CN102192785B - Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation - Google Patents
Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation Download PDFInfo
- Publication number
- CN102192785B CN102192785B CN 201010128358 CN201010128358A CN102192785B CN 102192785 B CN102192785 B CN 102192785B CN 201010128358 CN201010128358 CN 201010128358 CN 201010128358 A CN201010128358 A CN 201010128358A CN 102192785 B CN102192785 B CN 102192785B
- Authority
- CN
- China
- Prior art keywords
- optical waveguide
- refractive index
- integrated optical
- fourier transform
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 151
- 239000007788 liquid Substances 0.000 title claims abstract description 69
- 238000005070 sampling Methods 0.000 claims abstract description 22
- 238000001228 spectrum Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 14
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 30
- 230000010287 polarization Effects 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 15
- 239000011780 sodium chloride Substances 0.000 claims description 15
- 230000002572 peristaltic effect Effects 0.000 claims description 14
- 230000003595 spectral effect Effects 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 claims description 2
- 238000005459 micromachining Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 11
- 238000010168 coupling process Methods 0.000 abstract description 11
- 238000005859 coupling reaction Methods 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 27
- 239000010408 film Substances 0.000 description 14
- 239000002131 composite material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000011949 advanced processing technology Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域 technical field
本发明涉及集成光波导传感技术领域,是一种基于对液体折射率高度敏感的集成光波导干涉计芯片的傅里叶变换光谱仪,特别是一种基于集成光波导干涉原理和表面液体折射率调制方法的新型便携式傅里叶变换光谱仪。The invention relates to the technical field of integrated optical waveguide sensing, and is a Fourier transform spectrometer based on an integrated optical waveguide interferometer chip that is highly sensitive to the refractive index of liquid, especially a Fourier transform spectrometer based on the principle of integrated optical waveguide interference and the refractive index of surface liquid A novel portable Fourier transform spectrometer for the modulation method.
背景技术 Background technique
光谱仪是分析物质组成成份及其结构的强有力工具。光谱仪在环境监测、化学分析、生物医学、空间探测、军事科技和功能材料等领域有着广泛应用,尤其是小型化,便携式光谱仪在这些领域有着巨大的市场需求。不同于实验室大型的光谱分析设备,小型化,便携式光谱仪能够满足现场实时快速测试的要求,因此具有更加广阔的应用前景和良好的发展趋势。Spectrometers are powerful tools for analyzing the composition and structure of matter. Spectrometers are widely used in environmental monitoring, chemical analysis, biomedicine, space exploration, military technology and functional materials, especially in miniaturization. Portable spectrometers have huge market demand in these fields. Different from the large-scale spectral analysis equipment in the laboratory, the miniaturized, portable spectrometer can meet the requirements of on-site real-time and rapid testing, so it has a broader application prospect and a good development trend.
光谱仪有多种分类方法,根据工作原理,可分为三类:棱镜色散式光谱仪、光栅分光式光谱仪、以及调制变换式光谱仪。棱镜色散式和光栅分光式光谱仪是建立在几何光学原理上的经典的光谱仪,而调制变换式光谱仪是建立在调制计算原理基础上的光谱分析仪器。前者是基于狭缝的光谱仪器,采用棱镜或光栅作为空间色散元件,后者是基于光学调制来完成光谱成份检测的仪器,主要基于干涉调制来完成色散。与前者不同的是,调制变换式光谱仪所采集得到的结果必须再经过计算变换才能得到实际的测量光谱。常见的调制变换式光谱仪包括傅里叶变换光谱仪、阿达玛变换光谱仪及法布里-珀罗分光计。经典色散光谱仪结构简单,系统成熟,应用广泛;而调制变换式光谱仪在系统组成上较经典色散光谱仪复杂,通常包含运动部件,但调制变换式光谱仪不受入射狭缝的限制,能够通过扩散的入射孔径或者干涉调制得到信噪比更高、分辨率更大的光谱信号,适用于更高端的应用。There are many classification methods for spectrometers. According to the working principle, they can be divided into three categories: prism dispersion spectrometers, grating spectrometers, and modulation transform spectrometers. Prism dispersion and grating spectrometers are classic spectrometers based on the principle of geometric optics, while modulation transform spectrometers are spectral analysis instruments based on the principle of modulation calculation. The former is a spectroscopic instrument based on slits, using prisms or gratings as spatial dispersion elements, and the latter is an instrument based on optical modulation to complete spectral component detection, mainly based on interference modulation to complete dispersion. Different from the former, the results collected by the modulation transform spectrometer must be calculated and transformed to obtain the actual measurement spectrum. Common modulation-transform spectrometers include Fourier transform spectrometers, Hadamard transform spectrometers, and Fabry-Perot spectrometers. Classical dispersive spectrometer is simple in structure, mature in system, and widely used; while modulation transform spectrometer is more complex in system composition than classical dispersive spectrometer, usually including moving parts, but modulation transform spectrometer is not limited by the incident slit, and can pass diffuse incident Aperture or interferometric modulation can obtain spectral signals with higher signal-to-noise ratio and higher resolution, which are suitable for higher-end applications.
