理精度。
而且,对于在通过该电气处理装置1进行了检查处理之后实施了密封处理的制品,也可以维持与通过电气处理装置1进行了检查处理时相同的特性,可以提高薄膜太阳能电池制品的品质精度。
又,在第一实施形态中,主要以对薄膜太阳能电池B进行减压处理为目的而设置吸引机构30,但其不仅可以去除通过吸引脱离的吸附水分,而且还可以去除附在薄膜太阳能电池B的表面的尘埃,可以使得薄膜太阳能电池B的电气特性更加稳定。
(B)第二实施形态
以下,参照附图对本发明的电气处理装置以及方法的第二实施形态进行详细说明。
(B-1)第二实施形态的构成和动作
图5是第二实施形态的对处理太阳能电池单元进行处理的电气处理装置1A的概略侧视图。
第二实施形态的电气处理装置1A中,由于仅第一实施形态的吸引机构30被置换为吸引机构30A,因此省略了吸引机构30A以外的构件的详细说明。
第二实施形态的吸引机构30A具有吸引源31、吸引管嘴34、以及吸引管35。
如图5所示,吸引机构30A在处理对象电池输送机构20的输送路径上被配置在探测单元10的输送方向的前方,薄膜太阳能电池B被搬入电气处理装置1A时,首先,通过吸引机构30A进行与第一实施形态相同的减压处理。其后,薄膜太阳能电池B通过处理对象电池输送机构20被输送至探测单元10的位置,利用探测单元10进行电气处理。在图5中,说明的是在输送路径上通过吸引机构30A进行减压处理的位置与通过探测单元10进行电气处理的位置为不同位置的情况,但是进行减压处理的位置并不限定于此,例如,可以在对静止的薄膜太阳能电池B进行了吸引机构30A的减压处理之后,探测单元10移动到同一位置在同一位置进行处理。另外,在同一位置对薄膜太阳能电池B进行减压处理和电气处理的情况下,需要使得探测单元10和吸引机构30A不会妨碍相互的动作。
吸引机构30A具有吸引源31、用来对薄膜太阳能电池B进行减压扫描的吸引管嘴34、和在吸引源31和吸引管嘴34间进行连接的管35。
图6是示出通过吸引管嘴34对薄膜太阳能电池B进行减压扫掠(减圧掃引)的情形的立体图。
吸引管嘴34的形状、大小都没有限定,但如图5、图6所示,形状为设置有其长度与四方形的薄膜太阳能电池B的一边大致相同的吸引口341(开口部),可以得到良好的效果。
在图5、图6中,吸引源31通过吸引管嘴34,对探针12与薄膜太阳能电池B接触并进行处理的部分进行减压吸引。另外,吸引源31可以采用与第一实施形态相同的构件。
在图5中,薄膜太阳能电池B的各面中的位于吸引管嘴34的吸引口341的下方的区域为大致密闭的状态,通过吸引源31的减压吸引,促进吸附水分的脱离并去除吸附水分。
而且,吸引机构30A通过未图示的驱动机构将吸引管嘴34配置在薄膜太阳能电池B的上表面的上方,对薄膜太阳能电池B进行减压扫掠。如图6所示,在吸引口341的长度与薄膜太阳能电池B的一边大致相同的情况下,使吸引管嘴34向一方向扫描的话,可以对薄膜太阳能电池B的全部区域都进行扫掠。
图6中使吸引管嘴34扫描的方向,只要可以扫掠薄膜太阳能电池B的全部即可,扫描的方向、吸引口的朝向、扫描的次数等都没有限定。例如,如图6所示,可以使吸引管嘴34直线式地扫描一次、也可以以管35为轴使吸引管嘴34旋转。又,在图5、图6中,是对薄膜太阳能电池B为四方形的板形状的情形进行说明,在薄膜太阳能电池B为其他形状(例如、三角形、圆形的情况下)的情况下,可以通过组合吸引管嘴34的一系列的扫描来对薄膜太阳能电池B的全部区域进行扫掠。
另外,吸引管嘴34的材质并没有限定,但最好使用气密性、刚性高的材质,在此,出于耐腐蚀性的考虑采用SUS构成,但也可以采用其他的材料、例如金属、树脂性的材料(例如、塑料、橡胶等)。虽没有限定管35的材质,但最好采用气密性高、具有不妨碍吸引管嘴34的动作的可挠性的材质,例如可以使用橡胶等。
吸引源31的吸引压力可以调节,其控制方法可以适用公知的方法。吸引源31的减压吸引压力根据工序等适当控制。
例如,在电气处理装置1A中,通过实验等预先知道薄膜太阳能电池B的减压处理所需要的产距时间(タクト時間),由此可以调节吸引源31的吸引压力、吸引管嘴34的动作速度使得减压处理在规定时间内完成(完成使薄膜太阳能电池B处于电气稳定状态的处理)。关于吸引源31的吸引压力、吸引管嘴34的扫描,例如预先在未图示的控制部保存将一系列的动作内容程序化了的数据,根据该程序使得其动作。
又,通过吸引机构30A开始吸引的时刻可以根据作为对象的薄膜太阳能电池B、工序适当地选择。
