CN102183754A - System and method for detecting sea target by using robust intelligent radar - Google Patents
System and method for detecting sea target by using robust intelligent radar Download PDFInfo
- Publication number
- CN102183754A CN102183754A CN 201110051200 CN201110051200A CN102183754A CN 102183754 A CN102183754 A CN 102183754A CN 201110051200 CN201110051200 CN 201110051200 CN 201110051200 A CN201110051200 A CN 201110051200A CN 102183754 A CN102183754 A CN 102183754A
- Authority
- CN
- China
- Prior art keywords
- overbar
- radar
- theta
- training sample
- extra large
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 238000012549 training Methods 0.000 claims description 36
- 238000001514 detection method Methods 0.000 claims description 31
- 238000005070 sampling Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000010606 normalization Methods 0.000 claims description 12
- 238000006467 substitution reaction Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 7
- 230000006978 adaptation Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000002068 genetic effect Effects 0.000 claims description 6
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 230000017105 transposition Effects 0.000 claims description 6
- 230000003760 hair shine Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
The invention relates to a system for detecting a sea target by using a robust intelligent radar. The system comprises a radar, a database and an upper computer, which are orderly connected, wherein the radar is used for irradiating a sea area to be detected and storing radar sea clutter data in the database; and the upper computer comprises a data preprocessing module, a robust forecast model modeling module, an improved intelligent optimizing module, a target detecting module, a model updating module, and a result display module. The invention also provides a method for detecting the sea target by using the robust intelligent radar. The invention provides the system and method for detecting the sea target by using the robust intelligent radar which has advantages of robustness, capability of avoiding artificial factors, and high intelligence.
Description
Technical field
The present invention relates to the radar data process field, especially, relate to a kind of robust intelligence radar naval target detection system and method.
Background technology
The sea clutter promptly comes from the radar backscattering echo on sea.In recent decades, along with going deep into to extra large clutter understanding, countries such as Germany, Norway attempt utilizing radar observation sea clutter to obtain radar wave image coming inverting wave information in succession, to obtain real-time information about sea state, as wave height, direction and the cycle etc. of wave, thereby further marine small objects is detected, this has crucial meaning to marine activity.
The naval target detection technique has consequence, and it is one of vital task to extra large radar work that the accurate target judgement is provided.The radar automatic checkout system is made judgement according to decision rule under given detection threshold, and strong extra large clutter often becomes the main interference of weak target signal.How to handle extra large clutter and will directly have influence on the detectability of radar under marine environment: the 1) ice of navigation by recognition buoy, small pieces, swim in the greasy dirt on sea, these may bring potential crisis to navigation; 2) the monitoring illegal fishing is an important task of environmental monitoring.
When traditional target detection, extra large clutter is considered to disturb a kind of noise of navigation to be removed.Yet during to extra large observed object, faint moving target echo usually is buried in the extra large clutter at radar, signal to noise ratio is lower, radar is difficult for detecting target, and a large amount of spikes of extra large clutter also can cause serious false-alarm simultaneously, to the detection performance generation considerable influence of radar.For sea police's ring and early warning radar, the main target of research is to improve the detectability of target under the extra large clutter background for various.Therefore, not only have important significance for theories and practical significance, and be difficult point and focus that domestic and international naval target detects.
Summary of the invention
In order to overcome the shortcoming that existing radar method for detecting targets at sea robustness is not high, be subject to human factor influence, intelligent deficiency, the invention provides and a kind ofly have robustness, avoid human factor influence, intelligent high intelligent radar naval target detection system and method.
The technical solution adopted for the present invention to solve the technical problems is:
A kind of robust intelligence radar naval target detection system, comprise radar, database and host computer, radar, database and host computer link to each other successively, and described radar shines the detection marine site, and with Radar Sea clutter data storing to described database, described host computer comprises:
Data preprocessing module, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70; Robust forecasting model MBM, in order to set up forecasting model, adopt following process to finish: with X, the following linear equation of Y substitution that obtains:
Wherein
Weight factor ν
iCalculate by following formula:
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Improve intelligent optimizing module, the nuclear parameter θ and the penalty coefficient γ of forecasting model be optimized, adopt following process to finish in order to adopt evolution genetic algorithm:
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
Module of target detection, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains calculates the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described host computer also comprises: the discrimination model update module, in order to sampling time interval image data by setting, the measured data and the model prediction value that obtain are compared, if relative error is greater than 10%, then new data is added the training sample data, upgrade forecasting model.
