CN102184568A - 一种采样反馈的火焰模型参数自动获取与优化方法 - Google Patents

一种采样反馈的火焰模型参数自动获取与优化方法 Download PDF

Info

Publication number
CN102184568A
CN102184568A CN2011101300391A CN201110130039A CN102184568A CN 102184568 A CN102184568 A CN 102184568A CN 2011101300391 A CN2011101300391 A CN 2011101300391A CN 201110130039 A CN201110130039 A CN 201110130039A CN 102184568 A CN102184568 A CN 102184568A
Authority
CN
China
Prior art keywords
flame
model
flame model
error
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101300391A
Other languages
English (en)
Other versions
CN102184568B (zh
Inventor
吴威
吴蕊
周忠
赵沁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201110130039 priority Critical patent/CN102184568B/zh
Publication of CN102184568A publication Critical patent/CN102184568A/zh
Application granted granted Critical
Publication of CN102184568B publication Critical patent/CN102184568B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种采样反馈的火焰模型参数自动获取与优化方法,属于虚拟现实科学技术领域。本发明的技术方案为:根据设定的初始速度、初始大小等参数值生成基于粒子系统的火焰模型;分析当前火焰模型和真实火焰的误差,生成火焰模型的误差函数;采用梯度下降的反馈方法,动态的调整火焰模型的控制参数;按照调整后的参数修正火焰模型,并进行误差反馈,直至火焰模型与真实火焰的误差值低于误差阈值。本发明克服了传统火焰模型建立过程中存在的模型参数难以确定的问题,通过定义了火焰模型的误差函数,提出了一种自动获取模型参数的方案,优化了建立的火焰模型。