常见的傅里叶变换光谱仪大都是基于传统的动镜Michelson干涉仪结构,这种结构的傅里叶变换光谱仪虽然具有高通量、多通道、高光谱分辨率和宽光谱范围的优势,但是光谱仪中用作反射镜的动镜需要一套高精度的驱动系统,而且需要良好的减震环境。同时该系统也存在着体积大、质量重、机械结构复杂以及不易微型化的缺点。此外,光谱仪采用空间自由光束,很容易受到环境干扰。Most of the common Fourier transform spectrometers are based on the traditional moving mirror Michelson interferometer structure. Although the Fourier transform spectrometer with this structure has the advantages of high throughput, multi-channel, high spectral resolution and wide spectral range, the spectrometer The moving mirror used as a reflector in the middle requires a high-precision drive system and a good shock-absorbing environment. At the same time, the system also has the disadvantages of large volume, heavy mass, complex mechanical structure and difficulty in miniaturization. In addition, spectrometers employ spatially free beams, which are susceptible to environmental interference.
微光机电系统(MOEMS)技术、光电探测技术及先进加工技术的不断发展为调制式傅里叶变换光谱仪的小型化、微型化提供了越来越多的可能。其中较为突出的是1999年瑞士大学微技术研究所(IMT)的Omar Manzardo等人研制的一种基于MOEMS技术的微型傅里叶变换光谱仪[O.Manzardo,H.P.Herzig,C.R.Marxer,and N.F.de Rooij,Opt.Lett.24(1999)1705-1707.],该光谱仪使用硅微镜作为Michelson干涉计的扫描反射镜,使用范围在-10V~+10V的斜坡电压静电驱动器驱动硅微镜的移动,可以实现对微镜系统的精确扫描,最大位移可达39μm,重复误差±13nm,可以在可见光波段获得10nm的分辨力,同时该光谱仪结构紧凑,尺寸仅为5mm×4mm。但是这种光谱仪在使用过程中同样是采用了空间自由光束进行干涉,容易受到外界环境干扰的缺点仍然存在。The continuous development of micro-opto-electromechanical systems (MOEMS) technology, photoelectric detection technology and advanced processing technology provides more and more possibilities for the miniaturization and miniaturization of modulated Fourier transform spectrometers. One of the more prominent is the 1999 Swiss A kind of miniature Fourier transform spectrometer based on MOEMS technology [O.Manzardo, HP Herzig, CR Marxer, and NFde Rooij, Opt.Lett.24 (1999) 1705- developed by Omar Manzardo et al. 1707.], the spectrometer uses a silicon micromirror as the scanning mirror of the Michelson interferometer, and uses an electrostatic driver with a slope voltage ranging from -10V to +10V to drive the movement of the silicon micromirror, which can realize precise scanning of the micromirror system, with a maximum The displacement can reach 39μm, the repeat error is ±13nm, and the resolution of 10nm can be obtained in the visible light band. At the same time, the spectrometer has a compact structure, and the size is only 5mm×4mm. However, this kind of spectrometer also uses space free light beams for interference during use, and the disadvantage of being easily interfered by the external environment still exists.
发明内容 Contents of the invention
本发明的目的是公开一种基于液体折射率调制的集成光波导傅里叶变换光谱仪,以克服上述现有基于传统动镜的Michelson干涉计结构的傅里叶变换光谱仪的不足,实现了一种结构简单、抗环境干扰,无需使用运动部件的高速、高灵敏光谱仪。The purpose of the present invention is to disclose a kind of integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, to overcome the above-mentioned deficiency of the existing Fourier transform spectrometer based on the Michelson interferometer structure of traditional moving mirror, realize a kind of A high-speed, high-sensitivity spectrometer with simple structure, anti-environmental interference, and no need for moving parts.
