CN102169273A - Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler - Google Patents

Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler Download PDF

Info

Publication number
CN102169273A
CN102169273A CN 201110094833 CN201110094833A CN102169273A CN 102169273 A CN102169273 A CN 102169273A CN 201110094833 CN201110094833 CN 201110094833 CN 201110094833 A CN201110094833 A CN 201110094833A CN 102169273 A CN102169273 A CN 102169273A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
delta
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110094833
Other languages
Chinese (zh)
Inventor
王金海
郑羽
王峰
田倩倩
尉春华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN 201110094833 priority Critical patent/CN102169273A/en
Publication of CN102169273A publication Critical patent/CN102169273A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

The invention discloses a method for carrierless demodulation of an output signal of an asymmetrical 3*3 coupler. By the method, the output signal of the asymmetrical 3*3 coupler of an optical fibre acceleration sensor can be demodulated into a signal which is in a linear relationship with an acceleration signal. The method comprises the following steps of: firstly, obtaining the output signal of the asymmetrical 3*3 coupler by an M-Z interference system which consists of a light source, a 1*2 coupler, a sensor, a 3*3 coupler and a photoelectric detector, and demodulating the signal; secondly, removing a direct current component, carrying out core demodulation to obtain a result N, eliminating influence of an alternating current gain on a demodulation result to obtain a result D, and dividing the N by the D to obtain a result Z; and carrying out integration on the Z by an integrator to obtain a final phase signal. Compared with the conventional method for the carrierless demodulation of the output signal of the asymmetrical 3*3 coupler, the method provided by the invention has the advantages that: a requirement on the symmetry of a light path of a system is reduced; process is easier to implement; the more common problem of demodulation of the output signal of the asymmetrical 3*3 coupler is solved; and the method has quite high real significance and a use value.

Description

Carrier-free demodulation method for output signal of asymmetric 3 x 3 coupler
Technical Field
The invention belongs to the technical field of optical fiber sensing, and particularly relates to a carrier-free demodulation method for an output signal of an asymmetric 3 x 3 coupler.
Background
The interference type optical sensor can achieve high sensitivity and can be used for detecting weak physical quantity. In practical applications, the measured signal must be extracted automatically and linearly by appropriate signal processing techniques. At present, the phase detection methods which are applied more are phase generation carrier algorithms, including a homodyne method, a synthetic heterodyne method, an alternating current phase tracking method and the like. In comparison, the output signal of the 3 × 3 coupler method is reliable and stable, and carrier modulation is not required to be introduced into the optical path part, so that the frequency of the system modulated signal is reduced, the sampling frequency of the system can be reduced, and the design of a digital demodulation system is facilitated; meanwhile, the optical path part is relatively simple, and the research and development of the integrated optical sensor are facilitated.
The existing symmetrical 3 x 3 coupler output carrier-free demodulation method is carried out on the basis of the symmetrical design of a sensing system. However, due to the reasons of technology and the like, the sensing system is difficult to achieve ideal strict symmetry, so the existing symmetrical 3 × 3 coupler output carrier-free demodulation method has high requirements on the symmetry of the 3 × 3 coupler and the performances of the PIN and the preamplifier, and is not beneficial to wide application in practice
Disclosure of Invention
The invention aims to solve the problems that the existing symmetrical 3 x 3 coupler output carrier-free demodulation method has high requirements on the symmetry of the 3 x 3 coupler and the performance of PIN and a preamplifier, and is not beneficial to popularization and application, and provides a carrier-free demodulation method for an output signal of an asymmetrical 3 x 3 coupler.
The invention provides a demodulation method of an output signal of an asymmetric 3 x 3 coupler, which comprises the following steps:
1 st, asymmetric 3 x 3 coupler output signal u1,u2,u3Obtained by
Obtaining an asymmetric 3 x 3 coupler output signal by an M-Z interferometric system comprising a light source, a 1 x 2 coupler, a sensor, a 3 x 3 coupler, and a photodetector, comprising:
1.1, generating a coherent light beam by a light source;
1.2, dividing light generated by a light source into two beams by a 1 x 2 coupler, wherein one beam is used as reference light and sent to a reference arm, and the other beam is used as signal light and sent to a signal arm;
1.3, the signal arm is deformed by the conversion of the external signal to be detected, so that the light in the signal arm is subjected to phase change and is subjected to phase difference with the light in the reference arm;
1.4, the two beams of light with the phase difference generated in the step 1.3 pass through a 3 × 3 coupler to generate three phase modulation light signals, and the three phase modulation light signals are received by three photodetectors and converted into three electrical signals u1,u2,u3
u1=C1+B1 cosφ
u2=C2+B2 cos(φ-2π/3-δ1)
u3=C3+B3 cos(φ+2π/3+δ2)
Wherein, Ci,(i=1,2,3),δ1,δ2Is a constant related to the optical signal, C1,C2,C3Respectively the DC component, delta, of the three signals1And delta2Is phase, Bi(i ═ 1, 2, 3) is the amplification factor of the preamplifier, and C is1≠C2≠C3,B1≠B2≠B3,δ1≠δ2
2 nd, asymmetric 3 x 3 coupler output signal u1,u2,u3Demodulation of
2.1 removing DC component
Using the formula ai=3ui-kiucI-1, 2, 3 removes the corresponding asymmetry3 x 3 coupler output signal u1,u2,u3D.c. component in (a) to obtain a1,a2,a3Wherein u iscIs u1,u2,u3Sum u of three signalsc=u1+u2+u3,k1,k2,k3Respectively as follows:
k 1 = 3 C 1 C 1 + C 2 + C 3
k 2 = 3 C 2 C 1 + C 2 + C 3
k 3 = 3 C 3 C 1 + C 2 + C 3
C1,C2,C3same as in 1.4;
2.2, removing the signal a of the DC component in the step 2.11,a2,a3Performing core demodulation
For three paths of signals a with direct current components removed1,a2,a3Time differentiation,
Figure BDA0000055526000000024
i is 1, 2, 3, and three electric signals d are generated1,d2,d3And making a difference between two of them, then making a difference with a1,a2,a3Multiplying respectively to obtain:
N=a1(d3-d2)+a2(d1-d3)+a3(d2-d1);
2.3 eliminating the influence of AC gain on the demodulation result
In the asymmetric case, the sum of the squares of the AGC block inputs is
<math><mrow><msubsup><mi>a</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>3</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msubsup><mi>B</mi><mn>1</mn><mn>1</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>W</mi><mn>2</mn></msub><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>&phi;</mi><mo>-</mo><msub><mi>&Lambda;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
In the formula W2And Λ2And an AC gain B1,B2,B3And delta1And delta2It is related. When B is present1,B2,B3When the following formula is satisfied, W2Is equal to 0, thereby
Figure BDA0000055526000000026
The sum of the two is a constant,
<math><mrow><mfrac><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>1</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
<math><mrow><mfrac><msub><mi>B</mi><mn>3</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>2</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
in the AGC block of FIG. 1, the gain is adjusted by adjusting the amplifier coefficient g1,g2,g3To pair
Figure BDA0000055526000000029
Is adjusted so that
<math><mrow><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup></mrow></math>
<math><mrow><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup></mrow></math>
The output result of the AGC block is
<math><mrow><mi>D</mi><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>[</mo><mn>1</mn><mo>+</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
And 2.4, dividing the output result N of the step 2.2 and the output result D of the step 2.3 to obtain a result Z, and integrating the result Z by an integrator to obtain a final phase signal.
Demodulation principle of the invention
First, with the M-Z interference system shown in fig. 5, the phase of the light in the signal arm changes due to the change in the external signal (being measured), thereby creating a phase difference with the light in the reference arm. Two beams of coherent light enter a 3 x 3 coupler, generate interference phenomenon in the coupler, are output from three output ends of the 3 x 3 coupler, are respectively received by three connected photoelectric detectors, and convert optical signals into corresponding three paths of electric signals u proportional to light intensity1,u2,u3For subsequent processing by the demodulation circuit.
II, demodulation principle:
1. removing DC part of three-way output of coupler
In the asymmetric case, the 3 × 3 coupler in the M-Z interferometric system shown in FIG. 5 is used to obtain a signal with a DC component C1,C2,C3Three output signals of
u1=C1+B1 cosφ
u2=C2+B2 cos(φ-2π/3-δ1)
u3=C3+B3 cos(φ+2π/3+δ2)
Wherein, Ci,Bi,δ1,δ2(i ═ 1, 2, 3) is a constant as described above. C1≠C2≠C3,B1≠B2≠B3,δ1≠δ2
The sum of the three output signals is
u1+u2+u3={C1+C2+C3+W1 cos[φ(t)-Δ1]}
Wherein,
W 1 = U 1 2 + V 1 2 , <math><mrow><msub><mi>&Delta;</mi><mn>1</mn></msub><mo>=</mo><mi>arctan</mi><mfrac><msub><mi>V</mi><mn>1</mn></msub><msub><mi>U</mi><mn>1</mn></msub></mfrac><mo>+</mo><msub><mi>&kappa;</mi><mn>1</mn></msub><mi>&pi;</mi></mrow></math>
<math><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>=</mo><msub><mi>B</mi><mn>1</mn></msub><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><msub><mi>B</mi><mn>2</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>B</mi><mn>3</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><msub><mi>B</mi><mn>2</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>B</mi><mn>3</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></math>
<math><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mrow><mo>(</mo><msub><mi>B</mi><mn>2</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>-</mo><msub><mi>B</mi><mn>3</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><msub><mi>B</mi><mn>2</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>-</mo><msub><mi>B</mi><mn>3</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></math>
<math><mrow><msub><mi>&kappa;</mi><mn>1</mn></msub><mo>=</mo><mo></mo><mfenced open='{' close=''><mtable><mtr><mtd><mn>0</mn><mo>,</mo><msub><mi>U</mi><mn>1</mn></msub><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>,</mo><msub><mi>U</mi><mn>1</mn></msub><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></mrow></math>
by analysis, it was found that B is present1,B2,B3When the following formula is satisfied, W1And 0, so that the sum of the three outputs is constant.
<math><mrow><mfrac><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&eta;</mi><mn>1</mn></msub><mo>=</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>-</mo><mi>sin</mi><msub><mi>&delta;</mi><mn>2</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>sin</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac></mrow></math>
<math><mrow><mfrac><msub><mi>B</mi><mn>3</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&eta;</mi><mn>2</mn></msub><mo>=</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>-</mo><mi>sin</mi><msub><mi>&delta;</mi><mn>1</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>sin</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac></mrow></math>
B can be controlled by adjusting the amplification factor of the preamplifier1,B2,B3Satisfy the above formula
B2=η1B1
B3=η2B1
Thereby obtaining: u. ofc=u1+u2+u3=C1+C2+C3
In order to remove the DC component, so that
3C1-k1(C1+C2+C3)=0
3C2-k1(C1+C2+C3)=0
3C3-k1(C1+C2+C3)=0
Adjusting the coefficients k of the three amplifiers in fig. 1, respectively1,k2,k3So that
k 1 = 3 C 1 C 1 + C 2 + C 3
k 2 = 3 C 2 C 1 + C 2 + C 3
k 3 = 3 C 3 C 1 + C 2 + C 3
Thereby utilizing 3ui-kiucRemoving corresponding u1,u2,u3The direct current component in the three paths of the non-direct current signals a is obtained1,a2,a3
2. Performing core demodulation on signal with DC component removed
The signal without the DC component is sent to the core demodulation module of FIG. 1 for processing
N=a1(d3-d2)+a2(d1-d3)+a3(d2-d1)
In the formula d i = da i dt , i = 1,2,3
The expression of N thus output is
<math><mrow><mi>N</mi><mo>=</mo><mo>-</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mfrac><mi>d&phi;</mi><mi>dt</mi></mfrac><mo>&CenterDot;</mo><mo>{</mo><msqrt><mn>3</mn></msqrt><mo>[</mo><msub><mi>B</mi><mn>1</mn></msub><msub><mi>B</mi><mn>2</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>B</mi><mn>1</mn></msub><msub><mi>B</mi><mn>3</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>3</mn></msub><mi>cos</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
<math><mrow><mo>-</mo><msub><mi>B</mi><mn>1</mn></msub><msub><mi>B</mi><mn>2</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>-</mo><msub><mi>B</mi><mn>1</mn></msub><msub><mi>B</mi><mn>3</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>3</mn></msub><mi>sin</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>}</mo></mrow></math>
And can obtain
<math><mrow><mi>N</mi><mo>=</mo><mo>-</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mfrac><mi>d&phi;</mi><mi>dt</mi></mfrac><mo>&CenterDot;</mo><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mi>Q</mi></mrow></math>
Wherein <math><mrow><mi>Q</mi><mo>=</mo><msqrt><mn>3</mn></msqrt><mo>[</mo><msub><mi>&eta;</mi><mn>1</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&eta;</mi><mn>2</mn></msub><mi>cos</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><msub><mi>&eta;</mi><mn>1</mn></msub><msub><mi>&eta;</mi><mn>2</mn></msub><mi>cos</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
<math><mrow><mo>-</mo><msub><mi>&eta;</mi><mn>1</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>1</mn></msub><mo>-</mo><msub><mi>&eta;</mi><mn>2</mn></msub><mi>sin</mi><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><msub><mi>&eta;</mi><mn>1</mn></msub><msub><mi>&eta;</mi><mn>2</mn></msub><mi>sin</mi><mrow><mo>(</mo><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></math>
It can be seen from the above equation that for asymmetric input, as long as the dc component can be completely removed, the output of the core demodulation module is still in the form of the product of the differential of the phase difference and a constant, and after integration, the demodulation result that is linear with the measured signal can be obtained. But the above equation still includes correlation with the coupler output
Figure BDA0000055526000000051
The term, needs to be removed by the AGC block.
3. Removing the effect of asymmetric input on automatic gain control circuit
In the asymmetric case, the sum of the squares of the AGC block inputs is
<math><mrow><msubsup><mi>a</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>3</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msubsup><mi>B</mi><mn>1</mn><mn>1</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>W</mi><mn>2</mn></msub><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>&phi;</mi><mo>-</mo><msub><mi>&Lambda;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
In the formula W2And Λ2With AC gain and delta1And delta2It is related. When B is present1,B2,B3When the following formula is satisfied, W2Is equal to 0, thereby
Figure BDA0000055526000000053
The sum of the two is a constant,
<math><mrow><mfrac><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>1</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
<math><mrow><mfrac><msub><mi>B</mi><mn>3</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>2</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
in the AGC block of FIG. 1, the gain is adjusted by adjusting the amplifier coefficient g1,g2,g3To pair
Figure BDA0000055526000000056
Is adjusted so that
<math><mrow><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup></mrow></math>
<math><mrow><msub><mi>g</mi><mn>3</mn></msub><mo>=</mo><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup></mrow></math>
The output result of the AGC circuit is
<math><mrow><mi>D</mi><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>[</mo><mn>1</mn><mo>+</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
4. After N and D are divided, negated and integrated, the demodulation result is obtained
<math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mo>&Integral;</mo><mo>-</mo><mfrac><mi>N</mi><mi>D</mi></mfrac><mi>dt</mi><mo>=</mo><mfrac><mi>Q</mi><mrow><msub><mi>g</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mi>&phi;</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math>
From the above equation, the output result of the asymmetric 3 × 3 coupler output carrier-free demodulation method shown in fig. 1 has a linear relationship with the optical phase difference caused by the detected signal, and the linear demodulation of the asymmetric 3 × 3 coupler output can be realized.
The invention has the advantages and beneficial effects that:
the method of the invention does not need to load high-frequency carrier waves, allows symmetry deviation on the optical path design, adopts the SOPC technology of high integration and parallel processing to realize the digitization of the demodulation system, and effectively solves the demodulation problem of the output signals of the asymmetrical 3X 3 coupler.
Drawings
FIG. 1: the invention discloses a schematic block diagram of an asymmetric 3 x 3 coupler output signal carrier-free demodulation method.
FIG. 2: the demodulation method of the invention is utilized to carry out the simulation result of the demodulation when the measured signal is 10 Hz. (in the vertical order: the signal to be measured, the demodulation result, 3 modulated signals)
FIG. 3: the demodulation method of the invention is utilized to carry out the simulation result of the demodulation when the measured signal is 100 Hz. (in the vertical order: the signal to be measured, the demodulation result, 3 modulated signals)
FIG. 4: the demodulation method of the invention is utilized to carry out the simulation result of the demodulation when the measured signal is 1 KHz. (in the vertical order: the signal to be measured, the demodulation result, 3 modulated signals)
FIG. 5: a block diagram of an M-Z interference system for obtaining three paths of modulated signals; 1 is a 1 × 2 coupler; 2 is a signal arm; 3 is a reference arm; 4 is an external signal; 5 is a 3 x 3 coupler.
FIG. 6: is an acceleration signal processing system SOPC architecture block diagram.
Detailed Description
The schematic block diagram of the non-carrier demodulation method of the output signal of the asymmetric 3 × 3 coupler of the present invention is shown in fig. 1, and is divided into three parts, namely, dc component removal, core demodulation and Automatic Gain Control (AGC). The present invention is described in further detail below with reference to the schematic block diagrams.
FIG. 5 is a schematic diagram of an M-Z fiber optic interferometer with a 1 × 2 coupler at the input and a 3 × 3 coupler at the output. Laser emitted by a laser light source is divided into two beams through a 1 x 2 coupler 1 to enter a reference arm 3 and a signal arm 2 respectively, a sensor on the signal arm senses the change of an external signal 4 to enable the signal arm to deform so as to enable the optical phase in the signal arm to change, and the optical phase of the reference arm is kept unchanged. Two beams of light in the signal arm and the reference arm generate phase difference, the two beams of light enter the 3 multiplied by 3 coupler 5, three beams of light are separated out and enter three light detectors respectively, optical signals in the optical fibers are converted into electric signals, and the electric signals are demodulated by programming of a following digital signal processing method.
Fig. 1 is a schematic block diagram of asymmetric 3 × 3 digital signal demodulation, which is divided into three parts, i.e., dc component removal, core demodulation, and Automatic Gain Control (AGC). The demodulator adopts a digital demodulation method, and adopts the SOPC technology to design the whole demodulator system according to the algorithm functional block diagram, and the SOPC architecture is shown in figure 6. The generating system on chip is configured with the SOPC Builder integrated in Quartu II by Altera corporation. And generating a 32-bit soft core Nios II embedded processor by using the SOPC Builder, and compiling the system together with Quartu II design software.
The SOPC architecture shown in fig. 6 includes an AD converter, a digital processing chip, a DA converter, an ethernet interface. The analog electric signals are collected and converted into digital signals through an AD converter, a digital processing chip writes operation logic according to an asymmetric 3 x 3 signal demodulation principle to demodulate the digital signals converted by the AD, and the demodulated digital signals are restored into analog signals through a DA converter to be output, or demodulated results are directly output through an Ethernet.
The specific process of the output signal demodulation method of the asymmetric 3 x 3 coupler provided by the invention is as follows:
1 st, asymmetric 3 x 3 coupler output signal u1,u2,u3Obtained by
Obtaining an asymmetric 3 x 3 coupler output signal by an M-Z interferometric system comprising a light source, a 1 x 2 coupler, a sensor, a 3 x 3 coupler, and a photodetector, comprising:
1.1, generating a coherent light beam by a light source;
1.2, dividing light generated by a light source into two beams by a 1 x 2 coupler, wherein one beam is used as reference light and sent to a reference arm, and the other beam is used as signal light and sent to a signal arm;
1.3, the signal arm is deformed by the conversion of the external signal to be detected, so that the light in the signal arm is subjected to phase change and is subjected to phase difference with the light in the reference arm;
1.4, the two beams of light with the phase difference generated in the step 1.3 pass through a 3 × 3 coupler to generate three phase modulation light signals, and the three phase modulation light signals are received by three photodetectors and converted into three electrical signals u1,u2,u3
u1=C1+B1 cosφ
u2=C2+B2 cos(φ-2π/3-δ1)
u3=C3+B3 cos(φ+2π/3+δ2)
Wherein, Ci,(i=1,2,3),δ1,δ2Is a constant related to the optical signal, C1,C2,C3Respectively the DC component, delta, of the three signals1And delta2Is phase, Bi(i ═ 1, 2, 3) is the amplification factor of the preamplifier, and C is1≠C2≠C3,B1≠B2≠B3,δ1≠δ2
2 nd asymmetric 3 x 3 couplingOutput signal u of the device1,u2,u3Demodulation of
2.1 removing DC component
Using the formula ai=3ui-kiucI-1, 2, 3 removing the corresponding asymmetry 3 × 3 coupler output signal u1,u2,u3D.c. component in (a) to obtain a1,a2,a3Wherein u iscIs u1,u2,u3Sum u of three signalsc=u1+u2+u3,k1,k2,k3Respectively as follows:
k 1 = 3 C 1 C 1 + C 2 + C 3
k 2 = 3 C 2 C 1 + C 2 + C 3
k 3 = 3 C 3 C 1 + C 2 + C 3
C1,C2,C3same as in 1.4;
2.2, removing the signal a of the DC component in the step 2.11,a2,a3Performing core demodulation
For three paths of signals a with direct current components removed1,a2,a3The time differential is obtained by the calculation of the time differential,
Figure BDA0000055526000000074
i is 1, 2, 3, and three electric signals d are generated1,d2,d3And making a difference between two of them, then making a difference with a1,a2,a3Multiplying respectively to obtain:
N=a1(d3-d2)+a2(d1-d3)+a3(d2-d1);
2.3 eliminating the influence of AC gain on the demodulation result
In the asymmetric case, the sum of the squares of the AGC block inputs is
<math><mrow><msubsup><mi>a</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>3</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msubsup><mi>B</mi><mn>1</mn><mn>1</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>W</mi><mn>2</mn></msub><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>&phi;</mi><mo>-</mo><msub><mi>&Lambda;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
In the formula W2And Λ2And an AC gain B1,B2,B3And delta1And delta2It is related. When B is present1,B2,B3When the following formula is satisfied, W2Is equal to 0, therebyThe sum of the two is a constant,
<math><mrow><mfrac><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>1</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
<math><mrow><mfrac><msub><mi>B</mi><mn>3</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>2</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
in the AGC block of FIG. 1, the gain is adjusted by adjusting the amplifier coefficient g1,g2,g3To pair
Figure BDA0000055526000000083
Is adjusted so that
<math><mrow><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup></mrow></math>
<math><mrow><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup></mrow></math>
The output result of the AGC block is
<math><mrow><mi>D</mi><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>[</mo><mn>1</mn><mo>+</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
And 2.4, dividing the output result N of the step 2.2 and the output result D of the step 2.3 to obtain a result Z, and integrating the result Z by an integrator to obtain a final phase signal.
According to the asymmetric 3 x 3 coupling demodulation theory, simulation software Simulink in MATLAB environment is used for carrying out mathematical modeling on the asymmetric 3 x 3 coupling output carrier-free demodulation method, and the demodulation theory under the condition of asymmetric input is verified. Parameters in the formula 1.4 in simulation are set as follows: delta1=0.147,δ2=0.209,C1=B1=1,C2=B2=0.8,C3The values of the adjustment parameters can be calculated from these parameters according to the demodulation method described above, where B3 is 1.2.
FIGS. 2 to 4 are simulation results (in the order of up and down: measured signal, demodulation result, 3 channels of modulated signals) of the demodulation of measured signals of 10Hz, 100Hz and 1KHz, respectively, by the demodulation method of the present invention.
It can be seen from fig. 2 to 4 that the demodulation method can realize demodulation in the frequency range of 0Hz to 1KHz, and maintain good phase consistency despite slight distortion in the case that the measured signal is 1 KHz. The slight demodulation distortion when the detected signal is higher is related to the sampling frequency, and the undistorted demodulation signal can be obtained by only increasing the sampling frequency
It should be noted that the present invention provides a method for implementing asymmetric 3 × 3 signal demodulation by SOPC technology, but is not limited thereto, and the asymmetric 3 × 3 signal demodulation may also be implemented by using technologies such as ARM or DSP according to the algorithm of the present invention.

Claims (1)

1. A method for carrier-less demodulation of an output signal from an asymmetric 3 x 3 coupler, the method comprising:
1 st, asymmetric 3 x 3 coupler output signal u1,u2,u3Obtained by
Obtaining an asymmetric 3 x 3 coupler output signal by an M-Z interferometric system comprising a light source, a 1 x 2 coupler, a sensor, a 3 x 3 coupler, and a photodetector, comprising:
1.1, generating a coherent light beam by a light source;
1.2, dividing light generated by a light source into two beams by a 1 x 2 coupler, wherein one beam is used as reference light and sent to a reference arm, and the other beam is used as signal light and sent to a signal arm;
1.3, the external signal to be detected causes the signal arm to deform, so that the light in the signal arm changes phase and generates a phase difference with the light in the reference arm;
1.4, the two beams of light with the phase difference generated in the step 1.3 pass through a 3 × 3 coupler to generate three phase modulation light signals, and the three phase modulation light signals are received by three photodetectors and converted into three electrical signals u1,u2,u3
u1=C1+B1 cosφ
u2=C2+B2 cos(φ-2π/3-δ1)
u3=C3+B3 cos(φ+2π/3+δ2)
Wherein, Ci,i=1,2,3,δ1,δ2Constant in relation to the optical signal, C1,C2,C3Respectively the direct current quantity of the three signals, phi is the phase of the light changing along with the time, delta1And delta2To deviate the phase, BiI is 1, 2, 3 is the amplification factor of the preamplifier, and C1≠C2≠C3,B1≠B2≠B3,δ1≠δ2
2 nd, asymmetric 3 x 3 coupler output signal u1,u2,u3Demodulation of
2.1 removing DC component
Using the formula ai=3ui-kiucI-1, 2, 3 removing the corresponding asymmetry 3 × 3 coupler output signal u1,u2,u3D.c. component in (a) to obtain a1,a2,a3Wherein u iscIs u1,u2,u3Sum u of three signalsc=u1+u2+u3,k1,k2,k3Respectively as follows:
k 1 = 3 C 1 C 1 + C 2 + C 3
k 2 = 3 C 2 C 1 + C 2 + C 3
k 3 = 3 C 3 C 1 + C 2 + C 3
C1,C2,C3same as in 1.4;
2.2, removing the signal a of the DC component in the step 2.11,a2,a3Performing core demodulation
For three paths of signals a with direct current components removed1,a2,a3The time differential is obtained by the calculation of the time differential,
Figure FDA0000055525990000014
i is 1, 2, 3, and three electric signals d are generated1,d2,d3And making a difference between two of them, then making a difference with a1,a2,a3Multiplying respectively to obtain:
N=a1(d3-d2)+a2(d1-d3)+a3(d2-d1);
2.3 eliminating the influence of AC gain on the demodulation result
In the asymmetric case, the sum of the squares of the AGC block inputs is
<math><mrow><msubsup><mi>a</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mn>3</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msubsup><mi>B</mi><mn>1</mn><mn>1</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>W</mi><mn>2</mn></msub><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><mi>&phi;</mi><mo>-</mo><msub><mi>&Lambda;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>]</mo></mrow></math>
In the formula W2And Λ2And an AC gain B1,B2,B3And delta1And delta2(ii) related; when B is present1,B2,B3When the following formula is satisfied, W2Is equal to 0, thereby
Figure FDA0000055525990000022
The sum of the two is a constant,
<math><mrow><mfrac><msub><mi>B</mi><mn>2</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>1</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
<math><mrow><mfrac><msub><mi>B</mi><mn>3</mn></msub><msub><mi>B</mi><mn>1</mn></msub></mfrac><mo>=</mo><msub><mi>&xi;</mi><mn>2</mn></msub><mo>=</mo><msup><mrow><mo>[</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mi>sin</mi><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub></mrow><mrow><msqrt><mn>3</mn></msqrt><mi>cos</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><msub><mi>&delta;</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>&delta;</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math>
in the AGC block, by adjusting the amplifier coefficient g1,g2,g3To pairIs adjusted so that
<math><mrow><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup></mrow></math>
<math><mrow><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>/</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup></mrow></math>
The output result of the AGC block is
<math><mrow><mi>D</mi><mo>=</mo><mfrac><mn>2</mn><mn>9</mn></mfrac><mo>&CenterDot;</mo><mo>[</mo><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>2</mn></msub><msubsup><mi>B</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><msub><mi>g</mi><mn>3</mn></msub><msubsup><mi>B</mi><mn>3</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><msub><mi>g</mi><mn>1</mn></msub><msubsup><mi>B</mi><mn>1</mn><mn>2</mn></msubsup><mo>[</mo><mn>1</mn><mo>+</mo><msubsup><mi>&xi;</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&xi;</mi><mn>2</mn><mn>2</mn></msubsup><mo>]</mo></mrow></math>
And 2.4, dividing the output result N of the step 2.2 and the output result D of the step 2.3 to obtain a result Z, and integrating the result Z by an integrator to obtain a final phase signal.
CN 201110094833 2011-04-15 2011-04-15 Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler Pending CN102169273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110094833 CN102169273A (en) 2011-04-15 2011-04-15 Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110094833 CN102169273A (en) 2011-04-15 2011-04-15 Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler

Publications (1)

Publication Number Publication Date
CN102169273A true CN102169273A (en) 2011-08-31

Family

ID=44490486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110094833 Pending CN102169273A (en) 2011-04-15 2011-04-15 Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler

Country Status (1)

Country Link
CN (1) CN102169273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021844A (en) * 2015-07-27 2015-11-04 中国科学技术大学 All-fiber wind measurement laser radar apparatus baed on asymmetric M-Z interferometer and method
CN105486331A (en) * 2015-12-01 2016-04-13 哈尔滨工程大学 High-precision optical signal phase demodulation system and demodulation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《中国博士学位论文全文数据库(电子期刊)》 20090415 王金海 光电集成加速度地震检波器信号处理理论分析及应用研究 38-46 1 , 第4期 *
《传感技术学报》 20070331 王金海等 光电加速度传感器非对称3*3解调系统SOPC设计 502-506 1 第20卷, 第3期 *
《光电工程》 20071130 张诚等 非对称3*3干涉型传感器解调系统设计 135-140 1 第34卷, 第11期 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021844A (en) * 2015-07-27 2015-11-04 中国科学技术大学 All-fiber wind measurement laser radar apparatus baed on asymmetric M-Z interferometer and method
CN105486331A (en) * 2015-12-01 2016-04-13 哈尔滨工程大学 High-precision optical signal phase demodulation system and demodulation method

Similar Documents

Publication Publication Date Title
CN108007550B (en) Improved PGC modulation-demodulation detection method
CN105067017B (en) A kind of improved generation carrier phase PGC demodulation methods
CN104964735B (en) A kind of detecting system and demodulation method of laser phase carrier doppler vibration signal
CN204575534U (en) A kind of laser interferometer photoelectric detective circuit
CN102650526A (en) Open-loop detecting circuit for frequency modulated continuous wave optical fiber gyroscope based on phase comparison
CN104330104A (en) Measuring device for interferential sensor arm length difference
CN102692314A (en) Apparatus and method for testing power spectral density of frequency noise of laser based on fiber resonator
CN112698253B (en) Digital triaxial TMR magnetic sensing system
CN109141490A (en) A kind of fibre-optical sensing device and demodulation method of disturbance waveform and position measurement simultaneously
CN106323478B (en) The fiber optic interferometric sensor phase generated carrier modulation demodulation system of anti-polarization decay
CN104567959A (en) Large-dynamic interference type optical fiber sensor based on two-channel unbalanced interferometer
CN101799610B (en) Orthogonal demodulation device for heterodyne phase interference fiber sensor
CN108871308A (en) A kind of optical fibre gyro pre-amplification circuit based on switched-capacitor integrator
CN110285843A (en) A kind of large amplitude signal distributions formula dim light grid array sensor-based system and demodulation method
Mao et al. Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism
CN102169273A (en) Method for carrierless demodulation of output signal of asymmetrical 3*3 coupler
CN106979776A (en) A kind of digital newspaper industry method of the optical fibre gyro based on sigma-delta modulator
Gong et al. Improved algorithm for phase generation carrier to eliminate the influence of modulation depth with multi-harmonics frequency mixing
JP2011214921A (en) Interference type optical fiber sensor system and calculator
CN106932093A (en) Auto frequency locking photoelectricity active balance system
CN103344414B (en) PZT modulation factor proving installation and method of testing
CN107764285A (en) A kind of photoelectric sensor assembly PSRR test system based on lock-in amplifier
CN202066872U (en) Optical fiber acceleration sensor based on novel demodulation method
CN204758116U (en) Detecting system of laser phase carrier doppler vibration signal
CN115060299A (en) Distributed weak grating array sensing system and method based on direct detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110831