Description

一种采样反馈的火焰模型参数自动获取与优化方法
技术领域
本发明涉及一种采样反馈的火焰模型参数自动获取与优化方法,属于虚拟现实科学技术领域。
背景技术
随着计算机图形学技术的飞速发展,火焰燃烧越来越多地出现在计算机动画、影视制作和媒体广告等场景之中。在对战场进行模拟的时候,火焰的模拟也是必不可少的。
火焰具有实时的多变性和无规则性,它的外观形状极不规则、没有光滑的表面,这使得经典的欧几里得几何学对其描述就显得无能为力。同时,火焰在燃烧的过程中,要受到内外各种因素的作用和影响,再加上火焰燃烧的形态非常丰富,不同的燃料在不同的情况下表现出巨大的差异,就更加向人们提出了严峻的考验。
有三种与火焰相关的基本视觉现象。第一个视觉现象是在许多火焰中看到的蓝色或蓝绿色焰心,这些颜色由中间化学产物产生,例如在化学反应中产生的碳自由基。第二个视觉现象是由热气产物放出的黑体辐射。它以黄橙色为特征,该颜色与火焰密切相关,为了给它在视觉上进行精确建模需要跟踪火焰的温度。第三个视觉现象是温度在降低到黑体辐射消失后,出现在一些火焰中的烟或者是烟灰。如果燃烧物是固体或者液体,第一步是加热直到它变成气态(显然,如果是气体燃料,开始时就已经是气体状态),气体被加热到隐式曲面对应着火点,然后出现细薄的蓝色焰心。温度接着升高,并在辐射冷却和其它混合因素导致它温度降低之前,随着反应过程升高到最大值。接下来,随着温度的降低,黑体辐射减少直至黄橙色消失。
粒子系统的基本思想是把无规则形状的物体看作是众多粒子所组成的粒子团,各个粒子都有自己的属性:如颜色、形状、大小、生存期、速度等。粒子随时间的推移而不断地改变状态,从而模拟出无规则物体及其运动变化。从粒子系统方法诞生到现在,它已经逐步成为计算机图形学中应用最广,应用时间最长的方法之一。基于粒子系统的火焰模拟原理如图1所示。
然而,基于粒子系统的方法的控制过程过于随机,选定合适的控制参数变成为了模拟中面临的重要问题。目前研究者们往往都是根据需要模拟的火焰的特征,人为选择并调整控制参数,这使得模拟的过程非常繁琐。
发明内容
本发明要解决的技术问题是:针对基于粒子系统的火焰模型参数调整繁琐的现状,提出了一种可以根据采样反馈自动获取火焰模型参数,优化火焰模型的方法,简化了建立火焰模型的过程,同时有效的对火焰模型进行了优化。
本发明提出了一种采样反馈的火焰模型参数自动获取与优化方法,包括以下步骤:
(1)采用粒子系统的方法,根据初始的模型参数和控制参数建立火焰模型;
(2)在步骤(1)建立火焰模型后,分析当前火焰模型和真实火焰的误差,生成误差函数;
(3)在步骤(2)生成火焰模型的误差函数后,判断火焰模型误差是否小于误差阈值;若是,则本方法结束;否则,跳转到步骤(4);
(4)使用梯度下降的方法,调整火焰模型的控制参数;
(5)在步骤(4)的基础上,根据当前计算的控制参数修正火焰模型;
(6)在步骤(5)建立修正后的火焰模型的基础上,跳转到步骤(3)。
本发明的有益效果是:
针对基于粒子系统的火焰模型参数调整繁琐的现状,提出了一种可以根据采样反馈自动获取火焰模型参数,优化火焰模型的方法,简化了建立火焰模型的过程,同时有效的对火焰模型进行了优化。
附图说明
图1为火焰模拟原理框图;
图2为采样反馈的火焰模型参数自动获取与优化方法的流程图。
具体实施方式
本发明提出了一种可以根据采样反馈自动获取火焰模型参数,优化火焰模型的方法,简化了建立火焰模型的过程,同时有效的对火焰模型进行了优化。该方法的流程如图1所示,其步骤如下:
步骤1采用粒子系统的方法,根据初始的模型参数和控制参数建立火焰模型;
粒子系统的基本思想是把无规则形状的物体看作是众多粒子所组成的粒子团,各个粒子都有自己的属性:如颜色、形状、大小、生存期、速度等。粒子随时间的推移而不断地改变状态,从而模拟出无规则物体及其运动变化。
建立火焰模型的模型参数包括粒子的数目num,粒子的初始颜色initialColor、初始透明度initialAlpha。其中粒子的数目num初始值为不影响模拟效果下所使用的最少粒子束;粒子的初始颜色initialColor是基本色,粒子的颜色将从initialColor逐渐向背景颜色转变;粒子的初始透明度initialAlpha=1.0,透明度是一个从0变化到1的实数。所述的控制参数包括Δx、Δy、Δz,分别表示火焰在X,Y,Z轴上的运动;Ex、Ey、Ez,表示火焰的膨胀或跳动;Sx(i)、Sz(i),表示火焰顶端的发散(X、Z轴)。
步骤2分析当前火焰模型和真实火焰的误差,生成误差函数;误差函数取决于火焰模型的控制参数,表达式为:
d=f(Δx,Δy,Δz,Ex,Ey,Ez,Sx(i),Sz(i))
其中d表示火焰模型的误差;Δx、Δy、Δz,分别表示火焰在X,Y,Z轴上的运动;Ex、Ey、Ez,表示火焰的膨胀或跳动;Sx(i)、Sz(i),表示火焰顶端的发散(X、Z轴)。
步骤3在步骤2生成误差函数的基础上,判断火焰模型误差是否小于误差阈值。若是,则本方法结束;否则,跳转到步骤(4);其中误差阈值可以根据用户对火焰模型的需求进行确定。
步骤4使用梯度下降的方法,调整火焰模型的控制参数;梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。
采用梯度下降法进行迭代的具体步骤为:
1)选取初始点a0,给定梯度的接受误差α,以及下降量的接受误差β,使α>0,β>0,并令迭代次数k=0;
2)计算负梯度
Figure BDA0000062150220000031
及其单位向量
Figure BDA0000062150220000032
其中
Figure BDA0000062150220000033
为原函数,
Figure BDA0000062150220000034
为哈密顿算符,用来计算
Figure BDA0000062150220000035
在点
Figure BDA0000062150220000036
处的梯度;
3)检查是否满足条件||s(k)||≤α,若满足则转8),否则继续;
4)计算最佳步长ρk
5)令 a k + 1 = a k + ρ k s ^ ( k ) ;
6)计算并检验另一判据
Figure BDA0000062150220000038
满足转8),否则继续执行步骤7);
7)令k=k+1,转2);
8)输出结果,结束。
在计算最佳步长ρk的过程中,考虑到一般来说,ρk应随着搜索的步数的增加而逐渐变小。所以,在迭代过程中,ρk随着k的改变而改变,且满足
ρ k ≥ - w → ( k ) x k → | | x k → | | 2 ;
其中
Figure BDA0000062150220000042
为迭代过程中第k次的取值,
Figure BDA0000062150220000043
步骤5在步骤(4)的基础上,根据当前计算的控制参数修正火焰模型;
步骤6在步骤(5)建立修正后的火焰模型的基础上,跳转到步骤(3)。