为达到上述目的,本发明的技术解决方案是:For achieving the above object, technical solution of the present invention is:
一种基于液体折射率调制的集成光波导傅里叶变换光谱仪,包括光源、集成光波导干涉计芯片、光探测器、样品池、流控进样系统、数字信号处理系统;其样品池固定在光波导干涉计芯片表面,流控进样系统与样品池相通连;光源发射的光经棱镜耦合进入集成光波导干涉计芯片成为导波光,从集成光波导干涉计芯片耦合输出的干涉光信号被光探测器接收,光探测器产生的电信号被传输至与光探测器相连的数字信号处理系统进行处理,实现对输入光谱的反演重建。An integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, including a light source, an integrated optical waveguide interferometer chip, a photodetector, a sample pool, a flow control sampling system, and a digital signal processing system; the sample pool is fixed on On the surface of the optical waveguide interferometer chip, the flow control sampling system is connected to the sample cell; the light emitted by the light source is coupled into the integrated optical waveguide interferometer chip through the prism to become waveguide light, and the interference optical signal coupled out from the integrated optical waveguide interferometer chip is The photodetector receives, and the electrical signal generated by the photodetector is transmitted to the digital signal processing system connected with the photodetector for processing, so as to realize the inversion and reconstruction of the input spectrum.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述集成光波导干涉计芯片,为光波导马赫—曾德尔干涉计芯片、光波导杨氏干涉计芯片、光波导偏振极化干涉计芯片、光波导迈克尔逊干涉计芯片、光波导法布里-珀罗干涉计芯片、双模干涉型光波导芯片其中的一种,或是上述干涉计芯片的变形结构。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the integrated optical waveguide interferometer chip is an optical waveguide Mach-Zehnder interferometer chip, an optical waveguide Young's interferometer chip, an optical waveguide polarization One of a polarization interferometer chip, an optical waveguide Michelson interferometer chip, an optical waveguide Fabry-Perot interferometer chip, a dual-mode interference optical waveguide chip, or a deformed structure of the above-mentioned interferometer chip.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述光源发射的光或经光栅耦合或经端面耦合。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the light emitted by the light source is either coupled through a grating or coupled through an end surface.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述光谱仪被使用或测试时,利用流控进样系统改变样品池内的液体折射率,使折射率随时间均匀变化。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, when the spectrometer is used or tested, a fluidic sampling system is used to change the liquid refractive index in the sample cell, so that the refractive index changes uniformly with time.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述样品池和流控进样系统,为采用微机械加工工艺制作而成。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the sample pool and fluidic sampling system are manufactured by micro-machining technology.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其通过调节集成光波导干涉计芯片的敏感窗口长度改善光谱仪分辨率,当敏感窗口在0-20mm之间变化时,窗口长度越长,光谱仪分辨率越高。The integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation improves the resolution of the spectrometer by adjusting the sensitive window length of the integrated optical waveguide interferometer chip. When the sensitive window changes between 0-20mm, the window length The longer the spectrometer, the higher the resolution.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其通过扩展样品池内液体折射率的变化范围提高光谱仪的分辨率。The integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation improves the resolution of the spectrometer by extending the variation range of the liquid refractive index in the sample cell.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述集成光波导干涉计芯片表面设有一层梯度结构的高折射率薄膜,以增强集成光波导干涉计芯片的消逝场强度,提高光谱仪的分辨率。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the surface of the integrated optical waveguide interferometer chip is provided with a layer of high refractive index film with a gradient structure to enhance the evanescent field of the integrated optical waveguide interferometer chip intensity, increasing the resolution of the spectrometer.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述高折射率薄膜,为二氧化钛、五氧化二钽薄膜。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the high refractive index film is titanium dioxide or tantalum pentoxide film.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其通过使用已知波长的单色光源结合光谱反演计算方法,确定光波导的相关参数;当光源为固定波长的单色光时,对测得的干涉图样进行傅里叶变换,通过比较傅里叶变换谱图和已知波长单色光源的发射谱图,结合导波光学理论,确定光波导的相关参数。The integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation determines the relevant parameters of the optical waveguide by using a monochromatic light source with a known wavelength in combination with a spectral inversion calculation method; when the light source is a monochromatic light source with a fixed wavelength When using light, Fourier transform is performed on the measured interference pattern, and the relevant parameters of the optical waveguide are determined by comparing the Fourier transform spectrum with the emission spectrum of a monochromatic light source with a known wavelength, combined with the theory of guided wave optics.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述光波导的相关参数,为导波层厚度、导波层上表面的高折射率薄膜厚度。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the relevant parameters of the optical waveguide are the thickness of the waveguide layer and the thickness of the high refractive index film on the upper surface of the waveguide layer.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述流控进样系统,包括两容器、两微型蠕动泵、一搅拌子及管道;其中,一微型蠕动泵入口经管道与一容器相通联,容器内有NaCl水溶液,出口经管道与另一容器相通联,另一容器内有去离子水;另一容器的两端分别经管道与样品池相通联,一管道中接有另一微型蠕动泵,使另一容器内溶液与样品池内溶液经另一微型蠕动泵、管道形成环路;In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the fluidic sampling system includes two containers, two miniature peristaltic pumps, a stirring bar and pipelines; wherein, the inlet of a miniature peristaltic pump passes through The pipeline is connected with a container, and there is NaCl aqueous solution in the container, and the outlet is connected with another container through the pipeline, and there is deionized water in the other container; the two ends of the other container are respectively connected with the sample cell through the pipeline, and the Another miniature peristaltic pump is connected, so that the solution in the other container and the solution in the sample pool form a loop through another miniature peristaltic pump and pipeline;
另一容器内设有一搅拌子。Another container is provided with a stirring bar.
所述的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其所述NaCl水溶液,为1mL质量分数为6%的NaCl水溶液;去离子水为4mL。In the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation, the NaCl aqueous solution is 1 mL of 6% NaCl aqueous solution; 4 mL of deionized water.
