CN102179375A - Nondestructive detecting and screening method based on near-infrared for crop single-grain components - Google Patents
Nondestructive detecting and screening method based on near-infrared for crop single-grain components Download PDFInfo
- Publication number
- CN102179375A CN102179375A CN2011100564725A CN201110056472A CN102179375A CN 102179375 A CN102179375 A CN 102179375A CN 2011100564725 A CN2011100564725 A CN 2011100564725A CN 201110056472 A CN201110056472 A CN 201110056472A CN 102179375 A CN102179375 A CN 102179375A
- Authority
- CN
- China
- Prior art keywords
- crop
- infrared
- grain
- spectrum
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012216 screening Methods 0.000 title claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 23
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 230000003595 spectral effect Effects 0.000 claims description 30
- 238000004458 analytical method Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 21
- 235000013339 cereals Nutrition 0.000 claims description 19
- 239000000523 sample Substances 0.000 claims description 19
- 230000001066 destructive effect Effects 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 241000209140 Triticum Species 0.000 claims description 4
- 235000021307 Triticum Nutrition 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000003909 pattern recognition Methods 0.000 claims description 4
- 239000013074 reference sample Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 240000007594 Oryza sativa Species 0.000 claims description 2
- 235000007164 Oryza sativa Nutrition 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000007621 cluster analysis Methods 0.000 claims description 2
- 238000010835 comparative analysis Methods 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 230000002950 deficient Effects 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims description 2
- 238000012567 pattern recognition method Methods 0.000 claims description 2
- 238000000513 principal component analysis Methods 0.000 claims description 2
- 235000009566 rice Nutrition 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 5
- 102000004169 proteins and genes Human genes 0.000 abstract description 5
- 239000003344 environmental pollutant Substances 0.000 abstract description 4
- 231100000719 pollutant Toxicity 0.000 abstract description 4
- 229920002472 Starch Polymers 0.000 abstract description 2
- 230000002068 genetic effect Effects 0.000 abstract description 2
- 235000019698 starch Nutrition 0.000 abstract description 2
- 239000008107 starch Substances 0.000 abstract description 2
- 238000005204 segregation Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 13
- 238000004497 NIR spectroscopy Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000009659 non-destructive testing Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000000447 pesticide residue Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000012214 genetic breeding Methods 0.000 description 1
- 238000002129 infrared reflectance spectroscopy Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003333 near-infrared imaging Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及农作物无损检测技术领域,具体涉及一种基于近红外作物单籽粒成分无损检测筛选方法。The invention relates to the technical field of non-destructive detection of crops, in particular to a method for non-destructive detection and screening of single grain components of crops based on near infrared.
技术背景technical background
无损检测技术(Nondestructive Determination Techonologies,简称NDT)是一门新兴的综合性应用学科,在不破坏或损坏被检测对象的前提下,利用样品内部结构异常或缺陷存在所引起的对热、声、光、电、磁等反应的变化,来探测其内部和表面缺陷,并对缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化做出判断和评价。根据无损检测原理的不同,检测方法大致可分为光学特性分析法、声学特性分析法、机器视觉技术检测方法、电学特性分析法、核磁共振检测技术与X射线检测技术等。Nondestructive Determination Technologies (NDT for short) is an emerging comprehensive application discipline, which utilizes the heat, sound, and light caused by the abnormal internal structure of the sample or the existence of defects on the premise of not destroying or damaging the object to be tested. , electric, magnetic and other changes to detect its internal and surface defects, and make judgments and evaluations on the type, nature, quantity, shape, position, size, distribution and changes of defects. According to the different non-destructive testing principles, the testing methods can be roughly divided into optical characteristic analysis method, acoustic characteristic analysis method, machine vision technology detection method, electrical characteristic analysis method, nuclear magnetic resonance detection technology and X-ray detection technology, etc.
光学特性分析法中的红外光谱和拉曼光谱技术能对样品进行无损分析,具有测试样品非接触性、非破坏性、检测灵敏度高、时间短、样品所需量小及样品无需制备等特点,在分析过程中不会对样品造成化学的、机械的、光化学和热的分解,是分析科学领域的研究热点之一。Infrared spectroscopy and Raman spectroscopy in the optical property analysis method can conduct non-destructive analysis of samples, and have the characteristics of non-contact, non-destructive, high detection sensitivity, short time, small amount of sample required and no need for sample preparation. During the analysis process, it will not cause chemical, mechanical, photochemical and thermal decomposition of the sample, which is one of the research hotspots in the field of analytical science.
近年来,近红外光谱技术在农产品无损检测尤其是农作物的品质分析和农药残留等方面的应用十分广泛。In recent years, near-infrared spectroscopy has been widely used in the non-destructive testing of agricultural products, especially in the quality analysis of crops and pesticide residues.