(B)第二实施形态的效果
在第二实施形态中,除了具有第一实施形态的效果之外,还具有以下效果。
在第一实施形态的吸引机构中,通过覆盖处理对象电池输送机构20的框体32使薄膜太阳能电池B为大致密闭状态,但在第二实施形态中,通过吸引管嘴34对薄膜太阳能电池B进行扫掠,因此仅吸引管嘴34内进行减压即可。
由此,与第一实施形态相比,第二实施形态可以采用吸引压力小的吸引源等,可以使得吸引机构所采用的结构小型化,降低成本。
而且,在第一实施形态中,在对太阳能电池那样的大面积的基板进行减压处理的情况下,为了避免乱流,还需要根据装置的大小等配置整流板等来控制气流,但在第二实施形态中,由于可以仅管理吸引管嘴34内的气流,因此可以更简易地构成吸引管嘴34内的结构。
(C)第三实施形态
以下,参照附图对本发明的电气处理装置以及方法的第三实施形态、以及本发明的探测单元的实施形态继续详细说明。
(C-1)第三实施形态的构成和动作
图7是第三实施形态的处理太阳能电池单元的电气处理装置1B的概略侧视图。
电气处理装置1B具有探测单元10B、以及处理对象电池输送机构20。另外,处理对象电池输送机构20与第一实施形态的相同,故省略其说明。
在第一实施形态中,在电气处理装置1设置吸引机构30,进行薄膜太阳能电池B的干燥处理,但在第三实施形态的电气处理装置1B中,探测单元10B自身具有吸引机构。以下,以与第一实施形态的差异为中心对第三实施形态进行说明。
探测单元10B具有探测单元基板11、吸引管嘴13、以及吸引源14。另外,探测单元基板11与第一实施形态的大致相同,因此省略其详细说明。
图8是探测单元10B的立体图。
吸引管嘴13具有从上覆盖长方形的探测单元基板11的吸引罩131、和安装于设置在吸引罩131的上表面的开口部的圆筒形的吸引管132。吸引管132的形状还可以是例如向吸引罩131增加、或减少内径的圆锥形状(研钵形状)。虽然在图8中省略,但也可以如图7所示那样,吸引管132与吸引源14连接。
吸引源14通过吸引管嘴13对探针12与薄膜太阳能电池B接触的部分进行减压吸引。作为吸引源14,可以适用现有的进行减压吸引的装置。
在图7中,通过吸引管嘴13,使得薄膜太阳能电池B的表面中的探针12接触并进行电气处理的部分处于大致密闭状态,通过吸引源14进行减压吸引。由此,外部的空气通过设置在吸引罩131和薄膜太阳能电池B之间的间隙部导入吸引罩131内,从而产生气流。通过该气流,将从薄膜导电电极和薄膜太阳能电池B的各面脱离的吸附水分排除,吸附水分的排除可以高效地进行。因此,对于设置于薄膜太阳能电池B的电极中的至少与探测单元10接触并由该探测单元10进行电气处理的电极的接触区域,通过吸引源14的减压降低水蒸汽气压,由此可以使得吸附水分脱离。又,由于减压,外部的空气从设置在吸引罩131和薄膜太阳能电池B之间的间隙部导入而产生气流,通过该气流,将从薄膜导电电极和薄膜太阳能电池B的各面脱离的吸附水分排除,进行吸附水分去除处理。
吸引管嘴13的各部的材质并没有限定,但最好使用气密性、刚性高的材质,在此,出于耐腐蚀性的考虑采用SUS构成,但也可以采用其他的材料、例如金属、树脂性的材料(例如、塑料、橡胶等)。
如图8所示,在探测单元基板11的侧面以及上表面与吸引罩131的内表面之间设有可以得到向吸引源14侧的空气流的间隙。换句话说,在探测单元基板11的侧面以及上表面与吸引罩131的内表面之间,如图8所示,以产生空气向吸引源14侧流动程度的间隙的位置关系来固定。又,吸引罩131的下端,最好设有在探测单元10B下降时空气向吸引源14侧流动程度的间隙。又,需要将吸引罩131的下端设置在以下这样的位置,即探测单元10B下降与薄膜太阳能电池B连接时不会造成妨碍的位置。
图9是吸引罩131以及探测单元基板11的概略上表面图。另外,在图9中,吸引管132等的图示省略。
如上所述,吸引罩131和探测单元基板11之间,需要隔着能得到向吸引源14侧的空气流的间隙地进行固定。该固定方法并没有限定,在第三实施形态中,如图9所示,探测单元基板11的侧面与吸引罩131的内表面之间通过多个紧固件133(例如,螺栓、销等)进行固定。通过配置紧固件133,可以对吸引罩131和探测单元基板11之间进行固定,且不会妨碍气流流向吸引源14侧。
电气处理装置1B主体的未图示的控制部、电源等与探测单元基板11之间通过电缆111连接。而且,如图8所示,电缆111通过设置于吸引罩131的孔134连接于电气处理装置1B主体侧。另外,孔134与电缆111间的间隙通过堵缝等被埋。又,电缆111的长度具有不会妨碍探测单元10B上下活动的程度的富余。