与现有光谱仪不同,本发明所涉及的基于液体折射率调制的集成光波导傅里叶变换光谱仪,最大的特点是通过改变集成光波导干涉计芯片表面的液体折射率实现对干涉光光程差的线性调制。而上述基于动镜Michelson干涉仪结构的傅里叶变换光谱仪则是通过改变动镜与定镜的相对位置来实现对干涉光光程差的线性调制的。同时,在使用过程中,被约束在波导层内的导波光取代了传统光谱仪中的空间自由光束,因此,本发明所涉及的基于液体折射率调制的集成光波导傅里叶变换光谱仪,除了具有与传统基于Michelson干涉计结构的傅里叶变换光谱仪相同的优点外,还具有结构简单、易于集成化、小型化、环境干扰因素小的特点。Different from existing spectrometers, the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation involved in the present invention is characterized by changing the liquid refractive index on the surface of the integrated optical waveguide interferometer chip to realize the optical path difference of interfering light the linear modulation. The above-mentioned Fourier transform spectrometer based on the moving mirror Michelson interferometer structure realizes the linear modulation of the optical path difference of the interfering light by changing the relative position of the moving mirror and the fixed mirror. At the same time, during use, the guided light confined in the waveguide layer replaces the space free light beam in the traditional spectrometer. Therefore, the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation involved in the present invention, in addition to having In addition to the same advantages as the traditional Fourier transform spectrometer based on the Michelson interferometer structure, it also has the characteristics of simple structure, easy integration, miniaturization, and small environmental interference factors.
附图说明 Description of drawings
图1为本发明的基于液体折射率调制的集成光波导傅里叶变换光谱仪结构示意图;Fig. 1 is the structure schematic diagram of the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation of the present invention;
图2为本发明给出的一个具体实施方式中所用装置的结构示意图;Fig. 2 is the structural representation of the device used in a specific embodiment that the present invention provides;
图3为本发明给出的一个具体实施方式中所使用的集成光波导干涉计芯片的一种结构—平面复合光波导偏振极化干涉计芯片;Fig. 3 is a kind of structure of the integrated optical waveguide interferometer chip used in a specific embodiment that the present invention provides—planar composite optical waveguide polarization polarization interferometer chip;
图4为本发明给出的一个具体实施方式中集成光波导干涉计芯片表面液体折射率随时间的变化关系图;Fig. 4 is a graph showing the relationship between the refractive index of the liquid on the surface of the integrated optical waveguide interferometer chip and time in a specific embodiment provided by the present invention;
图5为本发明给出的一个具体实施方式中,当样品池中的液体从去离子水变至重量比为1.2%NaCl水溶液时,光探测器监测到的干涉图样示意图;Fig. 5 is a schematic diagram of the interference pattern monitored by the photodetector when the liquid in the sample cell changes from deionized water to a 1.2% NaCl aqueous solution by weight in a specific embodiment of the present invention;
图6为对图5所示的干涉图样进行离散傅里叶变换得到的谱图,它是关于采样点与光功率的谱图;Fig. 6 is the spectrogram that discrete Fourier transform is carried out to the interference pattern shown in Fig. 5 and obtains, and it is the spectrogram about sampling point and optical power;
图7为平面复合光波导偏振极化干涉计芯片TE,TM导模有效折射率与表面液体折射率关系的理论仿真图;Fig. 7 is a theoretical simulation diagram of the relationship between the effective refractive index of the planar composite optical waveguide polarization polarization interferometer chip TE, TM guided mode and the refractive index of the surface liquid;
图8为对图6横轴进行波长标定后的光源光谱图,它是关于波长与光功率的谱图;Fig. 8 is the light source spectrogram after wavelength calibration is carried out to the horizontal axis of Fig. 6, and it is the spectrogram about wavelength and optical power;
图9为本发明给出的一个具体实施方式中,当样品池中的液体从去离子水变至重量比为9%NaCl水溶液时,光探测器监测到的干涉图样示意图;Fig. 9 is a schematic diagram of the interference pattern monitored by the photodetector when the liquid in the sample cell changes from deionized water to a 9% NaCl aqueous solution by weight in a specific embodiment of the present invention;
图10为对图9所示的干涉图样进行离散傅里叶变换反演后的光源光谱图。Fig. 10 is a light source spectrum diagram after performing discrete Fourier transform inversion on the interference pattern shown in Fig. 9 .