As preferred another kind of scheme: described host computer also comprises: display module as a result shows at host computer in order to the testing result with module of target detection.
The employed radar method for detecting targets at sea of a kind of robust intelligence radar naval target detection system, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Wherein
Weight factor ν
iCalculate by following formula:
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) be optimized with the nuclear parameter θ and the penalty coefficient γ of evolution genetic algorithm, adopt following process to finish step (4):
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
(6) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(7) carry out normalized;
(8) the estimation function f (x) that treats that substitution step (4) obtains calculates the extra large clutter predicted value of sampling instant (t+1);
(9) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(10) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described method also comprises:
(11), by the sampling time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
As preferred another kind of scheme: in described step (10), the testing result of module of target detection is shown at host computer.
Technical conceive of the present invention is: the chaotic characteristic that the present invention is directed to the Radar Sea clutter, Radar Sea clutter data are reconstructed, and the data after the reconstruct are carried out nonlinear fitting, set up the forecasting model of Radar Sea clutter, calculate the poor of the predicted value of Radar Sea clutter and measured value, introduce the robust intelligent optimization method, the error when having target to exist can be significantly when not having target, introduce the robust intelligent optimization method, thereby realize the robust intelligence target detection under the extra large clutter background.
Beneficial effect of the present invention mainly shows: 1, can online detection naval target; 2, used detection method only needs less sample; 3, strong robustness, intelligent, height have been avoided artificial factor.
Description of drawings
Fig. 1 is the hardware structure diagram of system proposed by the invention;
Fig. 2 is the functional block diagram of host computer proposed by the invention;
Embodiment
Below in conjunction with accompanying drawing the present invention is further described.The embodiment of the invention is used for the present invention that explains, rather than limits the invention, and in the protection domain of spirit of the present invention and claim, any modification and change to the present invention makes all fall into protection scope of the present invention.
Embodiment 1
With reference to Fig. 1, Fig. 2, a kind of robust intelligence radar naval target detection system, comprise radar 1, database 2 and host computer 3, radar 1, database 2 and host computer 3 link to each other successively, 1 pair of marine site of detecting of described radar is shone, and with Radar Sea clutter data storing to described database 2, described host computer 3 comprises:
Data preprocessing module 4, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70; Robust forecasting model MBM 5, in order to set up forecasting model, adopt following process to finish: with X, the following linear equation of Y substitution that obtains:
Wherein
Weight factor ν
iCalculate by following formula:
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Improve intelligent optimizing module 6, the nuclear parameter θ and the penalty coefficient γ of forecasting model be optimized, adopt following process to finish in order to adopt evolution genetic algorithm:
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
Module of target detection 7, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains obtains the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described host computer 3 also comprises: model modification module 8, by the time interval image data of setting, measured data and the model prediction value that obtains compared, and if relative error greater than 10%, then adds new data the training sample data, upgrade forecasting model.
Described host computer 3 also comprises: display module 9 as a result, and the testing result of module of target detection is shown at host computer.
The hardware components of described host computer 3 comprises: the I/O element is used for the collection of data and the transmission of information; Data-carrier store, data sample that storage running is required and operational factor etc.; Program storage, storage realizes the software program of functional module; Arithmetical unit, executive routine, the function of realization appointment; Display module shows the parameter and the testing result that are provided with.
With reference to Fig. 1, Fig. 2, a kind of robust intelligence radar method for detecting targets at sea, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Wherein
Weight factor ν
iCalculate by following formula:
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) be optimized with the nuclear parameter θ and the penalty coefficient γ of evolution genetic algorithm, adopt following process to finish step (4):
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
(6) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(7) carry out normalized;
(8) the estimation function f (x) that treats that substitution step (4) obtains calculates the extra large clutter predicted value of sampling instant (t+1);
(9) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(10) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described method also comprises: (11), by the time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
Described method also comprises: in described step (10), the testing result of module of target detection is shown at host computer.
Claims (6)
1. robust intelligence radar naval target detection system, comprise radar, database and host computer, radar, database and host computer link to each other successively, it is characterized in that: described radar shines the detection marine site, and with Radar Sea clutter data storing to described database, described host computer comprises:
Data preprocessing module, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70; Robust forecasting model MBM, in order to set up forecasting model, adopt following process to finish: with X, the following linear equation of Y substitution that obtains:
Wherein
Weight factor ν
iCalculate by following formula:
Wherein
Be error variance ξ
iThe estimation of standard deviation, c
1, c
2Be constant;
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Improve intelligent optimizing module, the nuclear parameter θ and the penalty coefficient γ of forecasting model be optimized, adopt following process to finish in order to adopt evolution genetic algorithm:
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
Module of target detection, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains calculates the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
2. robust intelligence radar naval target detection system as claimed in claim 1, it is characterized in that: described host computer also comprises: the discrimination model update module, in order to sampling time interval image data by setting, the measured data and the model prediction value that obtain are compared, if relative error is greater than 10%, then new data is added the training sample data, upgrade forecasting model.
3. robust as claimed in claim 1 or 2 intelligence radar naval target detection system, it is characterized in that: described host computer also comprises: display module as a result shows at host computer in order to the testing result with module of target detection.
4. employed radar method for detecting targets at sea of robust as claimed in claim 1 intelligence radar naval target detection system, it is characterized in that: described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Wherein
Weight factor ν
iCalculate by following formula:
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) be optimized with the nuclear parameter θ and the penalty coefficient γ of evolution genetic algorithm, adopt following process to finish step (4):
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
(6) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(7) carry out normalized;
(8) the estimation function f (x) that treats that substitution step (4) obtains calculates the extra large clutter predicted value of sampling instant (t+1);
(9) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(10) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
5. radar method for detecting targets at sea as claimed in claim 4 is characterized in that: described method also comprises:
(11), by the sampling time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
6. as claim 4 or 5 described radar method for detecting targets at sea, it is characterized in that: in described step (10), the testing result of module of target detection is shown at host computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100512006A CN102183754B (en) | 2011-03-03 | 2011-03-03 | System and method for detecting sea target by using robust intelligent radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100512006A CN102183754B (en) | 2011-03-03 | 2011-03-03 | System and method for detecting sea target by using robust intelligent radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102183754A true CN102183754A (en) | 2011-09-14 |
CN102183754B CN102183754B (en) | 2012-07-25 |
Family
ID=44569954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100512006A Expired - Fee Related CN102183754B (en) | 2011-03-03 | 2011-03-03 | System and method for detecting sea target by using robust intelligent radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102183754B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977585A (en) * | 2015-06-11 | 2015-10-14 | 中国科学院声学研究所 | Robust motion sonar target detection method |
CN107292014A (en) * | 2017-06-15 | 2017-10-24 | 北京航空航天大学 | A kind of method of the qualitative assessment radar station guidance capability based on Monte Carlo simulation |
CN110940970A (en) * | 2019-11-06 | 2020-03-31 | 河海大学 | MIMO radar target detection method and system for floating oil sea surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101140324A (en) * | 2007-10-11 | 2008-03-12 | 上海交通大学 | Method for extracting sea area synthetic aperture radar image point target |
