CN102156147A - Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method - Google Patents
Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method Download PDFInfo
- Publication number
- CN102156147A CN102156147A CN 201110053703 CN201110053703A CN102156147A CN 102156147 A CN102156147 A CN 102156147A CN 201110053703 CN201110053703 CN 201110053703 CN 201110053703 A CN201110053703 A CN 201110053703A CN 102156147 A CN102156147 A CN 102156147A
- Authority
- CN
- China
- Prior art keywords
- temperature
- polypropylene
- melting
- curve
- wafer thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 polypropylene Polymers 0.000 title claims abstract description 77
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 74
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000002076 thermal analysis method Methods 0.000 title abstract description 16
- 230000002457 bidirectional effect Effects 0.000 title abstract 2
- 238000002844 melting Methods 0.000 claims abstract description 100
- 230000008018 melting Effects 0.000 claims abstract description 100
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 33
- 238000002425 crystallisation Methods 0.000 claims abstract description 26
- 230000008025 crystallization Effects 0.000 claims abstract description 26
- 238000001816 cooling Methods 0.000 claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 18
- 238000009826 distribution Methods 0.000 claims description 37
- 238000000137 annealing Methods 0.000 claims description 29
- 230000007423 decrease Effects 0.000 claims description 20
- 239000004925 Acrylic resin Substances 0.000 claims description 9
- 229920000178 Acrylic resin Polymers 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 5
- 230000002269 spontaneous effect Effects 0.000 claims 7
- 238000004458 analytical method Methods 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 230000004927 fusion Effects 0.000 claims 1
- 238000000265 homogenisation Methods 0.000 claims 1
- 230000000977 initiatory effect Effects 0.000 claims 1
- 230000006911 nucleation Effects 0.000 claims 1
- 238000010899 nucleation Methods 0.000 claims 1
- 230000005477 standard model Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 abstract description 40
- 229920005989 resin Polymers 0.000 abstract description 40
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000007669 thermal treatment Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 61
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000010942 self-nucleation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
技术领域technical field
本发明涉及用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性,具体地说是用差示量热扫描仪(DSC),通过分步热分级热处理,检测双向拉伸聚丙烯树脂在生产过程中的成膜稳定性的方法,属于高分子材料的表征领域。The present invention relates to the detection of film-forming stability of polypropylene in biaxial stretching by means of thermal analysis, specifically using a differential calorimetry scanner (DSC) to detect biaxially stretched polypropylene resin through step-by-step heat treatment. The invention relates to a method for film-forming stability in a production process, belonging to the field of characterization of polymer materials.
背景技术Background technique
近年来,双向拉伸膜聚丙烯在包装领域的应用快速增长。随着生产技术的发展,生产过程中要求薄膜的拉伸速率越来越快,这就要求聚丙烯树脂的成膜稳定性也越来越好。如果聚丙烯材料的质量达不到指定要求,在生产中就会出现破膜、表面不平整等问题,影响经济效益。In recent years, the application of biaxially oriented polypropylene film in the field of packaging has grown rapidly. With the development of production technology, the stretching rate of film is required to be faster and faster in the production process, which requires the film-forming stability of polypropylene resin to be better and better. If the quality of the polypropylene material does not meet the specified requirements, problems such as film rupture and uneven surface will occur during production, which will affect economic benefits.