具体实施方式 Detailed ways
本发明的基于液体折射率调制的集成光波导傅里叶变换光谱仪具有与集成光波导生化传感器相同的结构。如图1所示,为本发明基于液体折射率调制的集成光波导傅里叶变换光谱仪的结构示意图,它包括光源1、集成光波导干涉计芯片2、光探测器3、数字信号处理系统4、样品池5、流控进样系统6。其中集成光波导干涉计芯片2是该光谱仪的核心部件。样品池5固定在集成光波导干涉计芯片2表面,流控进样系统6与样品池5相通连。光源1发射的光经棱镜耦合(或光栅耦合或端面耦合)进入集成光波导干涉计芯片2成为导波光,流控进样系统6将样品溶液泵入样品池5,改变样品池5内液体折射率,从而引起导波光位相差。从集成光波导干涉计芯片2耦合输出的干涉光信号被光探测器3接收,光探测器3产生的电信号被传输至与光探测器3相连的数字信号处理系统4对干涉图样进行分析并做傅里叶变换重建输入光光谱。The integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation of the present invention has the same structure as the integrated optical waveguide biochemical sensor. As shown in Figure 1, it is a structural schematic diagram of an integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation in the present invention, which includes a
本发明的基于液体折射率调制的集成光波导傅里叶变换光谱仪,具有与基于Michelson干涉仪结构的傅里叶变换光谱仪相类似的光谱反演重建原理。当输入光为单色光时,经过集成光波导干涉计芯片2后输出干涉光强度为The integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation of the present invention has a spectrum inversion and reconstruction principle similar to the Fourier transform spectrometer based on Michelson interferometer structure. When the input light is monochromatic light, the output interference light intensity after passing through the integrated optical
Iout=Iin[1+cos(Δφ)]=Iin[1+cos(2πνl)] (1)I out =I in [1+cos(Δφ)]=I in [1+cos(2πνl)] (1)
其中,Iin为输入光强,Δφ为发生干涉的导模相位差,为波数,l=LΔN为光程差,L为光波导干涉计芯片的敏感窗口长度,ΔN为导模有效折射率的变化。当样品池5内液体折射率发生变化时,导波有效折射率跟随发生变化,致使干涉光光程差产生变化,即实现光波导表面液体折射率对干涉光光程差的调制。Among them, I in is the input light intensity, Δφ is the phase difference of the guided mode that interferes, is the wave number, l=LΔN is the optical path difference, L is the sensitive window length of the optical waveguide interferometer chip, and ΔN is the change of the effective refractive index of the guided mode. When the refractive index of the liquid in the
同样,当输入光为多色光时,经过集成光波导干涉计芯片2后,其干涉光强分布为Similarly, when the input light is polychromatic light, after passing through the integrated optical
上式包含两个部分:第一部分与光程差l无关,代表干涉信号的直流成份;第二部分与光程差有关,代表干涉光信号的交流成份。实际应用中,可以单独提取交流部分进行分析,所以有The above formula contains two parts: the first part has nothing to do with the optical path difference l, and represents the DC component of the interference signal; the second part is related to the optical path difference, and represents the AC component of the interference optical signal. In practical applications, the AC part can be extracted separately for analysis, so there is
根据傅里叶变换的定义,上式可以写成According to the definition of Fourier transform, the above formula can be written as
相应的corresponding
由式(5)和式(6)可知,多色光的干涉光强分布与其波数功率谱之间互为傅里叶变换。只要对光探测器3监测到的干涉图样的强度分布进行一维傅里叶变换就可以得到光源的光功率谱分布。From formula (5) and formula (6), it can be seen that the interference light intensity distribution of polychromatic light and its wave number power spectrum are Fourier transforms of each other. The optical power spectral distribution of the light source can be obtained only by performing one-dimensional Fourier transform on the intensity distribution of the interference pattern monitored by the
与其他类型傅里叶变换光谱仪,尤其是动镜Michelson干涉计傅里叶变换光谱仪不同的是,本发明所提及的基于液体折射率调制的集成光波导傅里叶变换光谱仪,不包含运动部件,是靠改变光波导表面的液体折射率来改变干涉光光程差的,光程差可以写成Different from other types of Fourier transform spectrometers, especially moving mirror Michelson interferometer Fourier transform spectrometers, the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation mentioned in the present invention does not contain moving parts , by changing the liquid refractive index on the surface of the optical waveguide to change the optical path difference of the interference light, the optical path difference can be written as
l=LΔN=LC1Δnc (6)l=LΔN=LC 1 Δn c (6)
其中,C1为常数,Δnc为液体折射率的变化。在一定的液体折射率变化范围内,导模有效折射率的变化ΔN与液体折射率的变化Δnc具有良好的线性关系。如若采用合适的流控进样系统6可以使样品池5内液体折射率随时间线性增加或线性减小,即:where C is a constant and Δn c is the change in the refractive index of the liquid. Within a certain range of liquid refractive index variation, the change ΔN of the effective refractive index of the guided mode has a good linear relationship with the change Δn c of the liquid refractive index. If a suitable flow
l=LΔN=LC1C2t (7)l=LΔN=LC 1 C 2 t (7)
其中,C2为常数,t为时间。Among them, C2 is a constant, and t is time.