国外,早在60年代初,美国农业部仪器研究室Norris等首先利用近红外光谱技术测定谷物中的水分、蛋白质、脂肪等含量,并致力于近红外光谱技术在农牧产品品质分析中应用的研究。迄今为止,许多近红外光谱分析的实验方案和计算方法已成为AOCA(Association of Official Analytical Chemists)的标准方法。美国谷物化学协会于1982年10月批准了近红外方法用于小麦蛋白质的测定,国际谷物科学技术协会规定了近红外测定小麦及面粉蛋白质和水分含量的详细程序。以化学计量学为基础的定性与定量分析标准实用细则已陆续由美国ASTM(American Society for Testing and Materials)于1995、1996年公布。农药残留方面,Saranwong等(2005,2007)运用样品干提取(DESIR)样品前处理技术,对抑菌灵杀菌剂进行了近红外光谱检测研究。农药样品的浓度范围从2~90μg*mL-1(ppm),浓度间隔为2μg*mL-1。当将2mL的样品溶液加入到聚苯乙烯培养皿中的滤纸上,再将培养皿内溶液烘干后直接测量滤纸的漫反射光谱时,建立的近红外光谱分析模型的效果最佳,校正模型的SEP为6158μg*mL-1。In foreign countries, as early as the early 1960s, Norris et al., the instrument laboratory of the US Department of Agriculture, first used near-infrared spectroscopy to measure the content of moisture, protein, fat, etc. in grains, and devoted themselves to the application of near-infrared spectroscopy in the quality analysis of agricultural and animal husbandry products. Research. So far, many experimental schemes and calculation methods of near-infrared spectroscopy have become the standard methods of AOCA (Association of Official Analytical Chemists). The American Association of Cereal Chemistry approved the near-infrared method for the determination of wheat protein in October 1982, and the International Association of Cereal Science and Technology stipulated a detailed procedure for the determination of protein and moisture content in wheat and flour by near-infrared. The practical rules of qualitative and quantitative analysis standards based on chemometrics have been published by ASTM (American Society for Testing and Materials) in 1995 and 1996. In terms of pesticide residues, Saranwong et al. (2005, 2007) used the dry sample extraction (DESIR) sample pretreatment technology to conduct a near-infrared spectrum detection study on the fungicide fungicide. The concentration of the pesticide samples ranged from 2 to 90 μg*mL-1 (ppm), and the concentration interval was 2 μg*mL -1 . When 2mL of the sample solution is added to the filter paper in the polystyrene petri dish, and then the solution in the petri dish is dried and the diffuse reflectance spectrum of the filter paper is directly measured, the effect of the established near-infrared spectrum analysis model is the best, and the calibration model The SEP is 6158 μg*mL -1 .
在国内,近红外光谱技术在作物品质分析上的应用研究也十分活跃。严衍禄等(1990)应用傅立叶变换近红外漫反射光谱分析方法测定了谷子、玉米、小麦等作物的蛋白质、氨基酸、脂肪等17种成分,取得了很好的效果。李大群等(1990)利用近红外漫反射光谱分析技术测定大豆和小麦的蛋白质含量,分别使用了35个大豆品种和77个小麦品种作为定标样品建立预测模型,近红外测定值与实际值的相关系数分别达0.967和0.984,标准偏差分别为0.826和0.348。彭玉魁等(1997)用近红外方法对124个小麦品种籽粒品质成分进行了比较测定,表明用近红外光谱分析技术测得小麦样品的水分、粗蛋白、粗纤维、赖氨酸含量与常规方法测定结果之间有较高的相关程度。王成(2000)利用傅立叶变换近红外漫反射光谱测定大麦籽粒粗蛋白含量,以40个大麦样品建立预测数学模型,预测值和实测值的相关系数为0.989,对40个独立样品进行预测,预测值和测定值的相关系数为0.969,证实所建立的模型有较好的预测准确度。水稻种子的直链淀粉和支链淀粉含量的测定,大豆、油菜脂肪成分的测定,以及水果蔬菜中维生素、糖类的测定都成功地应用了近红外光谱分析技术。农药残留方面,Xuemei等(2007)也利用硅胶富集提纯的样品预处理方法,将低浓度的待测物氨基甲酸乙酯吸附到硅胶中,并测量其近红外漫反射光谱,在1920~1970nm波段建立的PLS模型,浓度0100~1100mg*L-1内的20个样品的交互验证误差为011152mg*L-1。沈飞等(2009)采用近红外光谱分析法直接用于痕量农药辛硫磷的定量检测。In China, the application research of near-infrared spectroscopy technology in crop quality analysis is also very active. Yan Yanlu et al. (1990) applied the Fourier transform near-infrared diffuse reflectance spectroscopic analysis method to measure 17 components such as protein, amino acid and fat in millet, corn, wheat and other crops, and achieved good results. Li Daqun et al. (1990) used near-infrared diffuse reflectance spectroscopy to measure the protein content of soybean and wheat. They used 35 soybean varieties and 77 wheat varieties as calibration samples to establish a prediction model. The difference between the near-infrared measured value and the actual value The correlation coefficients were 0.967 and 0.984, and the standard deviations were 0.826 and 0.348, respectively. Peng Yukui et al. (1997) compared and determined the grain quality components of 124 wheat varieties with near-infrared methods, and showed that the moisture, crude protein, crude fiber, and lysine content of wheat samples measured by near-infrared spectral analysis technology were different from conventional methods. There is a high degree of correlation between the results. Wang Cheng (2000) used Fourier transform near-infrared diffuse reflectance spectroscopy to measure the crude protein content of barley grains, and established a prediction mathematical model with 40 barley samples. The correlation coefficient between the predicted value and the measured value was 0.989. The correlation coefficient between the measured value and the measured value is 0.969, which proves that the established model has good prediction accuracy. The determination of amylose and amylopectin content in rice seeds, the determination of fat components in soybeans and rapeseed, and the determination of vitamins and sugars in fruits and vegetables have all successfully applied near-infrared spectroscopy analysis technology. In terms of pesticide residues, Xuemei et al. (2007) also used the sample pretreatment method of enrichment and purification of silica gel to absorb low-concentration ethyl carbamate into silica gel, and measured its near-infrared diffuse reflectance spectrum. The PLS model established by the band, the cross-validation error of 20 samples within the concentration of 0100~1100mg*L -1 is 011152mg*L -1 . Shen Fei et al. (2009) used near-infrared spectroscopy for the quantitative detection of trace pesticide phoxim directly.