吸引源14的吸引压力可以调节,其控制方法可以适用公知的方法。吸引源14的减压吸引压力根据工序等适当控制。
又,通过实验等预先知道吸引源14的减压处理所需要的产距时间(ダクト時間),由此可以调节吸引源14的吸引压力使得减压处理在规定时间内完成(完成使薄膜太阳能电池B处于电气稳定状态的处理)。
(C-2)第三实施形态的效果
第三实施形态中,除了具有第一实施形态的效果之外,还具有以下效果。
第三实施形态的吸引机构,与第二实施形态相同,只要仅在吸引管嘴31内减压即可。由此,第三实施形态中,与第二实施形态相同,可以采用吸引压力更小的吸引源等,可以使得吸引机构所采用的结构小型化,以降低成本。又,在第三实施形态中,与第二实施形态相同,只要仅管理吸引管嘴13内的气流即可。
又,在第三实施形态的吸引机构中,吸引管嘴与探测单元成为一体,因此可以不设置驱动像第二实施形态那样独立的吸引管嘴,因此可以容易地构成。
又,在该实施形态中,以去除薄膜太阳能电池B的吸附水分为目的设置了吸引机构(吸引管嘴以及吸引源),但通过控制气流方向等,可以依次、或者同时一起去除粘附在薄膜太阳能电池B的表面等的尘埃。
(D)其他实施形态
本发明并不限于上述各实施形态,也可以例举出以下所例示的变形实施形态。
(D-1)在上述各实施形态的电气处理装置中,在对薄膜太阳能电池B实施减压处理时,通过使用超声波发生源等使得薄膜太阳能电池B振动,可以更高效地去除尘埃。
(D-2)在第一实施形态中,可以在框体32内设置整流板,控制进行吸引处理时的气流,以使得气流遍及到薄膜太阳能电池B的全部区域。
图10是将整流板324设置在第一实施形态的电气处理装置的框体32内的情形的截面图。
如图10的例子所示,可以配置整流板324,使得从各个狭缝321进入的气流指向薄膜太阳能电池B的方向。另外,整流板324的大小、形状、在框体32内配置整流板的位置、朝向可以选择合适的最佳形态。又,采用能够通过未图示的控制部而使朝向动作的可动式的整流板,即便薄膜太阳能电池B在处理对象电池输送机构20上移动,也可以使得气流始终指向薄膜太阳能电池B的方向。
(D-3)在第一实施形态中,设于框体32的狭缝321的宽度、长度并没有限定,也可以不是狭缝形状,而是其他的形状的孔。具体来说,例如可以并列配置多个圆形或四方形的孔。
又,也可以配置过滤器使得外部的尘埃不能从狭缝321(或者相当于狭缝321的孔)进入。
(D-4)在第二实施形态中,说明的是为了使吸引管嘴13对薄膜太阳能电池B的全部区域进行扫掠而使吸引管嘴13进行扫描的情形,但也可以通过处理对象电池输送机构20使其向薄膜太阳能电池B侧进行扫描。
(D-5)在第二实施形态中,是在吸引管嘴13进行扫掠之后,进行探测单元10的电气处理,但是也可以同时并列进行。例如,吸引管嘴13对在处理对象电池输送机构20上移动的薄膜太阳能电池B进行扫掠,从扫掠完成了的区域开始探测单元10的电气处理也可以。由此,可以缩短对于薄膜太阳能电池B的处理时间。
又,在该情况下,薄膜太阳能电池B在处理对象电池输送机构20上移动时,即便不使得吸引管嘴13动作,也可以将吸引管嘴13固定在能进行薄膜太阳能电池B上的扫掠的位置上。另外,此时,最好调节吸引管嘴13和探测单元10的位置关系、以及处理对象电池输送机构20的输送速度及时间,以便能从吸引管嘴13的扫掠结束了的区域开始探测单元10的电气处理。由此,不需要具有使吸引管嘴13自身动作的驱动源,因此可以容易地构筑吸引机构。
(D-6)在第三实施形态中,说明了探测单元基板11可以适用现有的部件,但探测单元基板11也可以在未配置探针12的区域设置一个或者多个通气孔(透孔)。
图11是在未配置探针12的区域设置通气孔的探测单元基板11的立体图。
如图11所示,通过在探测单元基板11设置多个通气孔113,可以提高吸引源14的吸引效率。换而言之,由于减压而从薄膜太阳能电池B的各面脱离的吸附水分能够通过吸引源14高效地吸引排除。另外,通气孔113的形状、大小、数量等可以适当地确定,以便与适当的工序、作为对象的太阳能电池的形态、以及其他的各条件相符合。
(D-7)在上述各实施形态中,对将本发明的电气处理装置适用于薄膜太阳能电池的实例进行了说明,但是也可以适用于包含具有吸附水的性质的材质(例如,氧化锌)的其它电路。