需要指出的是,本发明所提出的基于液体折射率调制的集成光波导傅里叶变换光谱仪,其核心部件集成光波导干涉计芯片2可以有多种结构形式:光波导马赫—曾德尔干涉计芯片[RG.Heideman,P.V.Lambeck,Sensorsand Actuators B 61(1999)100-127.]、光波导杨氏干涉计芯片[K.Schmitt,B.Schirmer,C.Hoffmann,A.Brandenburg,and P.Meyrueis,Biosens.Bioelectron.22(2007)2591-2597;Graham H.Cross,Andrew Reeves,Stuart Brand,Marcus J.Swann,Louise L.Peel,Neville J.Freeman,and Jian R.Lu,J.Phys.D:Appl.Phys.37(2004)74-80.]、光波导偏振极化干涉计芯片[Zhi-mei Qi,Kiminori Itoh,Masayuki Murabayashi,andHiroyuki Yanagi,J.Ligthwave Techn.18(8)(2000)1106-1110.]、光波导迈克尔逊干涉计芯片[Shyh-Lin Tsao,and Shin-Ge Lee,Opt.and Quantum Electron.36(2004)309-320.]、光波导法布里-珀罗干涉计芯片[Kinrot Noam,Nathan Menachem,J.Ligthwave Techn.24(5)(2006)2139-2145.]、双模干涉型光波导芯片[Sergey S.Sarkisov,Darnell E.Diggs,Grigory Adamovsky,and Michael J.Curley,Appl.Opt.40(3)(2001)349-359.]等干涉计结构。It should be pointed out that the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation proposed by the present invention, its core component integrated optical
从公开的文献中尚未发现与本发明的基于液体折射率调制的集成光波导傅里叶变换光谱仪相类似的方法和装置。No method and device similar to the integrated optical waveguide Fourier transform spectrometer based on liquid refractive index modulation of the present invention has been found in the published literature.
实际操作中,光谱仪可以采用如图2所示的结构,图2为本发明给出的一个具体实施方式中所用装置的结构示意图,图中1为光源,2为集成光波导干涉计芯片,3为光探测器,4为数字信号处理系统,5为样品池,61为容器1,62为容器2,63为微型蠕动泵1,64为微型蠕动泵2,65为搅拌子,61~65组成了图1中的流控进样系统6,7为45°检偏器,8为输入耦合棱镜,9为输出耦合棱镜。In actual operation, the spectrometer can adopt the structure shown in Figure 2, and Figure 2 is a schematic structural view of the device used in a specific embodiment provided by the present invention, among which 1 is a light source, 2 is an integrated optical waveguide interferometer chip, and 3 is a light detector, 4 is a digital signal processing system, 5 is a sample cell, 61 is a
本发明的集成光波导干涉计芯片2采用了基于平面复合光波导的偏振极化干涉计芯片[Zhi-mei Qi,Kiminori Itoh,Masayuki Murabayashi,and HiroyukiYanagi,J.Ligthwave Techn.18(8)(2000)1106-1110.]。该芯片的结构如图3所示,为本发明给出的一个具体实施方式中所使用的集成光波导干涉计芯片2的一种结构—平面复合光波导偏振极化干涉计芯片,图中21为玻璃衬底,22为玻璃衬底上表面采用离子交换技术制作的导波层,23为两端具有楔形结构的高折射率梯度薄膜。通过离子交换技术在玻璃基底表面交换一层折射率较玻璃基底略高的导波层22,然后在导波层上溅射一层长度为L且两端具有楔形结构的高折射率梯度薄膜23(如二氧化钛、五氧化二钽等),精确控制该薄膜的厚度,使其只支持横电(TE)导模的传输而不支持横磁(TM)导模的传输。The integrated optical
首先采用波长为633nm的红光作为单色光源1,光源1发出的光经输入耦合棱镜8耦合后沿着光波导传播,当传播至高折射梯度薄膜23的楔形区域时,导波光中的TE导模将被耦合进该薄膜23中传播,并与薄膜23上部样品池5内作为表面覆盖层的液体发生相互作用,然后又通过梯度薄膜23另一侧的楔形区域耦合进光波导。TE导模与表面液体发生相互作用时,等效折射率改变了ΔNTE。而导波光中的TM导模在高折射率梯度薄膜23中是截止的,只能沿着光波导传播,它与表面液体发生相互作用的程度较TE导模要弱的多,相互作用后等效折射率改变了ΔNTM,可以作为参比量。TE导模与TM导模经输出耦合棱镜9耦合后一同从光波导中输出,两者之间存在着的相位差,同时经过45°的检偏器7后两者发生干涉,使用光探测器3探测干涉光位相随时间的变化,再通过数字信号处理系统4对干涉图样进行分析处理。First, red light with a wavelength of 633nm is used as the monochromatic
在操作过程中,要求样品池5中溶液的折射率随时间均匀变化。具体操作如下:容器61中装有1mL质量分数为6%的NaCl水溶液,容器62中装有4mL去离子水。先开启蠕动泵64将去离子水从容器62中匀速循环注入注出样品池5,然后用蠕动泵63将6%NaCl水溶液从容器61中匀速泵入容器62,同时使用搅拌子65搅拌溶液,使溶液均匀混合。然后蠕动泵64将稀释后的NaCl溶液循环泵入泵出样品池5。调节两个蠕动泵63、64的泵速使9秒钟后样品池5中的溶液从去离子水变成质量分数为的NaCl水溶液,这一过程中液体折射率变化了Δnc=n1.2%-nwater=0.0021297。液体折射率的变化Δnc和时间t的关系如图4所示。可得式(8)中的常数C2=0.0002366。During operation, the refractive index of the solution in the
当平面复合光波导高折射率梯度薄膜23表面的液体从去离子水变化到1.2%的NaCl溶液时,光探测器3监测到的干涉图样如图5所示,从图5中可知在这一过程中输出光相位改变了大约8π。对所得干涉图样进行离散傅里叶变换,结果如图6所示。这是关于干涉图样的采样点数与光源功率的光谱图,并不是最终需要的关于波长—光功率的光谱图,因此还需要将该光谱图的横轴与波长进行对应。这就需要知道式(8)中的光波导敏感窗口的长度L,常数C1和C2。其中L=10mm,C2=0.0002366,C1待求。When the liquid on the surface of the planar composite optical waveguide high refractive
根据导波光学理论可知,当液体折射率变化时,导模的有效折射率也要发生变化。对于平面复合光波导偏振极化干涉计芯片来说,TE导模的有效折射率和TM导模的有效折射率都随表面液体折射率发生变化。平面复合光波导偏振极化干涉计芯片的衬底21、波导层22、高折射率梯度薄膜23、表面液体构成了四层平板结构,对此结构进行仿真得到如图7所示的理论值。从图7中可知当高折射率梯度薄膜23表面液体折射率nc在1.33到1.37范围内变化时,TE和TM导模的有效折射率的变化都是接近线性的。且C1=0.1149530-0.0031479=0.118051。According to the theory of guided wave optics, when the refractive index of the liquid changes, the effective refractive index of the guided mode also changes. For the planar composite optical waveguide polarization polarization interferometer chip, the effective refractive index of the TE guided mode and the effective refractive index of the TM guided mode both change with the refractive index of the surface liquid. The