在作物籽粒成分单粒检测方面的进展,主要是利用近红外光谱分析不破坏样品、测定速度快的特点来检测完整单粒种子的品质成分。Delwiche(1998)研究了近红外方法非破坏性测定小麦单粒种子蛋白含量的可行性。Velasco等(1999,2002)应用近红外反射分析技术非破坏性测定了向日葵单粒完整种子的脂肪酸组分、油菜单粒种子的含油量、脂肪组分和蛋白质含量,认为近红外非破坏性分析可得到可靠的结果。张哗晖等(1998)利用近傅立叶红外光谱技术无损伤测定完整单粒玉米种子的油分,获得了肯定性的结果。The progress in single-seed detection of crop grain components is mainly to use near-infrared spectroscopy to detect the quality components of complete single seeds without destroying samples and fast measurement speed. Delwiche (1998) studied the feasibility of non-destructive determination of wheat single seed protein content by near-infrared method. Velasco et al. (1999, 2002) used near-infrared reflection analysis technology to non-destructively measure the fatty acid components of sunflower single intact seeds, the oil content, fat components and protein content of rapeseed seeds, and considered that near-infrared non-destructive analysis Reliable results can be obtained. Zhang Huahui et al. (1998) used near-Fourier transform infrared spectroscopy to measure the oil content of intact single corn seeds without damage, and obtained positive results.
目前在单粒水平上进行无损高通量检测的技术有基于光电原理对单粒表面颜色差异进行分选的光电色选装置,并成功的应用于大米精选。光电色选机利用物料的光学及色度学特性,从大量散装样品材料中,将颜色不正常或表面有缺陷的次品及杂物从物料中无损检出,并自动分选剔除的新型机械,它综合应用了电子学、生物学等新技术,是典型的光、机、电一体化的高新技术设备。由于光电色选机是通过颜色进行分选,可以很大程度地提高物料品质,因此适应商品市场独特的作用将十分明显。At present, the technology for non-destructive high-throughput detection at the single-grain level includes a photoelectric color sorting device based on the photoelectric principle to sort the color difference of the single-grain surface, and it has been successfully applied to rice selection. The photoelectric color sorter uses the optical and colorimetric properties of the material to non-destructively detect defective products and sundries with abnormal colors or surface defects from a large number of bulk sample materials, and automatically sort and reject them. , which comprehensively applies new technologies such as electronics and biology, and is a typical high-tech equipment integrating light, machinery and electricity. Since the photoelectric color sorter sorts by color, it can greatly improve the quality of materials, so the unique role of adapting to the commodity market will be very obvious.
然而,迄今为止,尚未见有报道作物籽粒化学成分近红外检测与自动连续分选结合的高通量无损单粒籽粒检测分选方法。However, so far, there has been no report of a high-throughput non-destructive single-grain detection and sorting method that combines near-infrared detection of chemical composition of crop grains with automatic continuous sorting.
发明内容Contents of the invention
本发明提供了一种基于近红外作物单籽粒成分无损检测筛选方法,在单粒种子的水平上对化学成分差异个体进行分选。在单籽粒水平上实现对的淀粉、蛋白质、脂肪等化学物质以及化学污染物进行高通量无损检测,该发明可以对突变体、遗传分离群体无损选择和污染物检测,为作物遗传育种和农产品安全提供新方法。The invention provides a non-destructive detection and screening method for single-seed crop components based on near-infrared, which can sort individuals with different chemical components at the level of single seeds. High-throughput non-destructive detection of starch, protein, fat and other chemical substances and chemical pollutants can be realized at the single-grain level. This invention can perform non-destructive selection and pollutant detection on mutants and genetically isolated populations, and provide a basis for crop genetic breeding and agricultural products. Security offers new approaches.
近红外无损检测方法原理:The principle of near-infrared non-destructive testing method:
近红外光谱主要通过有机分子的倍频和合频吸收光谱,得到分子的结构、组成、状态的信息,而从近红外反射光谱还能得到样品的密度、粒度、高分子物的聚合度及纤维的直径等物质的物理状态信息。因为近红外光谱区的吸收主要是分子或原子振动基频在2000cm-1以上的倍频、合频吸收,所以有机物近红外光谱主要包括C-H,N-H,O-H等含氢基团的倍频与合频吸收带。这些含氢基团的吸收频率特征性强,受分子内外环境的影响小,而且在近红外光谱区样品的光谱特性很稳定。这种近红外光谱的本质特征为快速鉴别作物种子的化学成分奠定了基础。本发明将近红外光谱技术应用于物单粒的化学成分的无损检测,对已知化学成分的作物样本与光谱数据进行相关性分析,建立单粒与群体的化学成分鉴别模型,并利用从大量散装样品材料中连续、快速高通量选择技术原理,建立近红外的高通量无损选择平台装置,从而实现突变体、遗传分离群体的高通量无损选择。Near-infrared spectroscopy mainly obtains information on the structure, composition, and state of molecules through frequency-doubling and combined-frequency absorption spectra of organic molecules, and from near-infrared reflection spectroscopy, the density, particle size, polymerization degree of polymers, and fiber density of samples can also be obtained. The physical state information of matter such as diameter. Because the absorption in the near-infrared spectral region is mainly the frequency multiplication and combined frequency absorption of the molecular or atomic vibration fundamental frequency above 2000cm -1 , the near-infrared spectrum of organic matter mainly includes the frequency multiplication and combination of hydrogen-containing groups such as CH, NH, and OH. frequency absorption band. The absorption frequency of these hydrogen-containing groups is highly characteristic, less affected by the internal and external environment of the molecule, and the spectral characteristics of the sample in the near-infrared spectral region are very stable. This essential feature of near-infrared spectroscopy lays the foundation for the rapid identification of the chemical composition of crop seeds. The present invention applies near-infrared spectroscopy technology to the non-destructive detection of the chemical composition of single grains, performs correlation analysis on crop samples of known chemical composition and spectral data, establishes a chemical composition identification model for single grains and groups, and utilizes a large number of bulk Based on the principle of continuous and rapid high-throughput selection technology in sample materials, a near-infrared high-throughput non-destructive selection platform device is established to realize high-throughput non-destructive selection of mutants and genetically isolated populations.