Claims (10)

1.一种电气处理装置,其特征在于,包括:
薄膜太阳能电池的电气处理所采用的探测单元;和
吸引机构,其在采用所述探测单元对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
2.如权利要求1所述的电气处理装置,其特征在于,所述吸引机构具有:
框体,其在该电气处理装置内覆盖所述薄膜太阳能电池整体,在所述薄膜太阳能电池的配置位置的附近设有吸收外部的空气的吸气口;和
吸引所述框体内的空气的吸引源。
3.如权利要求1所述的电气处理装置,其特征在于,所述吸引机构具有:
覆盖所述处理对象区域的一部分的吸引管嘴;
吸引所述吸引管嘴内的空气的吸引源;和
驱动机构,其驱动所述吸引管嘴或者所述薄膜太阳能电池进行扫描,使得所述吸引管嘴至少扫掠所述处理对象区域。
4.如权利要求3所述的电气处理装置,其特征在于,从所述处理对象区域中的结束了所述吸引管嘴的扫掠的区域开始所述探测单元的所述电气处理。
5.如权利要求1所述的电气处理装置,其特征在于,所述吸引机构具有:
至少覆盖所述探测单元的吸引管嘴;和
吸引所述吸引管嘴内的空气的吸引源,
所述探测单元具有:
与所述薄膜太阳能电池接触的一个或多个端子;和
支承所述端子的基板,
在所述基板上设有一个或多个通气孔。
6.如权利要求1~5中任一项所述的电气处理装置,其特征在于,该电气处理装置进行所述电气处理的所述薄膜太阳能电池具有使用氧化锌的电极。
7.一种电气处理方法,其是对薄膜太阳能电池进行电气处理的电气处理方法,其特征在于,
在采用探测单元对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
8.一种探测单元,其特征在于,具有:
与薄膜太阳能电池接触并对所述薄膜太阳能电池进行电气处理的探测单元主体;和
吸引机构,在采用所述探测单元主体对所述薄膜太阳能电池进行所述电气处理时,使得所述探测单元主体与所述薄膜太阳能电池接触并进行处理的处理对象区域减压。
9.如权利要求8所述的探测单元,其特征在于,所述吸引机构具有:
至少覆盖所述探测单元主体的吸引管嘴;和
对所述吸引管嘴内进行减压的吸引源,
所述探测单元主体具有:
与所述薄膜太阳能电池接触的一个或多个端子;和
支承所述端子的基板,
在所述基板上设有一个或多个通气孔。
10.如权利要求8或9所述的探测单元,其特征在于,该探测单元进行所述电气处理的所述薄膜太阳能电池具有使用氧化锌的电极。
CN201110082171XA 2010-03-25 2011-03-25 电气处理装置及方法、以及探测单元 Pending CN102201499A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010070658A JP2011204905A (ja) 2010-03-25 2010-03-25 電気処理装置及び方法
JP2010070657A JP2011204904A (ja) 2010-03-25 2010-03-25 プローブユニット
JP2010-070657 2010-03-25
JP2010-070658 2010-03-25

Publications (1)

Publication Number Publication Date
CN102201499A true CN102201499A (zh) 2011-09-28

Family

ID=44662028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110082171XA Pending CN102201499A (zh) 2010-03-25 2011-03-25 电气处理装置及方法、以及探测单元

Country Status (1)

Country Link
CN (1) CN102201499A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166918A (en) * 1978-07-19 1979-09-04 Rca Corporation Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell
JPH09186212A (ja) * 1996-01-05 1997-07-15 Canon Inc 光起電力素子の特性検査装置及び製造方法
CN1470078A (zh) * 2000-12-04 2004-01-21 佳能株式会社 太阳能电池的基片、具有此基片的太阳能电池以及太阳能电池的生产工艺
CN1532951A (zh) * 2003-03-25 2004-09-29 ������������ʽ���� 氧化锌膜的处理方法和使用它的光电元件的制造方法
CN1769920A (zh) * 2004-10-16 2006-05-10 曼兹自动化股份公司 太阳能电池的测试系统
CN201196670Y (zh) * 2008-05-12 2009-02-18 吉林大学 光电流和光电压测量池
CN101404305A (zh) * 2008-11-05 2009-04-08 深圳市大族激光科技股份有限公司 一种薄膜太阳能电池芯片修复方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166918A (en) * 1978-07-19 1979-09-04 Rca Corporation Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell
JPH09186212A (ja) * 1996-01-05 1997-07-15 Canon Inc 光起電力素子の特性検査装置及び製造方法
CN1470078A (zh) * 2000-12-04 2004-01-21 佳能株式会社 太阳能电池的基片、具有此基片的太阳能电池以及太阳能电池的生产工艺
CN1532951A (zh) * 2003-03-25 2004-09-29 ������������ʽ���� 氧化锌膜的处理方法和使用它的光电元件的制造方法
CN1769920A (zh) * 2004-10-16 2006-05-10 曼兹自动化股份公司 太阳能电池的测试系统
CN201196670Y (zh) * 2008-05-12 2009-02-18 吉林大学 光电流和光电压测量池
CN101404305A (zh) * 2008-11-05 2009-04-08 深圳市大族激光科技股份有限公司 一种薄膜太阳能电池芯片修复方法及装置

Similar Documents

Publication Publication Date Title
Nanu et al. Nanocomposite three-dimensional solar cells obtained by chemical spray deposition
Jiang et al. Local built-in potential on grain boundary of Cu (In, Ga) Se 2 thin films
US20150280051A1 (en) Diffuser head apparatus and method of gas distribution
US9176181B2 (en) High throughput current-voltage combinatorial characterization tool and method for combinatorial solar test substrates
Sugiyama et al. Investigation of sputtering damage around pn interfaces of Cu (In, Ga) Se2 solar cells by impedance spectroscopy
US20100073011A1 (en) Light soaking system and test method for solar cells
Segbefia et al. Moisture ingress in photovoltaic modules: A review
US20120043989A1 (en) Inspection method and inspection apparatus
KR101530035B1 (ko) 태양전지 셀스트링 제조장치
CN110057684B (zh) 基于原位观察实验热电力电耦合样品台
US20130019942A1 (en) Solar cell panel inspection device, method for inspecting solar cell panel, method for manufacturing solar cell panel, and solar cell panel
CN104266475A (zh) 风刀调节装置、风刀式平板清洗设备及风刀调节方法
Mokurala et al. Combinatorial chemical bath deposition of CdS contacts for chalcogenide photovoltaics
WO2016017617A1 (ja) 光電変換装置およびタンデム型光電変換装置ならびに光電変換装置アレイ
Shimanovich et al. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping
CN102201499A (zh) 电气处理装置及方法、以及探测单元
Misra et al. Cadmium selective etching in CdTe solar cells produces detrimental narrow-gap Te in grain boundaries
US9245810B2 (en) Electrical and opto-electrical characterization of large-area semiconductor devices
TW201411871A (zh) 可移除蓋系統及製造太陽能電池之方法
JP2018004535A (ja) 化合物薄膜太陽電池の検査方法、化合物薄膜太陽電池の検査システム、および、化合物薄膜太陽電池
Agafonova et al. Effect of thermal oxidation on charge carrier transport in nanostructured silicon
CN102725855B (zh) 光电转换装置及其制造方法
Werner Atomic layer deposition of aluminum oxide on crystalline silicon: Fundamental interface properties and application to solar cells
JP2011204905A (ja) 電気処理装置及び方法
Hardikar et al. Assessing field performance of flexible PV modules for moisture induced degradation from accelerated testing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110928