Claims (4)

1.一种采样反馈的火焰模型参数自动获取与优化方法,其特征在于包括:
(1)采用粒子系统的方法,根据初始的模型参数和控制参数建立火焰模型;
(2)在步骤(1)建立火焰模型后,分析当前火焰模型和真实火焰的误差,生成误差函数;
(3)在步骤(2)生成火焰模型的误差函数后,判断火焰模型误差是否小于误差阈值,若是,则本方法结束;否则,跳转到步骤(4);
(4)使用梯度下降的方法,调整火焰模型的控制参数;
(5)在步骤(4)的调整的火焰模型的控制参数的基础上,根据调整后的火焰模型的控制参数修正火焰模型;
(6)在步骤(5)建立修正后的火焰模型的基础上,跳转到步骤(3)。
2.根据权利要求1所述的一种采样反馈的火焰模型参数自动获取与优化方法,其特征在于:所述步骤(1)中模型参数包括粒子的数目num,粒子的初始颜色initialColor、初始透明度initialAlpha;其中粒子的数目num初始值为不影响模拟效果下所使用的最少粒子束;粒子的初始颜色initialColor是基本色,粒子的颜色将从initialColor逐渐向背景颜色转变;粒子的初始透明度initialAlpha=1.0,透明度是一个从0变化到1的实数;所述的控制参数包括Δx、Δy、Δz,分别表示火焰在X,Y,Z轴上的运动;Ex、Ey、Ez,表示火焰的膨胀或跳动;Sx(i)、Sz(i),表示火焰在X、Z轴顶端的发散。
3.根据权利要求1所述的一种采样反馈的火焰模型参数自动获取与优化方法,其特征在于:所述步骤(2)中火焰模型的误差函数定义如下:
d=f(Δx,Δy,Δz,Ex,Ey,Ez,Sx(i),Sz(i))
其中d表示火焰模型的误差;Δx、Δy、Δz,分别表示火焰在X,Y,Z轴上的运动;Ex、Ey、Ez,表示火焰的膨胀或跳动;Sx(i)、Sz(i),表示火焰在X、Z轴顶端的发散。
4.根据权利要求1所述的一种采样反馈的火焰模型参数自动获取与优化方法,其特征在于:所述步骤(4)中梯度下降法为利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小;在每次迭代时,迭代步长ρk随着k的改变而改变,且满足
ρ k ≥ - w → ( k ) x k → | | x k → | | 2 ;
其中
Figure FDA0000062150210000022
为迭代过程中第k次的取值,
Figure FDA0000062150210000023
s(k)表示梯度下降的搜索方向。
CN 201110130039 2011-05-19 2011-05-19 一种采样反馈的火焰模型参数自动获取与优化方法 Expired - Fee Related CN102184568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110130039 CN102184568B (zh) 2011-05-19 2011-05-19 一种采样反馈的火焰模型参数自动获取与优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110130039 CN102184568B (zh) 2011-05-19 2011-05-19 一种采样反馈的火焰模型参数自动获取与优化方法

Publications (2)

Publication Number Publication Date
CN102184568A true CN102184568A (zh) 2011-09-14
CN102184568B CN102184568B (zh) 2013-07-31

Family

ID=44570737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110130039 Expired - Fee Related CN102184568B (zh) 2011-05-19 2011-05-19 一种采样反馈的火焰模型参数自动获取与优化方法

Country Status (1)

Country Link
CN (1) CN102184568B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299268A (zh) * 2014-11-02 2015-01-21 北京航空航天大学 一种高动态范围成像的火焰三维温度场重建方法
RU2760921C1 (ru) * 2021-06-07 2021-12-01 Акционерное общество "Научно-исследовательский институт телевидения" Способ помехоустойчивого обнаружения дыма и пламени в сложной фоно-световой обстановке