为实现上述目的本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种基于近红外作物单籽粒成分无损检测筛选方法,其特征在于:具体包括以下步骤:A non-destructive detection and screening method based on near-infrared crop single-grain components, characterized in that it specifically includes the following steps:
(1)标准或参考样品单粒光谱集的建立:(1) Establishment of standard or reference sample single particle spectrum set:
首先对各种标准作物种子样品进行近红外检测,将作物种子光谱图象转换成样本光谱基本数据;测量各种标准作物种子样品的光谱;一般同一样品需多次重复测量,不同批号的样品也需重复测量,以平均光谱近似作为该样品标准光谱;First, carry out near-infrared detection on various standard crop seed samples, and convert the crop seed spectral images into sample spectral basic data; measure the spectra of various standard crop seed samples; The measurement needs to be repeated, and the average spectrum is approximated as the standard spectrum of the sample;
(2)不同材料单粒成分数据库的建立:(2) Establishment of single grain composition database of different materials:
对各种标准作物种子样品的化学成分定量检测,从而建立各种标准作物种子样品的单粒成分数据库;Quantitative detection of chemical components of various standard crop seed samples, so as to establish a single-grain component database of various standard crop seed samples;
(3)不同材料单粒成分鉴别模型的建立:(3) Establishment of identification model for single particle composition of different materials:
利用相应的统计分析软件,分析各种标准作物种子样品的单粒成分数据及其光谱信息的相关性,建立各种标准作物种子样品的单粒成分与光谱信息的鉴别模型;确定标准作物种子样品单粒所含有的各化学成分及其光谱阈值,这个阈值就是鉴定新待识别作物种子中是否含有该化学成分的标准;Use the corresponding statistical analysis software to analyze the correlation between the single grain composition data and spectral information of various standard crop seed samples, and establish the identification model of single grain composition and spectral information of various standard crop seed samples; determine the standard crop seed samples Each chemical composition contained in a single seed and its spectral threshold value, which is the standard for identifying whether the chemical composition is contained in the new crop seed to be identified;
(4)待识别作物种子单粒成分的分析:(4) Analysis of single grain components of crop seeds to be identified:
采集传送带上正在分拣的待识别作物种子单粒的近红外光谱信息,再和鉴别模型中标准作物种子的成分所对应的光谱信息进行比较分析,以阈值作为标准,从而判断待识别作物种子中是否含有某化学成分;Collect the near-infrared spectral information of the single grain of the crop seeds to be identified that are being sorted on the conveyor belt, and then compare and analyze the spectral information corresponding to the components of the standard crop seeds in the identification model. whether it contains a certain chemical ingredient;
(5)对样品的自动分选:(5) Automatic sorting of samples:
如果待识别作物种子的近红外光谱和鉴别模型比较,符合设定的预期,则待识别作物种子样品在传送带的输送下直接进入良品收集区,否则当待识别作物种子样品到达分选区时,喷阀喷出高速气流将其吹入次品收集区,从而实现样品的自动筛选;If the near-infrared spectrum of the crop seeds to be identified is compared with the identification model and meets the set expectations, the crop seed samples to be identified will directly enter the good product collection area under the conveyance of the conveyor belt; otherwise, when the crop seed samples to be identified arrive at the sorting area, spray The valve ejects high-speed airflow to blow it into the defective product collection area, so as to realize the automatic screening of samples;
所述的作物种子为水稻、小麦、玉米等。The crop seeds are rice, wheat, corn and the like.
所述的光谱信息经过了下列的校正与预处理:The spectral information has undergone the following corrections and preprocessing:
获得光谱信息后,进行光谱校正,使光谱图的规范化、抵消背景干扰及提高光谱的质量,采用平滑、中心、求导、归一化、多元散射校正、SNV、Reduce、Noise中的一种、任意二种或任意三种进行光谱预处理,采用何种校正方法要依光谱的质量及干扰的情况来选择,预处理也可以把原来隐藏的信号差异放大出来,提高光谱的分辨率,使品种鉴别更加直观、可靠;After obtaining the spectral information, perform spectral correction to normalize the spectral graph, offset background interference and improve the quality of the spectrum, using one of smoothing, centering, derivation, normalization, multiple scattering correction, SNV, Reduce, Noise, Any two or any three kinds of spectral preprocessing, which correction method to use should be selected according to the quality of the spectrum and the interference situation. Preprocessing can also amplify the original hidden signal difference, improve the resolution of the spectrum, and make the variety The identification is more intuitive and reliable;
所述的比较分析是在近红外光谱鉴别作物种子品种的定性判别分析更多依靠若干个峰组或频率段甚至全光谱来进行定性判别,包括偏差权重法、Kruskal-Wallistesting检验、主成分分析、偏最小二乘法、DPLS、SIMCA、LLM、Fisher判别、KNN、小波分析或ANN特征筛选方法来提取光谱特征以提高分析鉴别结果的可靠性。Described comparative analysis is the qualitative discriminant analysis of identifying crop seed varieties in the near-infrared spectrum, and more relies on several peak groups or frequency segments or even the whole spectrum to carry out qualitative discrimination, including deviation weight method, Kruskal-Wallisting test, principal component analysis, Partial least squares method, DPLS, SIMCA, LLM, Fisher discriminant, KNN, wavelet analysis or ANN feature screening method to extract spectral features to improve the reliability of analysis and identification results.