将L,C1,C2的值带入式(7)并对图6所示的光谱图做波长对应,得到图8所示的光谱图,从图8中可看出光谱谱峰出现在639.2纳米处,虽然与已知光源的波长稍有偏差,但是该谱图仍然能够很好的说明由干涉图样可以反演出光源的功率谱,只不过图8中的谱峰较宽,这与干涉图样的周期数目有关,如若提高样品池5内溶液浓度变化范围可以增加干涉周期,减小谱峰宽度,提高光谱仪分辨率。图9所示为样品池5内浓度为9%NaCl水溶液时的干涉图样,图10所示为反演后的光谱图。对比图8和图10发现,图10中谱峰位置较图8中的谱峰位置更接近光源波长,且图10的谱峰宽度要比图8的谱峰宽度窄,光谱仪分辨率有所提高。将光源从红光扩展为多色光时,这种基于液体折射率调制的方法依然适用。Put the values of L, C 1 , and C 2 into formula (7) and perform wavelength correspondence on the spectrum shown in Figure 6 to obtain the spectrum shown in Figure 8. It can be seen from Figure 8 that the spectral peak appears at At 639.2 nanometers, although there is a slight deviation from the wavelength of the known light source, the spectrum can still well illustrate that the power spectrum of the light source can be retrieved from the interference pattern, but the spectral peak in Figure 8 is wider, which is different from the interference The number of periods of the pattern is related. If the concentration range of the solution in the
此外,本发明的基于液体折射率调制的集成光波导傅里叶光谱仪还具有确定光波导参数的作用。当光源1为固定波长的单色光时,对测得的干涉图样进行傅里叶变换。通过比较傅里叶变换谱图与已知波长单色光源的发射谱图,并结合导波光学理论,可以确定光波导的相关参数(如导波层22厚度,导波层22上表面高折射率薄膜23厚度等)。例如,使用波长为633nm的红光作为光源1,同时样品池5内液体从去离子水变为重量比为1.2%的NaCl水溶液,在这一过程中液体折射率随时间均匀变化,得到式(7)中的C2=0.0002366。样品池5内溶液浓度的改变致使光探测器3监测到如图5所示的干涉图样,对此干涉图样做离散傅里叶变换得到如图6所示的谱图,这是关于采样点与光源功率的谱图,该谱图在相应的采样点处出现了一个谱峰。这一谱峰理应出现在633nm波长处,因此要利用式(7)将该采样点与633nm对应。式(7)中L=10mm,C2=0.0002366,再结合λ=633nm,可以反推出C1=0.118051。在C1,衬底21折射率(nS),导波层22折射率(nf),导波层22厚度(h),梯度薄膜23折射率(nTiO2)已知的情况下,根据光波导四层平板结构的导波方程就可以确定出高折射率梯度薄膜23的厚度(hTiO2)。同理如若hTiO2已知,而导波层22厚度h未知,依据该方法同样可以确定导波层22厚度h。In addition, the integrated optical waveguide Fourier spectrometer based on liquid refractive index modulation of the present invention also has the function of determining optical waveguide parameters. When the
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010128358 CN102192785B (en) | 2010-03-17 | 2010-03-17 | Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010128358 CN102192785B (en) | 2010-03-17 | 2010-03-17 | Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102192785A CN102192785A (en) | 2011-09-21 |
CN102192785B true CN102192785B (en) | 2013-05-01 |
Family
ID=44601321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010128358 Expired - Fee Related CN102192785B (en) | 2010-03-17 | 2010-03-17 | Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102192785B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013162528A1 (en) | 2012-04-25 | 2013-10-31 | Hewlett-Packard Development Company, L.P. | Analyzing light by mode interference |
CN103901013B (en) * | 2012-12-26 | 2016-08-24 | 中国科学院电子学研究所 | The Enhancement Method of a kind of evanescent field excitation thin film Raman signal and device |
CN106537115B (en) * | 2014-02-14 | 2019-11-05 | 可口可乐公司 | System and method for persistently monitoring chemical pollutant in carbon dioxide in real time |
CN104990897B (en) * | 2015-07-15 | 2017-08-25 | 华南理工大学 | A kind of device and method for determining breeding water body Chlorophyll-a Content |
JP6943452B2 (en) * | 2016-06-15 | 2021-09-29 | シーウェア システムズSi−Ware Systems | Integrated spectrum unit |
CN110082313B (en) * | 2019-04-22 | 2021-08-20 | 天津大学 | A method for measuring the refractive index of micro-nano materials based on a prism coupler |
CN113776642A (en) * | 2021-08-24 | 2021-12-10 | 挚感(苏州)光子科技有限公司 | Digital hydrophone based on laser Doppler vibration measurement and vibration measurement method |
CN115128735B (en) * | 2021-10-27 | 2024-05-07 | 赛丽科技(苏州)有限公司 | Optical sensor chip and optical sensing system |