目前,表征双向拉伸膜生产中聚丙烯树脂的成膜稳定性的方法十分有限,并存在较多的缺点。一般采用的方法只有二甲苯室温可溶物测试,但该方法比较粗糙,只能作为一个简单的判据,并不准确;另一种方法是将聚丙烯树脂在大生产装置上进行试产,但是该方法成本极高,而且需要大量的树脂,难以为实际应用和工业生产提供快速表征树脂成膜情况的信息。因此,在实际应用中急需一种较为简便、高效地预测聚丙烯树脂成膜稳定性的测试方法。Currently, the methods for characterizing the film-forming stability of polypropylene resins in the production of biaxially oriented films are limited and have many disadvantages. The method generally adopted is only the test of xylene room temperature soluble matter, but this method is relatively rough and can only be used as a simple criterion and is not accurate; another method is to carry out trial production of polypropylene resin on a large production device, However, this method is extremely expensive and requires a large amount of resin, and it is difficult to provide information for quickly characterizing the film formation of the resin for practical applications and industrial production. Therefore, there is an urgent need for a relatively simple and efficient test method for predicting the film-forming stability of polypropylene resin in practical applications.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足而提供用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性,其特点是该方法使用简便,快速、准确、高效地检测聚丙烯树脂在双向拉伸膜生产过程中的成膜稳定性,得到聚丙烯树脂的结构信息,从而预测聚丙烯成膜稳定性。The purpose of the present invention is to provide to detect the film-forming stability of polypropylene in biaxial stretching with thermal analysis method for the deficiencies in the prior art, and it is characterized in that this method is easy to use, detects polypropylene resin rapidly, accurately and efficiently. The film-forming stability in the production process of the biaxially stretched film can obtain the structural information of the polypropylene resin, so as to predict the film-forming stability of polypropylene.
本发明的目的由以下技术措施实现The purpose of the present invention is achieved by the following technical measures
用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:
(1)将聚丙烯树脂制成厚度均一的热分析测试标准样品;(1) Polypropylene resin is made into a thermal analysis test standard sample with uniform thickness;
(2)对聚丙烯树脂进行热分析升降温扫描处理,获取材料的结晶和熔融行为参数:(2) Carry out thermal analysis and heating and scanning processing on polypropylene resin to obtain the crystallization and melting behavior parameters of the material:
将样品在温度180~210℃下停留2~7min,以消除任何残留的热历史,然后,以7~12℃/min的降温速率降至25~50℃,停留1~5min,以7~12℃/min的升温速率加热至180~210℃,记录降温结晶曲线和升温熔融曲线;The sample stays at a temperature of 180-210°C for 2-7 minutes to eliminate any residual thermal history, then lowers the temperature to 25-50°C at a cooling rate of 7-12°C/min, stays for 1-5 minutes, and then cools down to 7-12 ℃/min heating rate to 180 ~ 210 ℃, record the cooling crystallization curve and heating melting curve;
从降温结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从升温熔融曲线得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度Xc;The crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the cooling crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and melting point of the material are obtained from the heating melting curve Relative crystallinity X c ;
(3)热分级的热处理程序:(3) Heat treatment procedure for thermal classification:
将上述样品在温度180~210℃下停留2~7min,以消除任何残留的热历史,然后,以5~20℃/min的降温速率降至25~50℃,停留1~5min,以5~20℃/min的升温速率加热至第一个自成核-退火温度Ts1=164~170℃,停留ts=5~40min,以5~20℃/min的速率降温至25~50℃,停留1~5min;继续加热至第二个自成核-退火温度Ts2=160~163℃,停留ts=5~40min,以5~20℃/min的速率降温至25~50℃,停留1~5min;以5~20℃/min的升温速率升温至第三个自成核-退火温度Ts3=155~159℃,停留ts=5~40min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=2~7℃,当样品在最后一个自成核-退火温度Tsn=135~142℃下停留ts=5~40min后,降温至25~50℃,停留1~5min,以5~20℃/min的升温速率升温至180~210℃,记录最终的熔融曲线;Keep the above sample at a temperature of 180-210°C for 2-7 minutes to eliminate any residual thermal history, then lower the temperature to 25-50°C at a cooling rate of 5-20°C/min, stay for 1-5 minutes, Heating at a heating rate of 20°C/min to the first self-nucleation-annealing temperature T s1 = 164-170°C, staying at t s =5-40min, cooling to 25-50°C at a rate of 5-20°C/min, Stay for 1-5min; continue heating to the second self-nucleation-annealing temperature T s2 = 160-163°C, stay for ts = 5-40min, cool down to 25-50°C at a rate of 5-20°C/min, and stay 1~5min; heat up to the third self-nucleation-annealing temperature T s3 = 155~159℃ at a heating rate of 5~20℃/min, and stay at ts =5~40min. In this way, through continuous heating and cooling treatment, The sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=2~7°C, when the sample is After staying at temperature T sn =135-142°C for t s =5-40min, cool down to 25-50°C, stay for 1-5min, raise the temperature to 180-210°C at a heating rate of 5-20°C/min, and record the final melting curve;
(4)对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:(4) Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:
a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak
使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量;Use professional peak fitting processing software to perform peak fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak;
b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve
计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:
式中,Tm是聚丙烯的熔融温度,Tm 0是聚丙烯的平衡熔点,△H0是聚丙烯的熔融焓,σ是聚丙烯的表面自由能;where Tm is the melting temperature of polypropylene, Tm0 is the equilibrium melting point of polypropylene, ΔH0 is the melting enthalpy of polypropylene, and σ is the surface free energy of polypropylene;
c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters
使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I:Use formula (2) and formula (3) to calculate the number average wafer thickness L n and weight average wafer thickness L w of the material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of the material:
其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;
另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad.
性能测试Performance Testing
采用热分析技术检测聚丙烯在双向拉伸中的成膜稳定性,检测结果详见图1-3和表1~6所示,结果表明:从PP-1到PP-5,在热分级曲线上,高温熔融峰的相对含量逐渐降低,中低温熔融峰的相对含量逐渐升高,树脂的平均晶片厚度逐渐降低,表明从PP-1到PP-5,树脂的高等规度组分相对含量逐渐下降,较低等规度组分的相对含量逐渐上升。由于高低等规度组分含量变化,树脂晶片厚度下降,成膜稳定性逐步上升,破膜率逐渐降低。本热分析检测方法的结果与大型拉膜设备的检测结果一致。Thermal analysis technology was used to detect the film-forming stability of polypropylene in biaxial stretching. The test results are shown in Figure 1-3 and Tables 1-6. The results show that: from PP-1 to PP-5, in the thermal classification curve , the relative content of the high-temperature melting peak gradually decreases, the relative content of the middle-low temperature melting peak gradually increases, and the average wafer thickness of the resin gradually decreases, indicating that from PP-1 to PP-5, the relative content of high-isotactic components of the resin gradually increases. The relative content of lower isotactic components gradually increased. Due to the content change of high and low isotactic components, the thickness of the resin wafer decreases, the stability of film formation gradually increases, and the rate of film rupture gradually decreases. The results of this thermal analysis detection method are consistent with the detection results of large-scale film drawing equipment.
附图说明Description of drawings
图1.a为5种等规聚丙烯样品在实例1热分级程序下的DSC降温结晶曲线。Figure 1.a is the DSC cooling crystallization curves of five isotactic polypropylene samples under the thermal fractionation procedure of Example 1.
图1.b为5种等规聚丙烯样品在实例1热分级程序下的DSC升温熔融曲线。Fig. 1.b is the DSC temperature rising melting curve of 5 kinds of isotactic polypropylene samples under the thermal classification program of Example 1.
图2为5种等规聚丙烯样品在实例1热分级程序下的热分级熔融曲线。Fig. 2 is the thermal classification melting curve of 5 kinds of isotactic polypropylene samples under the thermal classification procedure of Example 1.
图3为5种等规聚丙烯样品在实例1热分级程序下的晶片厚度分布曲线。Fig. 3 is the wafer thickness distribution curve of 5 kinds of isotactic polypropylene samples under the thermal classification procedure of Example 1.
具体实施方式Detailed ways
下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制。该领域的技术熟练人员可以根据上述本发明的内容,对本发明作出一些非本质的改进和调整。The present invention is specifically described below through the examples. It is necessary to point out that the present examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Those skilled in the art can make some non-essential improvements and adjustments to the present invention based on the contents of the present invention described above.
实施例1Example 1
用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:
①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.
②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.
③将样品在温度180℃下停留2min,然后,以7℃/min的降温速率降至25℃,停留1min,以7℃/min的升温速率将样品加热至180℃,记录降温结晶曲线和升温熔融曲线,结果见图1.a和图1.b;③Stay the sample at 180°C for 2 minutes, then lower the temperature to 25°C at a cooling rate of 7°C/min, stay for 1 minute, heat the sample to 180°C at a heating rate of 7°C/min, record the cooling crystallization curve and temperature rise Melting curve, the results are shown in Figure 1.a and Figure 1.b;
从图1.a上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从图1.b上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度Xc;The crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from Figure 1.a, and the melting point T m , melting start temperature T monset , and melting end temperature of the material are obtained from Figure 1.b T mendset and relative crystallinity X c ;
④将上述样品在温度180℃下停留2min,然后,以5℃/min的降温速率降至25℃,停留1min,以5℃/min的升温速率加热至第一个自成核-退火温度Ts1=163℃,停留ts=5min,以5℃/min的降温速率降温至25℃,停留1min;继续加热至第二个自成核-退火温度Ts2=160℃,停留ts=5min,将样品降温至25℃,停留1min;以5℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=5min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=3℃,当样品在最后一个自成核-退火温度Tsn=136℃下停留ts=5min后,降温至25℃,停留1min,以5℃/min的升温速率升温至180℃,记录最终的熔融曲线,实验结果见图2;④Stay the above sample at a temperature of 180°C for 2min, then lower the temperature to 25°C at a cooling rate of 5°C/min, stay for 1min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 5°C/min s1 = 163°C, stay for t s = 5min, cool down to 25°C at a cooling rate of 5°C/min, stay for 1min; continue heating to the second self-nucleation-annealing temperature T s2 = 160°C, stay for t s = 5min , cool the sample to 25°C and stay for 1min; raise the temperature to the third self-nucleation-annealing temperature T s3 = 157°C at a heating rate of 5°C/min, and stay for ts = 5min, thus, through continuous heating and cooling , the sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=3°C, when the sample is at the last self-nucleation-annealing temperature After staying at T sn =136°C for t s =5min, cool down to 25°C, stay for 1min, raise the temperature to 180°C at a heating rate of 5°C/min, and record the final melting curve. The experimental results are shown in Figure 2;
⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:
a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak
使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表1;Use professional peak fitting processing software to perform peak split fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 1;
b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve
计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:
式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2;In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;
c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters
使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表2:The number average wafer thickness L n and the weight average wafer thickness L w of the material were calculated using formula (2) and formula (3), and the wafer thickness distribution coefficient I of the material was calculated using formula (4). The experimental results are listed in Table 2:
其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;
另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。结果见图3。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad. The results are shown in Figure 3.
从表1、图2的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,从表2、图3中可以看出,从PP-1到PP-5,较厚晶片的含量逐渐减小,较薄晶片的含量逐渐增多,平均晶片厚度变小,晶片厚度分布指数变大。以上的结果表明,从PP-1到PP-5,高等规度组分含量的下降,树脂晶片厚度下降,由此可知,在加工过程中,从PP-1到PP-5,聚丙烯树脂的成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 1 and Figure 2, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. It can be seen from Table 2 and Figure 3 that from PP-1 to PP-5, the content of thicker wafers gradually decreases, the content of thinner wafers gradually increases, the average wafer thickness decreases, and the wafer thickness distribution index increases. The above results show that from PP-1 to PP-5, the content of high isotactic components decreases, and the thickness of the resin wafer decreases. It can be seen that in the process of processing, from PP-1 to PP-5, the content of polypropylene resin decreases. The stability of film formation gradually increased, while the rate of film rupture gradually decreased. This result is consistent with the test results of a large film stretching machine.
实施例2Example 2
用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:
①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.
②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.
③将样品在温度210℃下停留7min,然后,以12℃/min的降温速率降至50℃,停留5min,以12℃/min的升温速率将样品加热至210℃,记录降温结晶曲线和升温熔融曲线;③Stay the sample at 210°C for 7 minutes, then lower the temperature to 50°C at a cooling rate of 12°C/min, stay for 5 minutes, heat the sample to 210°C at a heating rate of 12°C/min, record the cooling crystallization curve and temperature rise melting curve;
从结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从熔融曲线上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度Xc;The crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and relative Crystallinity X c ;
④将上述样品在温度210℃下停留7min,然后,以20℃/min的降温速率降至50℃,停留5min,以20℃/min的升温速率加热至第一个自成核-退火温度Ts1=170℃,停留ts=40min,以20℃/min的速率降温至50℃,停留5min;继续加热至第二个自成核-退火温度Ts2=163℃,停留ts=40min,以20℃/min的速率降温至50℃,停留5min;以20℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=40min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=7℃,当样品在最后一个自成核-退火温度Tsn=136℃下停留ts=40min后,降温至50℃,停留5min,以20℃/min的升温速率升温至210℃,记录最终的熔融曲线;④Stay the above sample at 210°C for 7min, then lower the temperature to 50°C at a cooling rate of 20°C/min, stay for 5min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 20°C/min s1 =170°C, stay at t s =40min, cool down to 50°C at a rate of 20°C/min, and stay for 5min; continue heating to the second self-nucleation-annealing temperature T s2 =163°C, stay at t s =40min, Cool down to 50°C at a rate of 20°C/min, and stay for 5 minutes; raise the temperature to the third self-nucleation-annealing temperature T s3 = 157°C at a rate of 20°C/min, and stay at t s =40min. In this way, through continuous The temperature rise and fall treatment, the sample is heat-treated at successively lower self-nucleation-annealing temperatures, and each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=7°C. Nucleation-annealing temperature T sn =136°C, stay at t s =40min, then cool down to 50°C, stay for 5min, raise the temperature to 210°C at a heating rate of 20°C/min, and record the final melting curve;
⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:
a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak
使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表3;Use professional peak fitting processing software to perform peak split fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 3;
b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve
计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:
式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2;In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;
c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters
使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表4:Use formula (2) and formula (3) to calculate the number average wafer thickness Ln and weight average wafer thickness Lw of material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of material, the experimental results are listed in Table 4:
其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;
另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad.
从表3、表4的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,树脂所能形成的平均晶片厚度变小,晶片厚度分布指数变大;高等规度组分的含量逐渐下降,而中低等规度组分的含量逐渐上升。以上的结果表明,从PP-1到PP-5,由于高等规度组分含量的下降,树脂晶片厚度下降,在加工过程中树脂更容易被拉伸成膜,成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 3 and Table 4, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. The average wafer thickness that can be formed becomes smaller, and the wafer thickness distribution index becomes larger; the content of high isotactic components gradually decreases, while the content of medium and low isotactic components gradually increases. The above results show that from PP-1 to PP-5, due to the decrease in the content of high isotactic components, the thickness of the resin wafer decreases, and the resin is more likely to be stretched into a film during processing, and the stability of the film is gradually increased. film rate gradually decreased. This result is consistent with the test results of a large film stretching machine.
实施例3Example 3
用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:
①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.
②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.
③将样品在温度210℃下停留5min,然后,以9℃/min的降温速率降至40℃,停留3min,以9℃/min的升温速率将样品加热至200℃,记录降温结晶曲线和升温熔融曲线;③Stay the sample at 210°C for 5 minutes, then lower the temperature to 40°C at a cooling rate of 9°C/min, stay for 3 minutes, heat the sample to 200°C at a heating rate of 9°C/min, record the cooling crystallization curve and temperature rise melting curve;
从结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从熔融曲线上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度Xc;The crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and relative Crystallinity X c ;
④将上述样品在温度200℃下停留5min,然后,以15℃/min的降温速率降至40℃,停留3min,以15℃/min的升温速率加热至第一个自成核-退火温度Ts1=167℃,停留ts=20min,以15℃/min的降温速率降至40℃,停留3min;继续加热至第二个自成核-退火温度Ts2=162℃,停留ts=20min,以15℃/min的降温速率降至40℃,停留3min;以15℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=20min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=5℃,当样品在最后一个自成核-退火温度Tsn=137℃下停留ts=20min后,降温至40℃,停留3min,以15℃/min的升温速率升温至200℃,记录最终的熔融曲线;④Stay the above sample at 200°C for 5min, then lower the temperature to 40°C at a cooling rate of 15°C/min, stay for 3min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 15°C/min s1 = 167°C, stay for t s = 20min, drop to 40°C at a cooling rate of 15°C/min, stay for 3min; continue heating to the second self-nucleation-annealing temperature T s2 = 162°C, stay for t s = 20min , lower the temperature to 40°C at a cooling rate of 15°C/min, and stay for 3 minutes; raise the temperature to the third self-nucleation-annealing temperature T s3 =157°C at a heating rate of 15°C/min, and stay at t s =20min, so, Through continuous temperature rise and fall treatment, the sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature After the self-nucleation-annealing temperature T sn =137°C, stay at t s =20min, cool down to 40°C, stay for 3min, raise the temperature to 200°C at a heating rate of 15°C/min, and record the final melting curve;
⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:
a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak
使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表5;Use professional peak fitting processing software to perform peak fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 5;
b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve
计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:
式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2;In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;
c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters
使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表6:Use formula (2) and formula (3) to calculate number average wafer thickness Ln and weight average wafer thickness Lw of material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of material, experimental result is listed in Table 6:
其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;
另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film stability of acrylic resin is good or bad.
从表5、表6的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,树脂所能形成的平均晶片厚度变小,晶片厚度分布指数变大;高等规度组分的含量逐渐下降,而中低等规度组分的含量逐渐上升。以上的结果表明,从PP-1到PP-5,由于高等规度组分含量的下降,树脂晶片厚度下降,在加工过程中树脂更容易被拉伸成膜,成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 5 and Table 6, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. The average wafer thickness that can be formed becomes smaller, and the wafer thickness distribution index becomes larger; the content of high isotactic components gradually decreases, while the content of medium and low isotactic components gradually increases. The above results show that from PP-1 to PP-5, due to the decrease in the content of high isotactic components, the thickness of the resin wafer decreases, and the resin is more likely to be stretched into a film during processing, and the stability of the film is gradually increased. film rate gradually decreased. This result is consistent with the test results of a large film stretching machine.
表1 5个等规聚丙烯样品在实施例1热分级程序下的熔融曲线分峰结果Table 1 The melting curve peak splitting results of 5 isotactic polypropylene samples under the thermal classification procedure of Example 1
表2 5个等规聚丙烯样品在实施例1热分级程序下的晶片厚度分布参数Table 2 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 1
表3 5个等规聚丙烯样品在实施例2热分级程序下的熔融曲线分峰结果Table 3 The melting curve peak splitting results of 5 isotactic polypropylene samples under the thermal classification procedure of Example 2
表4 5个等规聚丙烯样品在实施例2热分级程序下的晶片厚度分布参数Table 4 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 2
表5 5个等规聚丙烯样品在实施例3热分级程序下的熔融曲线分峰结果Table 5 5 isotactic polypropylene samples under the thermal classification procedure of
表6 5个等规聚丙烯样品在实施例3热分级程序下的晶片厚度分布参数Table 6 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 3
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100537037A CN102156147B (en) | 2011-03-07 | 2011-03-07 | Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100537037A CN102156147B (en) | 2011-03-07 | 2011-03-07 | Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102156147A true CN102156147A (en) | 2011-08-17 |
CN102156147B CN102156147B (en) | 2012-07-25 |
Family
ID=44437719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100537037A Expired - Fee Related CN102156147B (en) | 2011-03-07 | 2011-03-07 | Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102156147B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102408627A (en) * | 2011-09-08 | 2012-04-11 | 复旦大学 | Method of regulating polypropylene crystallization behavior and crystal structure |
CN103454303A (en) * | 2012-06-01 | 2013-12-18 | 中国石油天然气股份有限公司 | Method for rapidly evaluating processing linear velocity of special material for biaxially oriented polypropylene |
CN104483235A (en) * | 2014-12-05 | 2015-04-01 | 浙江万马高分子材料有限公司 | Method for detecting crosslinkable vinyl polymer chain structure for high voltage cable |
CN105911089A (en) * | 2016-04-19 | 2016-08-31 | 中南林业科技大学 | A method of measuring the degree of aging of fresh wet boodles by using a differential scanning calorimeter |
CN106248722A (en) * | 2016-07-25 | 2016-12-21 | 成都慧成科技有限责任公司 | A kind of predict polyvinyl alcohol resin work in-process water suction and the method for dewatering |
CN106248731A (en) * | 2016-09-05 | 2016-12-21 | 哈尔滨电机厂有限责任公司 | Utilize the method that heat enthalpy value chooses molding parameters |
CN106596624A (en) * | 2016-12-21 | 2017-04-26 | 深圳市星源材质科技股份有限公司 | Fractional crystallization analysis method of polyolefin resin |
CN109655486A (en) * | 2017-09-29 | 2019-04-19 | 本田技研工业株式会社 | The determination of residual amount method of resin material in metal porous plastid |
CN109725020A (en) * | 2018-11-21 | 2019-05-07 | 北方华锦化学工业股份有限公司 | A kind of fractional crystallization method of polypropylene lithium battery diaphragm PP Pipe Compound |
CN113724797A (en) * | 2021-09-02 | 2021-11-30 | 成都慧成科技有限责任公司 | Method for evaluating stability of polyamide stretch film forming |
CN114813606A (en) * | 2022-04-24 | 2022-07-29 | 四川大学 | Method for evaluating the processing stability of polyphenylene sulfide resin during melt molding |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426396B1 (en) * | 1989-10-31 | 1994-08-10 | Nippon Petrochemicals Company, Limited | Method for determining branch distribution of polymer |
CN1432802A (en) * | 2002-01-17 | 2003-07-30 | 扬子石油化工股份有限公司 | Fast infrared spectrometric process of isotactic degree of biaxial stretched polypropylene |
CN1963501A (en) * | 2006-11-24 | 2007-05-16 | 福州大学 | Forecasting method for isothermal crystal dynamics parameter of high polymer |
-
2011
- 2011-03-07 CN CN2011100537037A patent/CN102156147B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426396B1 (en) * | 1989-10-31 | 1994-08-10 | Nippon Petrochemicals Company, Limited | Method for determining branch distribution of polymer |
CN1432802A (en) * | 2002-01-17 | 2003-07-30 | 扬子石油化工股份有限公司 | Fast infrared spectrometric process of isotactic degree of biaxial stretched polypropylene |
CN1963501A (en) * | 2006-11-24 | 2007-05-16 | 福州大学 | Forecasting method for isothermal crystal dynamics parameter of high polymer |
Non-Patent Citations (1)
Title |
---|
《塑料》 20020430 刘芳等 原位反应增容制备非卤阻燃聚丙烯热稳定性研究 44-46,15 1 第31卷, 第2期 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102408627B (en) * | 2011-09-08 | 2014-06-11 | 复旦大学 | Method of regulating polypropylene crystallization behavior and crystal structure |
CN102408627A (en) * | 2011-09-08 | 2012-04-11 | 复旦大学 | Method of regulating polypropylene crystallization behavior and crystal structure |
CN103454303A (en) * | 2012-06-01 | 2013-12-18 | 中国石油天然气股份有限公司 | Method for rapidly evaluating processing linear velocity of special material for biaxially oriented polypropylene |
CN104483235A (en) * | 2014-12-05 | 2015-04-01 | 浙江万马高分子材料有限公司 | Method for detecting crosslinkable vinyl polymer chain structure for high voltage cable |
CN105911089A (en) * | 2016-04-19 | 2016-08-31 | 中南林业科技大学 | A method of measuring the degree of aging of fresh wet boodles by using a differential scanning calorimeter |