所述鉴别模型是指:对于单粒的作物种子样品,确定未知样品属于某一种类,采用模式识别来进行鉴别,鉴别作物种子品种的模式识别方法用Fisher判别、Bayes判别、逐步判别、线性学习机、KNN、SIMCA、DPLS、聚类分析、最小二乘回归、欧式距离或神经网络;以模式识别来进行判别分析,需要将已知不同化学成分标准作物种子样品的光谱分成学习集和检验集两部分,划分的依据是学习集和检验集中的类别种类应相同,具有广泛的代表性;然后对不同化学成分作物种子样品依先验知识进行赋初值,来建立不同成分鉴别模型,然后用检验集来评价模型的性能。Described identification model refers to: for the crop seed sample of single grain, determine that unknown sample belongs to a certain kind, adopt pattern recognition to carry out identification, the pattern recognition method of identification crop seed variety uses Fisher discriminant, Bayes discriminant, stepwise discriminant, linear learning machine, KNN, SIMCA, DPLS, cluster analysis, least squares regression, Euclidean distance or neural network; for discriminant analysis by pattern recognition, it is necessary to divide the spectra of standard crop seed samples with known different chemical compositions into a learning set and a test set Two parts, the division is based on the fact that the categories of the learning set and the test set should be the same and have a wide range of representativeness; then assign initial values to the crop seed samples with different chemical components according to prior knowledge to establish different component identification models, and then use The test set is used to evaluate the performance of the model.
本发明与背景技术相比具有的有益效果是:The beneficial effect that the present invention has compared with background technology is:
1)利用光谱技术单粒鉴别作物种子化学成分和农残,其分析速度大大加快。光谱的测定过程一般可在30秒内完成;1) Using spectral technology to identify chemical components and pesticide residues of crop seeds, the analysis speed is greatly accelerated. The measurement process of the spectrum can generally be completed within 30 seconds;
2)不使用任何化学试剂,降低了检测成本,也不污染环境;2) No chemical reagents are used, which reduces the detection cost and does not pollute the environment;
3)与化学方法相比,系统误差和人为误差大大降低,提高了测量精度;3) Compared with the chemical method, the system error and human error are greatly reduced, and the measurement accuracy is improved;
4)能够处理大量和单粒样本分析,节省时间,实时检测技术能够很好的对突变体、遗传群体进行跟踪检测;4) It can handle a large number of samples and single sample analysis, saving time, and the real-time detection technology can track and detect mutants and genetic groups very well;
5)能够对分析样本进行无损鉴别,鉴别后的作物仍能用于种植、生产。5) The analysis sample can be identified non-destructively, and the identified crops can still be used for planting and production.
附图说明Description of drawings
图1是作物种子单粒的典型光谱曲线图。Figure 1 is a typical spectrum curve of a single crop seed.
图2本发明方法的流程方框图。Fig. 2 is a flow block diagram of the method of the present invention.
具体实施方式Detailed ways
首先,外设通电,控制计算机开机,启动系统控制单元,对近红外无损检测系统和输运单元和分检单元进行初始化。初始化完成后,系统的种子输送单元将待检测种子在输送带上整齐排列,输送带将第一粒种子移动到近红外检测单元,获取其相应的近红外图谱。然后将该图谱和前期建立起的标准模型库相比较,判断是否符合要求。之后,输送带继续向前传送,将下一粒种子传递到近红外检测单元,而已经检测过的种子送到分拣单元。如果不符合要求,该种子将被一个特制的高速微型喷阀喷出的高速气流吹到一个接收容器A里,否则,该种子将随着输送带的运动直接送到另外一个接收容器B里。系统循环运行,从而实现对植物种子的自动无损检测。为了提高检测效率,可以通过增加通道数来实现。First, the peripherals are powered on, the computer is controlled to start up, the system control unit is started, and the near-infrared nondestructive testing system, the transport unit and the sorting unit are initialized. After the initialization is completed, the seed delivery unit of the system arranges the seeds to be detected on the conveyor belt neatly, and the conveyor belt moves the first seed to the near-infrared detection unit to obtain its corresponding near-infrared spectrum. Then compare the map with the standard model library established in the early stage to judge whether it meets the requirements. After that, the conveyor belt continues to move forward, passing the next seed to the near-infrared detection unit, while the already detected seeds are sent to the sorting unit. If the requirements are not met, the seeds will be blown into a receiving container A by the high-speed airflow ejected by a special high-speed micro spray valve, otherwise, the seeds will be directly sent to another receiving container B along with the movement of the conveyor belt. The system runs cyclically, so as to realize the automatic non-destructive detection of plant seeds. In order to improve the detection efficiency, it can be realized by increasing the number of channels.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110056472 CN102179375B (en) | 2011-03-09 | 2011-03-09 | Nondestructive detecting and screening method based on near-infrared for crop single-grain components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110056472 CN102179375B (en) | 2011-03-09 | 2011-03-09 | Nondestructive detecting and screening method based on near-infrared for crop single-grain components |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102179375A true CN102179375A (en) | 2011-09-14 |
CN102179375B CN102179375B (en) | 2013-03-13 |
Family
ID=44565773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110056472 Active CN102179375B (en) | 2011-03-09 | 2011-03-09 | Nondestructive detecting and screening method based on near-infrared for crop single-grain components |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102179375B (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590129A (en) * | 2012-01-11 | 2012-07-18 | 中国农业科学院农产品加工研究所 | Method for detecting content of amino acid in peanuts by near infrared method |