CN114371128B (en) * | 2022-01-13 | 2023-03-24 | 挚感(苏州)光子科技有限公司 | Fourier transform spectrometer based on multilayer slab waveguide structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592472A (en) * | 2008-05-28 | 2009-12-02 | 中国科学院电子学研究所 | Time-resolved single-grating interferometer |
-
2010
- 2010-03-17 CN CN 201010128358 patent/CN102192785B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592472A (en) * | 2008-05-28 | 2009-12-02 | 中国科学院电子学研究所 | Time-resolved single-grating interferometer |
Non-Patent Citations (6)
Title |
---|
A composite optical waveguide-based polarimetric interferometer for chemical and biological sensing applications;Zhi-mei Qi等;《Journal of lightwave technology》;20000831;第18卷(第8期);1106页-1110页 * |
Zhi-mei Qi等.A composite optical waveguide-based polarimetric interferometer for chemical and biological sensing applications.《Journal of lightwave technology》.2000,第18卷(第8期), |
Zhi-mei Qi等.Chemical gas sensor application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry.《Analytical Chemistry》.2006,第78卷(第4期), * |
Zhi-mei Qi等.Integrated Young interferometer sensor with a channel-planar composite waveguide sensing arm.《Optics Letters》.2009,第34卷(第14期), * |
邓琳等.光波导分光光谱技术研究染料分子在玻璃表面的吸附特性.《物理化学学报》.2009,第25卷(第12期), * |
陈方等.光波导耦合的表面等离子体共振光谱传感器实时监测表面生化反应.《分析化学》.2009,第37卷(第4期), * |
Also Published As
Publication number | Publication date |
---|---|
CN102192785A (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102192785B (en) | Integrated optical waveguide Fourier transform spectrograph based on liquid refractive index modulation | |
Qiao et al. | MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics | |
CN102207459B (en) | Fourier transform chip spectrometer based on integrated light technique | |
US12055439B2 (en) | Quantum absorption spectroscopy system and quantum absorption spectroscopy method | |
Martens et al. | Comparison between Vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter | |
US9068950B2 (en) | Vernier photonic sensor data-analysis | |
Drayton et al. | Guided mode resonances and photonic crystals for biosensing and imaging | |
EP3431965B1 (en) | Integrated optical sensor circuit and use | |
US6747742B1 (en) | Microspectrometer based on a tunable fabry-perot interferometer and microsphere cavities | |
Chen et al. | Planar photonic chips with tailored dispersion relations for high-efficiency spectrographic detection | |
CN103630239A (en) | Resolution improving Fourier micro-spectrometer | |
Peng et al. | Higher-order mode photonic crystal based nanofluidic sensor | |
CN208043653U (en) | A kind of liquid concentration detection system based on the transparent effect of electromagnetically induced | |
US7515262B2 (en) | Crystal grating apparatus | |
Anderson et al. | Grating light reflection spectroscopy for determination of bulk refractive index and absorbance | |
Delezoide | Polymer microring resonators for optofluidic evanescent field sensors | |
Sarkar et al. | Exploring tunable single-wavelength detection schemes for guided-mode resonance sensors | |
Raghuwanshi et al. | Fiber optic SPR sensor—past, present, and future | |
Ali et al. | On-chip Optofluidic Structure for Hormonal Detection Using Stable Fabry-Pérot Resonator | |
Arora | Colorimetric Sensors Using Hybrid Mode Plasmon Imaging for Refractive Index and Thickness Sensing | |
Pung | A Monolithic Solid-State Interferometer for Real-Time Multi-Environment Measurements | |
CN109752361A (en) | Push-Pull Fiber Raman Spectrometer | |
Pufahl | Symmetric cladding thin-film waveguides | |
Wang et al. | Optical Devices Based on the Attenuated Total Reflection | |
Amin | Integrated Photonic Devices for Spectroscopy and Biosensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130501 |
|
CF01 | Termination of patent right due to non-payment of annual fee |