WO2008112361A2 (en) * | 2007-02-08 | 2008-09-18 | Raytheon Company | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
CN101881826A (en) * | 2009-05-06 | 2010-11-10 | 中国人民解放军海军航空工程学院 | Scanning-mode sea clutter local multi-fractal target detector |
CN101887119A (en) * | 2010-06-18 | 2010-11-17 | 西安电子科技大学 | Subband ANMF (Adaptive Normalized Matched Filter) based method for detecting moving object in sea clutter |
-
2011
- 2011-03-03 CN CN2011100512006A patent/CN102183754B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008112361A2 (en) * | 2007-02-08 | 2008-09-18 | Raytheon Company | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101140324A (en) * | 2007-10-11 | 2008-03-12 | 上海交通大学 | Method for extracting sea area synthetic aperture radar image point target |
CN101881826A (en) * | 2009-05-06 | 2010-11-10 | 中国人民解放军海军航空工程学院 | Scanning-mode sea clutter local multi-fractal target detector |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
CN101887119A (en) * | 2010-06-18 | 2010-11-17 | 西安电子科技大学 | Subband ANMF (Adaptive Normalized Matched Filter) based method for detecting moving object in sea clutter |
Non-Patent Citations (1)
Title |
---|
《舰船电子对抗》 20100430 郭锦成 对海雷达目标检测性能测试方法 第70-71,75页 1-6 第33卷, 第2期 2 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977585A (en) * | 2015-06-11 | 2015-10-14 | 中国科学院声学研究所 | Robust motion sonar target detection method |
CN104977585B (en) * | 2015-06-11 | 2017-07-28 | 中国科学院声学研究所 | A kind of motion sonar target detection method of robust |
CN107292014A (en) * | 2017-06-15 | 2017-10-24 | 北京航空航天大学 | A kind of method of the qualitative assessment radar station guidance capability based on Monte Carlo simulation |
CN107292014B (en) * | 2017-06-15 | 2018-03-30 | 北京航空航天大学 | A kind of method of the qualitative assessment radar station guidance capability based on Monte Carlo simulation |
CN110940970A (en) * | 2019-11-06 | 2020-03-31 | 河海大学 | MIMO radar target detection method and system for floating oil sea surface |
Also Published As
Publication number | Publication date |
---|---|
CN102183754B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102147465B (en) | System and method for detecting sea target by chaos optimizing radar | |
CN102147464B (en) | Intelligent system and method for forecasting robust radar sea clutter | |
CN102183749A (en) | Sea target detecting system of adaptive radar and method thereof | |
CN102147463B (en) | System and method for forecasting Qunzhi radar sea clutters | |
Akbarifard et al. | Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm | |
CN107942312A (en) | A kind of Intelligent radar sea target detection system and method based on differential evolution invasive weed optimization algorithm | |
CN102183745B (en) | Sea clutter forecasting system and method for intelligent radar | |
CN102183751B (en) | Intelligent radar sea target detection system and method | |
CN107656250A (en) | A kind of Intelligent radar sea target detection system and method based on artificial bee colony algorithm | |
CN108983179A (en) | A kind of radar marine target detection system of colony intelligence agility | |
CN102183746B (en) | Radar marine target detection system and method | |
CN102183754B (en) | System and method for detecting sea target by using robust intelligent radar | |
CN102147466B (en) | Agile radar data processing system and method | |
CN108983181A (en) | A kind of radar marine target detection system of gunz optimizing | |
CN102183752B (en) | Self-adaptive radar marine clutter prediction system and method | |
CN108983178A (en) | A kind of Intelligent radar sea target detection system that agility is adaptive | |
CN107656251A (en) | A kind of Intelligent radar sea clutter forecast system and method based on improvement invasive weed optimized algorithm | |
CN107942300A (en) | A kind of Intelligent radar sea target detection system and method based on improvement artificial bee colony algorithm | |
CN102183753B (en) | System and method for radar sea clutter forecast by using chaos optimization | |
CN102183744A (en) | Swarm-intelligence radar sea target detecting system and method | |
CN102183747B (en) | Agile radar target detecting system and method | |
CN107942303A (en) | A kind of Intelligent radar sea clutter forecast system and method based on improvement artificial bee colony algorithm | |
CN102156278B (en) | Robust radar sea target detection system and method | |
CN107976662A (en) | A kind of Intelligent radar sea target detection system and method based on invasive weed optimization algorithm | |
CN202033473U (en) | Agile radar object detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120725 Termination date: 20140303 |