CN102577694A (en) * | 2012-01-16 | 2012-07-18 | 北京农业智能装备技术研究中心 | Measurement method of thickness of seed coat of wheat seed |
CN103063585A (en) * | 2013-01-05 | 2013-04-24 | 石河子大学 | Rapid nondestructive lemon and fruit maturity testing device and testing system establishment method |
CN103344602A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院合肥物质科学研究院 | Nondestructive testing method for rice idioplasm authenticity based on near infrared spectrum |
CN103934214A (en) * | 2014-03-19 | 2014-07-23 | 中国农业科学院农产品加工研究所 | Automatic quality classification system and method of wheat grains |
CN104251846A (en) * | 2014-09-04 | 2014-12-31 | 清华大学 | Discriminant analysis combined laser-induced breakdown spectroscopy quantitative analysis method |
CN104568778A (en) * | 2015-01-15 | 2015-04-29 | 浙江理工大学 | Textile component identification method based on hyperspectral imaging |
CN104588329A (en) * | 2014-11-28 | 2015-05-06 | 中国科学院半导体研究所 | Seed automatic identification and sorting device based on near-infrared diffuse transmittance spectra |
CN104897583A (en) * | 2015-06-18 | 2015-09-09 | 重庆理工大学 | Trace bloodstain nondestructive testing device and method |
CN104990890A (en) * | 2015-06-24 | 2015-10-21 | 中国农业大学 | Nondestructive testing and automated sorting system for solid single-grains and solid single-grain sorting method |
CN105432182A (en) * | 2015-08-14 | 2016-03-30 | 南京农业大学 | Acoustic detecting apparatus for glume-open rice seed |
CN106018321A (en) * | 2016-05-11 | 2016-10-12 | 中国农业大学 | Establishment method for single corn seed protein detection model and application of establishment method |
CN106053381A (en) * | 2016-05-20 | 2016-10-26 | 中国科学院合肥物质科学研究院 | Near infrared spectrum collecting device and method for online analysis of heteropical samples |
CN106426643A (en) * | 2016-08-29 | 2017-02-22 | 上海交通大学 | Method for sorting broken plastics in waste household appliances through near infrared absorption spectroscopy analysis device |
CN106442397A (en) * | 2016-09-05 | 2017-02-22 | 中国科学院合肥物质科学研究院 | Rice near infrared spectrum model optimizing method based on spectrum proportional deduction |
CN106769906A (en) * | 2016-12-14 | 2017-05-31 | 重庆川仪自动化股份有限公司 | Spectrometer data wander compensation method |
CN107094397A (en) * | 2017-04-28 | 2017-08-29 | 山东农业大学 | A kind of method of Fast nondestructive evaluation Vigor of Crop |
CN109211872A (en) * | 2018-09-04 | 2019-01-15 | 广东朗源生物科技有限公司 | A kind of full-automatic pesticide residue detection method |
CN109323911A (en) * | 2018-12-14 | 2019-02-12 | 扬州大学 | A starch iodine absorption spectroscopy method for rapid screening of rice floury grain mutants with altered starch components |
CN109342336A (en) * | 2018-12-10 | 2019-02-15 | 合肥泰禾光电科技股份有限公司 | A kind of real-time spectrometer system and device for deducting dark background |
CN109580493A (en) * | 2018-11-16 | 2019-04-05 | 长江大学 | A kind of method of quick detection to section Chinese wax batch seed quality |
CN110231306A (en) * | 2019-06-10 | 2019-09-13 | 江南大学 | A kind of method of lossless, the quick odd sub- seed protein content of measurement |
CN110231303A (en) * | 2019-06-10 | 2019-09-13 | 江南大学 | A kind of method of the odd sub- seed content of ashes of quick measurement |
CN110596039A (en) * | 2014-07-24 | 2019-12-20 | 高露洁-棕榄公司 | Polymer screening method |
CN110609011A (en) * | 2019-09-18 | 2019-12-24 | 北京农业智能装备技术研究中心 | Near-infrared hyperspectral detection method and system for starch content of single-kernel corn seeds |
CN110637552A (en) * | 2019-09-23 | 2020-01-03 | 四川育良生物科技有限公司 | Quality detection method for drought-resistant corn seeds |
CN110717582A (en) * | 2018-09-27 | 2020-01-21 | 谷歌有限责任公司 | Sampling from generator neural network using discriminator neural network |
CN110715918A (en) * | 2019-10-14 | 2020-01-21 | 北京农业智能装备技术研究中心 | Single-kernel corn starch content Raman hyperspectral classification method |
CN111418463A (en) * | 2020-05-08 | 2020-07-17 | 普罗斯电器(中国)有限公司 | L ED artificial light environment cultivation method suitable for rice whole growth period |
CN112098357A (en) * | 2020-08-21 | 2020-12-18 | 南京农业大学 | An evaluation method of strawberry sensory quality grade based on near-infrared spectroscopy |
CN112924412A (en) * | 2021-01-22 | 2021-06-08 | 中国科学院合肥物质科学研究院 | Single-grain rice variety authenticity distinguishing method and device based on near infrared spectrum |
CN112986156A (en) * | 2021-02-08 | 2021-06-18 | 浙江大学 | Cereal seed frostbite characterization and identification method |
CN113826109A (en) * | 2019-03-19 | 2021-12-21 | 布勒有限公司 | Industrialized system for rice particle identification and method thereof |
CN114062305A (en) * | 2021-10-15 | 2022-02-18 | 中国科学院合肥物质科学研究院 | Method and system for single-grain variety identification based on near-infrared spectroscopy and 1D-In-Resnet network |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01269032A (en) * | 1988-04-20 | 1989-10-26 | Hitachi Ltd | Optical nerve activity detecting method |
US6646264B1 (en) * | 2000-10-30 | 2003-11-11 | Monsanto Technology Llc | Methods and devices for analyzing agricultural products |
CN1837787A (en) * | 2006-04-19 | 2006-09-27 | 南京大学 | A method for accurately measuring cotton biophysical parameters without damage |
CN101059452A (en) * | 2007-05-29 | 2007-10-24 | 浙江大学 | Fruit quality damage-free detection method and system based on multiple spectral imaging technique |