CN106248722B (en) * | 2016-07-25 | 2019-09-06 | 成都慧成科技有限责任公司 | A method of the water suction of prediction polyvinyl alcohol resin work in-process and dewatering |
CN106248722A (en) * | 2016-07-25 | 2016-12-21 | 成都慧成科技有限责任公司 | A kind of predict polyvinyl alcohol resin work in-process water suction and the method for dewatering |
CN106248731A (en) * | 2016-09-05 | 2016-12-21 | 哈尔滨电机厂有限责任公司 | Utilize the method that heat enthalpy value chooses molding parameters |
CN106248731B (en) * | 2016-09-05 | 2019-02-15 | 哈尔滨电机厂有限责任公司 | The method for choosing molding parameters using heat enthalpy value |
CN106596624A (en) * | 2016-12-21 | 2017-04-26 | 深圳市星源材质科技股份有限公司 | Fractional crystallization analysis method of polyolefin resin |
CN109655486A (en) * | 2017-09-29 | 2019-04-19 | 本田技研工业株式会社 | The determination of residual amount method of resin material in metal porous plastid |
CN109725020A (en) * | 2018-11-21 | 2019-05-07 | 北方华锦化学工业股份有限公司 | A kind of fractional crystallization method of polypropylene lithium battery diaphragm PP Pipe Compound |
CN113724797A (en) * | 2021-09-02 | 2021-11-30 | 成都慧成科技有限责任公司 | Method for evaluating stability of polyamide stretch film forming |
CN113724797B (en) * | 2021-09-02 | 2024-03-08 | 成都慧成科技有限责任公司 | Method for evaluating stability of polyamide stretch film |
CN114813606A (en) * | 2022-04-24 | 2022-07-29 | 四川大学 | Method for evaluating the processing stability of polyphenylene sulfide resin during melt molding |
Also Published As
Publication number | Publication date |
---|---|
CN102156147B (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102156147B (en) | Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method | |
CN1970613B (en) | Raw sheet for capacitor film and capacitor film | |
CN108516212A (en) | A kind of multi-layer co-extruded low temperature polyolefin crosslinking heat shrink films and preparation method thereof | |
Vedula et al. | Effect of topological disorder on structural, mechanical, and electronic properties of amorphous silicon nitride: An atomistic study | |
CN103608669B (en) | Characterize the method for ethene and vinyl acetate copolymer | |
KR20160034302A (en) | Stretched polypropylene film | |
CN102183539A (en) | Method for quickly detecting crosslinked polyethylene cable insulating material structure | |
JP7238779B2 (en) | Polypropylene laminated film | |
Nitta et al. | Three dimensional molecular orientation of isotactic polypropylene films under biaxial deformation at higher temperatures | |
EP3291960A1 (en) | Polyethylene for superior sheet extrusion thermoforming performance | |
CN103434110A (en) | High-performance polypropylene film for heavy-current capacitors and manufacturing method thereof | |
CN105097421B (en) | Method for the temperature correction of MASSON fast bench heat treaters | |
CN102408627B (en) | Method of regulating polypropylene crystallization behavior and crystal structure | |
JPS6040383B2 (en) | Polypropylene composite biaxially stretched film | |
CN105479781B (en) | A kind of method that polypropylene beta crystal content is improved using heat treatment | |
CN105463253B (en) | A kind of low-expansion zircaloy and preparation method thereof | |
CN106626457A (en) | Preparation method of polyolefin microporous membrane | |
Amini et al. | Evaluation of interface thermal transport of Cu-Graphene nanocomposite under cascade overlaps and its effects on irradiation-induced defects | |
CN107459745A (en) | A kind of promotion method of the Kynoar alpha-crystal form to γ crystal transfers | |
CN106596624A (en) | Fractional crystallization analysis method of polyolefin resin | |
CN116026756A (en) | Device for measuring slip characteristic in prepreg forming process and model building method | |
CN108941197A (en) | A kind of preparation method of high thermal conductivity alusil alloy plate | |
CN108656689B (en) | High thermal performance cooking film and method of making the same | |
Wohlgemuth et al. | Round-Robin Verification and Final Development of the IEC 62788-1-5 Encapsulation Size Change Test; NREL (National Renewable Energy Laboratory) | |
CN114106373A (en) | Preparation method of PVDF (polyvinylidene fluoride) film with high beta crystal content |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120725 Termination date: 20180307 |
|
CF01 | Termination of patent right due to non-payment of annual fee |