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372472B1 (en) * 2001-04-09 2008-05-13 Matrox Electronic Systems Ltd. Method and apparatus for graphically defining a video particle explosion effect
CN101561939A (zh) * 2009-05-27 2009-10-21 天津大学 基于物理的物体交互式燃烧模拟方法
CN101950421A (zh) * 2010-09-08 2011-01-19 北京航空航天大学 一种火焰模型可信度的评价方法
CN101996418A (zh) * 2010-09-08 2011-03-30 北京航空航天大学 一种带有温度信息的火焰采样装置和模拟方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372472B1 (en) * 2001-04-09 2008-05-13 Matrox Electronic Systems Ltd. Method and apparatus for graphically defining a video particle explosion effect
CN101561939A (zh) * 2009-05-27 2009-10-21 天津大学 基于物理的物体交互式燃烧模拟方法
CN101950421A (zh) * 2010-09-08 2011-01-19 北京航空航天大学 一种火焰模型可信度的评价方法
CN101996418A (zh) * 2010-09-08 2011-03-30 北京航空航天大学 一种带有温度信息的火焰采样装置和模拟方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. BASAK,ET,AL.: "Effect of prohexadione-Ca (Regalis) on the effectiveness of NAA and BA used for fruitlet thinning in apple trees", 《ACTA HORTICULTURAE》 *
GARMIN: "《Garmin Mobile 20 set up and go》", 31 August 2007 *
曾志恒,楼白杨: "镁合金微弧氧化膜的耐蚀性及其在腐蚀介质下的磨损行为", 《材料科学与工程学报》 *
谢隽毅 等: "一个基于粒子系统的战场火焰模型及其实现", 《系统仿真学报》 *
阎峰云等: "AZ91D 镁合金在硅酸盐体系下微弧氧化配方的优化", 《新技术新工艺》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299268A (zh) * 2014-11-02 2015-01-21 北京航空航天大学 一种高动态范围成像的火焰三维温度场重建方法
CN104299268B (zh) * 2014-11-02 2017-04-05 北京航空航天大学 一种高动态范围成像的火焰三维温度场重建方法
RU2760921C1 (ru) * 2021-06-07 2021-12-01 Акционерное общество "Научно-исследовательский институт телевидения" Способ помехоустойчивого обнаружения дыма и пламени в сложной фоно-световой обстановке

Also Published As

Publication number Publication date
CN102184568B (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
Röpke et al. Type Ia supernova diversity in three-dimensional models
CN104268322B (zh) Weno差分方法的一种边界处理技术
CN103489209B (zh) 一种基于流体关键帧编辑的可控流体动画生成方法
CN106842983A (zh) 一种面向余热发电的三维动态监控系统的建立方法
CN102184568B (zh) 一种采样反馈的火焰模型参数自动获取与优化方法
CN115034138A (zh) 以计算流体力学与深度学习结合的锅炉温度场预测方法
CN113779876B (zh) 一种基于神经网络模型的湍流燃烧大涡模拟方法
Yongxing et al. Optimization approach for a catamaran hull using CAESES and STAR-CCM+
CN103235517A (zh) 电感耦合式高频无极灯仿真装置及方法
JP5062679B2 (ja) シミュレーション方法、プログラム及びこれを記録した記録媒体、並びにシミュレーション装置
CN103631997A (zh) 锅炉燃烧器的建模方法
CN106777472A (zh) 基于拉盖尔多项式的减少分裂误差的完全匹配层实现方法
JP2011141475A (ja) 初期値生成装置及び初期値生成方法
CN109977431A (zh) 一种大场景环境下烟雾建模方法
CN108984842A (zh) 一种骨料烘干煤粉燃烧器的设计方法及设计平台
CN106650133A (zh) 加热炉内导热流体仿真方法
CN116085823A (zh) 锅炉燃烧控制方法及系统
CN106647255B (zh) 按设定误差性能指标函数收敛的火电机组协调控制方法
de Wilde et al. Energy modelling
Ivancic et al. Auto-ignition and heat release in a gas turbine burner at elevated temperature
Boddepalli et al. Analysis of tilt integral derivative controller-based automatic load frequency control of multi-area multi-source system
CN115109918B (zh) 一种基于加热炉双耦合目标加热曲线的炉温调控方法
CN117057238B (zh) 基于物理信息算子网络模型的燃烧器稳燃钝体设计方法
CN111477284B (zh) 一种交互式水泥生产仿真方法
CN103439132B (zh) 生物质循环流化床锅炉炉内磨损测量方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130731

Termination date: 20210519

CF01 Termination of patent right due to non-payment of annual fee