CN101776577A (en) * | 2010-02-26 | 2010-07-14 | 浙江大学 | Correction method of spectrograph for detecting nutrient content of plant |
-
2011
- 2011-03-09 CN CN 201110056472 patent/CN102179375B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01269032A (en) * | 1988-04-20 | 1989-10-26 | Hitachi Ltd | Optical nerve activity detecting method |
US6646264B1 (en) * | 2000-10-30 | 2003-11-11 | Monsanto Technology Llc | Methods and devices for analyzing agricultural products |
CN1837787A (en) * | 2006-04-19 | 2006-09-27 | 南京大学 | A method for accurately measuring cotton biophysical parameters without damage |
CN101059452A (en) * | 2007-05-29 | 2007-10-24 | 浙江大学 | Fruit quality damage-free detection method and system based on multiple spectral imaging technique |
CN101776577A (en) * | 2010-02-26 | 2010-07-14 | 浙江大学 | Correction method of spectrograph for detecting nutrient content of plant |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590129B (en) * | 2012-01-11 | 2014-03-26 | 中国农业科学院农产品加工研究所 | Method for detecting content of amino acid in peanuts by near infrared method |
CN102590129A (en) * | 2012-01-11 | 2012-07-18 | 中国农业科学院农产品加工研究所 | Method for detecting content of amino acid in peanuts by near infrared method |
CN102577694A (en) * | 2012-01-16 | 2012-07-18 | 北京农业智能装备技术研究中心 | Measurement method of thickness of seed coat of wheat seed |
CN103063585A (en) * | 2013-01-05 | 2013-04-24 | 石河子大学 | Rapid nondestructive lemon and fruit maturity testing device and testing system establishment method |
CN103344602B (en) * | 2013-07-04 | 2016-07-27 | 中国科学院合肥物质科学研究院 | A kind of rice germplasm true and false lossless detection method based near infrared spectrum |
CN103344602A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院合肥物质科学研究院 | Nondestructive testing method for rice idioplasm authenticity based on near infrared spectrum |
CN103934214A (en) * | 2014-03-19 | 2014-07-23 | 中国农业科学院农产品加工研究所 | Automatic quality classification system and method of wheat grains |
CN110596039A (en) * | 2014-07-24 | 2019-12-20 | 高露洁-棕榄公司 | Polymer screening method |
CN104251846A (en) * | 2014-09-04 | 2014-12-31 | 清华大学 | Discriminant analysis combined laser-induced breakdown spectroscopy quantitative analysis method |
CN104588329A (en) * | 2014-11-28 | 2015-05-06 | 中国科学院半导体研究所 | Seed automatic identification and sorting device based on near-infrared diffuse transmittance spectra |
CN104568778A (en) * | 2015-01-15 | 2015-04-29 | 浙江理工大学 | Textile component identification method based on hyperspectral imaging |
CN104897583A (en) * | 2015-06-18 | 2015-09-09 | 重庆理工大学 | Trace bloodstain nondestructive testing device and method |
CN104990890A (en) * | 2015-06-24 | 2015-10-21 | 中国农业大学 | Nondestructive testing and automated sorting system for solid single-grains and solid single-grain sorting method |
CN104990890B (en) * | 2015-06-24 | 2018-07-03 | 中国农业大学 | The non-destructive testing of solid simple grain and automation separation system and solid simple grain method for separating |
CN105432182A (en) * | 2015-08-14 | 2016-03-30 | 南京农业大学 | Acoustic detecting apparatus for glume-open rice seed |
CN105432182B (en) * | 2015-08-14 | 2019-05-24 | 南京农业大学 | Split clever rice paddy seed acoustic detecting device |
CN106018321A (en) * | 2016-05-11 | 2016-10-12 | 中国农业大学 | Establishment method for single corn seed protein detection model and application of establishment method |
CN106053381A (en) * | 2016-05-20 | 2016-10-26 | 中国科学院合肥物质科学研究院 | Near infrared spectrum collecting device and method for online analysis of heteropical samples |
CN106426643A (en) * | 2016-08-29 | 2017-02-22 | 上海交通大学 | Method for sorting broken plastics in waste household appliances through near infrared absorption spectroscopy analysis device |
CN106442397A (en) * | 2016-09-05 | 2017-02-22 | 中国科学院合肥物质科学研究院 | Rice near infrared spectrum model optimizing method based on spectrum proportional deduction |
CN106442397B (en) * | 2016-09-05 | 2019-03-19 | 中国科学院合肥物质科学研究院 | A kind of paddy near-infrared spectroscopy optimization method deducted based on spectrum ratio |
CN106769906A (en) * | 2016-12-14 | 2017-05-31 | 重庆川仪自动化股份有限公司 | Spectrometer data wander compensation method |
CN107094397A (en) * | 2017-04-28 | 2017-08-29 | 山东农业大学 | A kind of method of Fast nondestructive evaluation Vigor of Crop |
CN109211872A (en) * | 2018-09-04 | 2019-01-15 | 广东朗源生物科技有限公司 | A kind of full-automatic pesticide residue detection method |
CN110717582B (en) * | 2018-09-27 | 2024-01-12 | 谷歌有限责任公司 | Sampling from a generator neural network using a discriminator neural network |
CN110717582A (en) * | 2018-09-27 | 2020-01-21 | 谷歌有限责任公司 | Sampling from generator neural network using discriminator neural network |
CN109580493A (en) * | 2018-11-16 | 2019-04-05 | 长江大学 | A kind of method of quick detection to section Chinese wax batch seed quality |
CN109342336A (en) * | 2018-12-10 | 2019-02-15 | 合肥泰禾光电科技股份有限公司 | A kind of real-time spectrometer system and device for deducting dark background |
CN109342336B (en) * | 2018-12-10 | 2021-07-06 | 合肥泰禾智能科技集团股份有限公司 | Spectrometer system and device for deducting dark background in real time |
CN109323911A (en) * | 2018-12-14 | 2019-02-12 | 扬州大学 | A starch iodine absorption spectroscopy method for rapid screening of rice floury grain mutants with altered starch components |
