Summary of the invention
In order to overcome the shortcoming that existing radar method for detecting targets at sea robustness is not high, be subject to human factor influence, intelligent deficiency, the invention provides and a kind ofly have robustness, avoid human factor influence, intelligent high intelligent radar naval target detection system and method.
The technical solution adopted for the present invention to solve the technical problems is:
A kind of robust intelligence radar naval target detection system, comprise radar, database and host computer, radar, database and host computer link to each other successively, and described radar shines the detection marine site, and with Radar Sea clutter data storing to described database, described host computer comprises:
Data preprocessing module, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
2) training sample is carried out normalized, obtain the normalization amplitude
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70; Robust forecasting model MBM, in order to set up forecasting model, adopt following process to finish: with X, the following linear equation of Y substitution that obtains:
Wherein
Weight factor ν
iCalculate by following formula:
Wherein
Be error variance ξ
iThe estimation of standard deviation, c
1, c
2Be constant;
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Improve intelligent optimizing module, the nuclear parameter θ and the penalty coefficient γ of forecasting model be optimized, adopt following process to finish in order to adopt evolution genetic algorithm:
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
Module of target detection, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains calculates the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described host computer also comprises: the discrimination model update module, in order to sampling time interval image data by setting, the measured data and the model prediction value that obtain are compared, if relative error is greater than 10%, then new data is added the training sample data, upgrade forecasting model.
As preferred another kind of scheme: described host computer also comprises: display module as a result shows at host computer in order to the testing result with module of target detection.
The employed radar method for detecting targets at sea of a kind of robust intelligence radar naval target detection system, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
(2) training sample is carried out normalized, obtain the normalization amplitude
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Wherein
Weight factor ν
iCalculate by following formula:
Wherein
Be error variance ξ
iThe estimation of standard deviation, c
1, c
2Be constant;
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) be optimized with the nuclear parameter θ and the penalty coefficient γ of evolution genetic algorithm, adopt following process to finish step (4):
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
(6) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(7) carry out normalized;
(8) the estimation function f (x) that treats that substitution step (4) obtains calculates the extra large clutter predicted value of sampling instant (t+1);
(9) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(10) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
As preferred a kind of scheme: described method also comprises:
(11), by the sampling time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
As preferred another kind of scheme: in described step (10), the testing result of module of target detection is shown at host computer.
Technical conceive of the present invention is: the chaotic characteristic that the present invention is directed to the Radar Sea clutter, Radar Sea clutter data are reconstructed, and the data after the reconstruct are carried out nonlinear fitting, set up the forecasting model of Radar Sea clutter, calculate the poor of the predicted value of Radar Sea clutter and measured value, introduce the robust intelligent optimization method, the error when having target to exist can be significantly when not having target, introduce the robust intelligent optimization method, thereby realize the robust intelligence target detection under the extra large clutter background.
Beneficial effect of the present invention mainly shows: 1, can online detection naval target; 2, used detection method only needs less sample; 3, strong robustness, intelligent, height have been avoided artificial factor.
Embodiment
Below in conjunction with accompanying drawing the present invention is further described.The embodiment of the invention is used for the present invention that explains, rather than limits the invention, and in the protection domain of spirit of the present invention and claim, any modification and change to the present invention makes all fall into protection scope of the present invention.
Embodiment 1
With reference to Fig. 1, Fig. 2, a kind of robust intelligence radar naval target detection system, comprise radar 1, database 2 and host computer 3, radar 1, database 2 and host computer 3 link to each other successively, 1 pair of marine site of detecting of described radar is shone, and with Radar Sea clutter data storing to described database 2, described host computer 3 comprises:
Data preprocessing module 4, in order to carry out the pre-service of Radar Sea clutter data, adopt following process to finish:
1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
2) training sample is carried out normalized, obtain the normalization amplitude
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70; Robust forecasting model MBM 5, in order to set up forecasting model, adopt following process to finish: with X, the following linear equation of Y substitution that obtains:
Wherein
Weight factor ν
iCalculate by following formula:
Wherein
Be error variance ξ
iThe estimation of standard deviation, c
1, c
2Be constant;
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
Improve intelligent optimizing module 6, the nuclear parameter θ and the penalty coefficient γ of forecasting model be optimized, adopt following process to finish in order to adopt evolution genetic algorithm:
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
Module of target detection 7, in order to carry out target detection, adopt following process to finish:
1) gathers D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
2) carry out normalized;
3) the estimation function f (x) that treats that substitution forecasting model MBM obtains obtains the extra large clutter predicted value of sampling instant (t+1);
4) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
5) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described host computer 3 also comprises: model modification module 8, by the time interval image data of setting, measured data and the model prediction value that obtains compared, and if relative error greater than 10%, then adds new data the training sample data, upgrade forecasting model.
Described host computer 3 also comprises: display module 9 as a result, and the testing result of module of target detection is shown at host computer.
The hardware components of described host computer 3 comprises: the I/O element is used for the collection of data and the transmission of information; Data-carrier store, data sample that storage running is required and operational factor etc.; Program storage, storage realizes the software program of functional module; Arithmetical unit, executive routine, the function of realization appointment; Display module shows the parameter and the testing result that are provided with.
Embodiment 2
With reference to Fig. 1, Fig. 2, a kind of robust intelligence radar method for detecting targets at sea, described method may further comprise the steps:
(1) from database, gathers N Radar Sea clutter echoed signal amplitude x
iAs training sample, i=1 ..., N;
(2) training sample is carried out normalized, obtain the normalization amplitude
Wherein, minx represents the minimum value in the training sample, and maxx represents the maximal value in the training sample;
(3), obtain input matrix X and corresponding output matrix Y respectively with the training sample reconstruct after the normalization:
Wherein, D represents the reconstruct dimension, and D is a natural number, and D<N, and the span of D is 50-70;
(4) with the X, the following linear equation of Y substitution that obtain:
Wherein
Weight factor ν
iCalculate by following formula:
Wherein
Be error variance ξ
iThe estimation of standard deviation, c
1, c
2Be constant;
Find the solution to such an extent that treat estimation function f (x):
Wherein, M is the number of support vector, 1
ν=[1 ..., 1]
T,
K=exp (|| x
i-x
j||/θ
2), the transposition of subscript T representing matrix,
Be Lagrange multiplier, wherein, i=1 ..., M, j=1 ..., M, b
*Be amount of bias,
And exp (|| x-x
i||/θ
2) be the kernel function of support vector machine, x
jBe j Radar Sea clutter echoed signal amplitude, θ is a nuclear parameter, and x represents input variable, and γ is a penalty coefficient;
(5) be optimized with the nuclear parameter θ and the penalty coefficient γ of evolution genetic algorithm, adopt following process to finish step (4):
5.1) adopt real number coding method that θ and γ are encoded;
5.2) produce initial population at random;
5.3) calculate each individual fitness, and judge whether to meet the algorithm end condition, if meet, the optimum solution of output optimized individual and representative thereof, and finish to calculate, otherwise continue iteration;
5.4) adopt normal distribution probability to select individuality;
5.5) produce new individuality by the single-point linear crossing;
5.6) produce new individuality by even variation mode;
5.7) the new simple property of a body and function method is carried out the determinacy optimizing;
5.8) population of new generation that produces, return 5.3) carry out iteration;
Wherein, the initial population size is 50-200, maximum algebraically 50-300, it is 0.05-0.1 that optimized individual is selected probability, crossover probability is 0.5-0.9, the variation probability is 0.001-0.01, the extensive root-mean-square error of ideal adaptation degree preference pattern, and end condition is for reaching maximum algebraically or the five generations successively fitness is constant;
(6) gather D extra large clutter echoed signal amplitude at sampling instant t and obtain TX=[x
T-D+1, K, x
t], x
T-D+1The extra large clutter echoed signal amplitude of representing the t-D+1 sampling instant, x
tThe extra large clutter echoed signal amplitude of representing the t sampling instant;
(7) carry out normalized;
(8) the estimation function f (x) that treats that substitution step (4) obtains calculates the extra large clutter predicted value of sampling instant (t+1);
(9) difference e of extra large clutter predicted value of calculating and radar return measured value, calculation control limit Q
α:
Wherein, α is a degree of confidence, θ
1, θ
2, θ
3, h
0Be intermediate variable, λ
j iThe i power of j eigenwert of expression covariance matrix, k is the sample dimension, C
αBe that the normal distribution degree of confidence is the statistics of α;
(10) detect judgement: work as e
2Difference is greater than control limit Q
αThe time, there is target in this point, otherwise does not have target.
Described method also comprises: (11), by the time interval image data of setting, with the measured data that obtains and model prediction value relatively, if relative error greater than 10%, then adds new data the training sample data, the renewal forecasting model.
Described method also comprises: in described step (10), the testing result of module of target detection is shown at host computer.