CN113826109A (en) * | 2019-03-19 | 2021-12-21 | 布勒有限公司 | Industrialized system for rice particle identification and method thereof |
CN110231306A (en) * | 2019-06-10 | 2019-09-13 | 江南大学 | A kind of method of lossless, the quick odd sub- seed protein content of measurement |
CN110231303A (en) * | 2019-06-10 | 2019-09-13 | 江南大学 | A kind of method of the odd sub- seed content of ashes of quick measurement |
CN110609011A (en) * | 2019-09-18 | 2019-12-24 | 北京农业智能装备技术研究中心 | Near-infrared hyperspectral detection method and system for starch content of single-kernel corn seeds |
CN110637552A (en) * | 2019-09-23 | 2020-01-03 | 四川育良生物科技有限公司 | Quality detection method for drought-resistant corn seeds |
CN110715918A (en) * | 2019-10-14 | 2020-01-21 | 北京农业智能装备技术研究中心 | Single-kernel corn starch content Raman hyperspectral classification method |
CN111418463A (en) * | 2020-05-08 | 2020-07-17 | 普罗斯电器(中国)有限公司 | L ED artificial light environment cultivation method suitable for rice whole growth period |
CN112098357A (en) * | 2020-08-21 | 2020-12-18 | 南京农业大学 | An evaluation method of strawberry sensory quality grade based on near-infrared spectroscopy |
CN112098357B (en) * | 2020-08-21 | 2021-12-10 | 南京农业大学 | An evaluation method of strawberry sensory quality grade based on near-infrared spectroscopy |
CN112924412A (en) * | 2021-01-22 | 2021-06-08 | 中国科学院合肥物质科学研究院 | Single-grain rice variety authenticity distinguishing method and device based on near infrared spectrum |
CN112924412B (en) * | 2021-01-22 | 2022-11-04 | 中国科学院合肥物质科学研究院 | Method and device for authenticity discrimination of single-grain rice varieties based on near-infrared spectroscopy |
CN112986156A (en) * | 2021-02-08 | 2021-06-18 | 浙江大学 | Cereal seed frostbite characterization and identification method |
CN112986156B (en) * | 2021-02-08 | 2022-03-11 | 浙江大学 | Cereal seed frostbite characterization and identification method |
CN114062305A (en) * | 2021-10-15 | 2022-02-18 | 中国科学院合肥物质科学研究院 | Method and system for single-grain variety identification based on near-infrared spectroscopy and 1D-In-Resnet network |
CN114062305B (en) * | 2021-10-15 | 2024-01-26 | 中国科学院合肥物质科学研究院 | Single grain variety identification method and system based on near infrared spectrum and 1D-In-Resnet network |
Also Published As
Publication number | Publication date |
---|---|
CN102179375B (en) | 2013-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102179375B (en) | Nondestructive detecting and screening method based on near-infrared for crop single-grain components | |
Agelet et al. | Limitations and current applications of Near Infrared Spectroscopy for single seed analysis | |
Kimuli et al. | Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels | |
CN103344602B (en) | A kind of rice germplasm true and false lossless detection method based near infrared spectrum | |
CN108663339B (en) | On-line detection method for mildewed corn based on spectrum and image information fusion | |
Pojić et al. | Near infrared spectroscopy—advanced analytical tool in wheat breeding, trade, and processing | |
Moscetti et al. | Detection of mold-damaged chestnuts by near-infrared spectroscopy | |
CN107515203A (en) | Quantitative analysis of rice single grain amylose content by near-infrared technology | |
CN109470648B (en) | A fast and nondestructive determination method for imperfect grains of single-grain crops | |
CN107655851A (en) | A kind of method based on near-infrared spectrum technique quick detection lysine content | |
CN108613943B (en) | Near-infrared single-grain crop component detection method based on spectrum morphology transfer | |
CN109520965A (en) | A method of lysine content is detected based near infrared spectrum characteristic extractive technique | |
CN105044024A (en) | Method for nondestructive testing of grape berries based on near infrared spectrum technology | |
CN107917897A (en) | The method of the special doctor's food multicomponent content of near infrared ray | |
KR100433263B1 (en) | non-destructive analysis method of one seed grain by near infrared reflectance spectroscopy | |
CN106018321A (en) | Establishment method for single corn seed protein detection model and application of establishment method | |
CN104255118A (en) | Rapid lossless testing method based on near infrared spectroscopy technology for paddy rice seed germination percentage | |
Rathna Priya et al. | Characterising corn grain using infrared imaging and spectroscopic techniques: a review | |
CN103353443A (en) | Near infrared spectrum based discrimination method for Zhongning fructus lycii | |
CN110231306A (en) | A kind of method of lossless, the quick odd sub- seed protein content of measurement | |
CN110231305A (en) | A method of DPPH free radical scavenging ability in the odd sub- seed of measurement | |
CN202028553U (en) | Near-infrared high-flux nondestructive selection table device | |
CN110231302A (en) | A kind of method of the odd sub- seed crude fat content of quick measurement | |
CN109406447A (en) | A kind of near infrared detection method of tannin in sorghum | |
CN108318446A (en) | It is a kind of detection the total content of vitamin E of peanut seed near-infrared spectroscopy and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |