CN102156147A - Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method - Google Patents

Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method Download PDF

Info

Publication number
CN102156147A
CN102156147A CN 201110053703 CN201110053703A CN102156147A CN 102156147 A CN102156147 A CN 102156147A CN 201110053703 CN201110053703 CN 201110053703 CN 201110053703 A CN201110053703 A CN 201110053703A CN 102156147 A CN102156147 A CN 102156147A
Authority
CN
China
Prior art keywords
temperature
polypropylene
melting
curve
wafer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110053703
Other languages
Chinese (zh)
Other versions
CN102156147B (en
Inventor
向明
亢健
杨峰
曹亚
蔡燎原
蓝方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN2011100537037A priority Critical patent/CN102156147B/en
Publication of CN102156147A publication Critical patent/CN102156147A/en
Application granted granted Critical
Publication of CN102156147B publication Critical patent/CN102156147B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The invention discloses a method for detecting film forming stability of polypropylene in bidirectional stretching by using a thermal analysis method. The method is characterized by comprising the following steps of: preparing polypropylene resin into a thermal analysis test standard sample; performing heating and cooling scanning on the polypropylene by using a differential scanning calorimeter (DSC), and detecting crystallization and melting behavior parameters of the polypropylene material; then designing a thermal treatment program of the polypropylene material according to the crystallization and melting behavior parameters of the material; and performing multi-step thermal treatment on the material, and analyzing the film forming stability when the polypropylene resin is processed by analyzing the results obtained by thermal grading treatment and using calculation of thickness and molecular structure parameters of a polypropylene wafer. The method timely provides film forming stability information of the polypropylene for production and application, and is simple, convenient, quick, efficient and strong in accuracy.

Description

用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性Detection of film-forming stability of polypropylene in biaxial stretching by thermal analysis

技术领域technical field

本发明涉及用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性,具体地说是用差示量热扫描仪(DSC),通过分步热分级热处理,检测双向拉伸聚丙烯树脂在生产过程中的成膜稳定性的方法,属于高分子材料的表征领域。The present invention relates to the detection of film-forming stability of polypropylene in biaxial stretching by means of thermal analysis, specifically using a differential calorimetry scanner (DSC) to detect biaxially stretched polypropylene resin through step-by-step heat treatment. The invention relates to a method for film-forming stability in a production process, belonging to the field of characterization of polymer materials.

背景技术Background technique

近年来,双向拉伸膜聚丙烯在包装领域的应用快速增长。随着生产技术的发展,生产过程中要求薄膜的拉伸速率越来越快,这就要求聚丙烯树脂的成膜稳定性也越来越好。如果聚丙烯材料的质量达不到指定要求,在生产中就会出现破膜、表面不平整等问题,影响经济效益。In recent years, the application of biaxially oriented polypropylene film in the field of packaging has grown rapidly. With the development of production technology, the stretching rate of film is required to be faster and faster in the production process, which requires the film-forming stability of polypropylene resin to be better and better. If the quality of the polypropylene material does not meet the specified requirements, problems such as film rupture and uneven surface will occur during production, which will affect economic benefits.

目前,表征双向拉伸膜生产中聚丙烯树脂的成膜稳定性的方法十分有限,并存在较多的缺点。一般采用的方法只有二甲苯室温可溶物测试,但该方法比较粗糙,只能作为一个简单的判据,并不准确;另一种方法是将聚丙烯树脂在大生产装置上进行试产,但是该方法成本极高,而且需要大量的树脂,难以为实际应用和工业生产提供快速表征树脂成膜情况的信息。因此,在实际应用中急需一种较为简便、高效地预测聚丙烯树脂成膜稳定性的测试方法。Currently, the methods for characterizing the film-forming stability of polypropylene resins in the production of biaxially oriented films are limited and have many disadvantages. The method generally adopted is only the test of xylene room temperature soluble matter, but this method is relatively rough and can only be used as a simple criterion and is not accurate; another method is to carry out trial production of polypropylene resin on a large production device, However, this method is extremely expensive and requires a large amount of resin, and it is difficult to provide information for quickly characterizing the film formation of the resin for practical applications and industrial production. Therefore, there is an urgent need for a relatively simple and efficient test method for predicting the film-forming stability of polypropylene resin in practical applications.

发明内容Contents of the invention

本发明的目的是针对现有技术的不足而提供用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性,其特点是该方法使用简便,快速、准确、高效地检测聚丙烯树脂在双向拉伸膜生产过程中的成膜稳定性,得到聚丙烯树脂的结构信息,从而预测聚丙烯成膜稳定性。The purpose of the present invention is to provide to detect the film-forming stability of polypropylene in biaxial stretching with thermal analysis method for the deficiencies in the prior art, and it is characterized in that this method is easy to use, detects polypropylene resin rapidly, accurately and efficiently. The film-forming stability in the production process of the biaxially stretched film can obtain the structural information of the polypropylene resin, so as to predict the film-forming stability of polypropylene.

本发明的目的由以下技术措施实现The purpose of the present invention is achieved by the following technical measures

用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:

(1)将聚丙烯树脂制成厚度均一的热分析测试标准样品;(1) Polypropylene resin is made into a thermal analysis test standard sample with uniform thickness;

(2)对聚丙烯树脂进行热分析升降温扫描处理,获取材料的结晶和熔融行为参数:(2) Carry out thermal analysis and heating and scanning processing on polypropylene resin to obtain the crystallization and melting behavior parameters of the material:

将样品在温度180~210℃下停留2~7min,以消除任何残留的热历史,然后,以7~12℃/min的降温速率降至25~50℃,停留1~5min,以7~12℃/min的升温速率加热至180~210℃,记录降温结晶曲线和升温熔融曲线;The sample stays at a temperature of 180-210°C for 2-7 minutes to eliminate any residual thermal history, then lowers the temperature to 25-50°C at a cooling rate of 7-12°C/min, stays for 1-5 minutes, and then cools down to 7-12 ℃/min heating rate to 180 ~ 210 ℃, record the cooling crystallization curve and heating melting curve;

从降温结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从升温熔融曲线得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度XcThe crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the cooling crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and melting point of the material are obtained from the heating melting curve Relative crystallinity X c ;

(3)热分级的热处理程序:(3) Heat treatment procedure for thermal classification:

将上述样品在温度180~210℃下停留2~7min,以消除任何残留的热历史,然后,以5~20℃/min的降温速率降至25~50℃,停留1~5min,以5~20℃/min的升温速率加热至第一个自成核-退火温度Ts1=164~170℃,停留ts=5~40min,以5~20℃/min的速率降温至25~50℃,停留1~5min;继续加热至第二个自成核-退火温度Ts2=160~163℃,停留ts=5~40min,以5~20℃/min的速率降温至25~50℃,停留1~5min;以5~20℃/min的升温速率升温至第三个自成核-退火温度Ts3=155~159℃,停留ts=5~40min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=2~7℃,当样品在最后一个自成核-退火温度Tsn=135~142℃下停留ts=5~40min后,降温至25~50℃,停留1~5min,以5~20℃/min的升温速率升温至180~210℃,记录最终的熔融曲线;Keep the above sample at a temperature of 180-210°C for 2-7 minutes to eliminate any residual thermal history, then lower the temperature to 25-50°C at a cooling rate of 5-20°C/min, stay for 1-5 minutes, Heating at a heating rate of 20°C/min to the first self-nucleation-annealing temperature T s1 = 164-170°C, staying at t s =5-40min, cooling to 25-50°C at a rate of 5-20°C/min, Stay for 1-5min; continue heating to the second self-nucleation-annealing temperature T s2 = 160-163°C, stay for ts = 5-40min, cool down to 25-50°C at a rate of 5-20°C/min, and stay 1~5min; heat up to the third self-nucleation-annealing temperature T s3 = 155~159℃ at a heating rate of 5~20℃/min, and stay at ts =5~40min. In this way, through continuous heating and cooling treatment, The sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=2~7°C, when the sample is After staying at temperature T sn =135-142°C for t s =5-40min, cool down to 25-50°C, stay for 1-5min, raise the temperature to 180-210°C at a heating rate of 5-20°C/min, and record the final melting curve;

(4)对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:(4) Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:

a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak

使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量;Use professional peak fitting processing software to perform peak fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak;

b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve

计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:

TT mm == TT mm 00 (( 11 -- 22 σσ ΔΔ Hh 00 LL )) -- -- -- (( 11 ))

式中,Tm是聚丙烯的熔融温度,Tm 0是聚丙烯的平衡熔点,△H0是聚丙烯的熔融焓,σ是聚丙烯的表面自由能;where Tm is the melting temperature of polypropylene, Tm0 is the equilibrium melting point of polypropylene, ΔH0 is the melting enthalpy of polypropylene, and σ is the surface free energy of polypropylene;

c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters

使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I:Use formula (2) and formula (3) to calculate the number average wafer thickness L n and weight average wafer thickness L w of the material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of the material:

LL nno == nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, KK ,, ++ nno jj LL jj nno 11 ++ nno 22 ++ nno 33 ++ nno 44 ++ ,, .. .. .. ,, ++ nno jj == ΣΣ ff ii LL ii -- -- -- (( 22 ))

LL ww == nno 11 LL 11 22 ++ nno 22 LL 22 22 ++ nno 33 LL 33 22 ++ nno 44 LL 44 22 ++ ,, KK ,, ++ nno jj LL jj 22 nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, .. .. .. ,, ++ nno jj LL jj == ΣΣ ff ii LL ii 22 ΣΣ ff ii LL ii -- -- -- (( 33 ))

II == LL ww LL nno -- -- -- (( 44 ))

其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;

另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad.

性能测试Performance Testing

采用热分析技术检测聚丙烯在双向拉伸中的成膜稳定性,检测结果详见图1-3和表1~6所示,结果表明:从PP-1到PP-5,在热分级曲线上,高温熔融峰的相对含量逐渐降低,中低温熔融峰的相对含量逐渐升高,树脂的平均晶片厚度逐渐降低,表明从PP-1到PP-5,树脂的高等规度组分相对含量逐渐下降,较低等规度组分的相对含量逐渐上升。由于高低等规度组分含量变化,树脂晶片厚度下降,成膜稳定性逐步上升,破膜率逐渐降低。本热分析检测方法的结果与大型拉膜设备的检测结果一致。Thermal analysis technology was used to detect the film-forming stability of polypropylene in biaxial stretching. The test results are shown in Figure 1-3 and Tables 1-6. The results show that: from PP-1 to PP-5, in the thermal classification curve , the relative content of the high-temperature melting peak gradually decreases, the relative content of the middle-low temperature melting peak gradually increases, and the average wafer thickness of the resin gradually decreases, indicating that from PP-1 to PP-5, the relative content of high-isotactic components of the resin gradually increases. The relative content of lower isotactic components gradually increased. Due to the content change of high and low isotactic components, the thickness of the resin wafer decreases, the stability of film formation gradually increases, and the rate of film rupture gradually decreases. The results of this thermal analysis detection method are consistent with the detection results of large-scale film drawing equipment.

附图说明Description of drawings

图1.a为5种等规聚丙烯样品在实例1热分级程序下的DSC降温结晶曲线。Figure 1.a is the DSC cooling crystallization curves of five isotactic polypropylene samples under the thermal fractionation procedure of Example 1.

图1.b为5种等规聚丙烯样品在实例1热分级程序下的DSC升温熔融曲线。Fig. 1.b is the DSC temperature rising melting curve of 5 kinds of isotactic polypropylene samples under the thermal classification program of Example 1.

图2为5种等规聚丙烯样品在实例1热分级程序下的热分级熔融曲线。Fig. 2 is the thermal classification melting curve of 5 kinds of isotactic polypropylene samples under the thermal classification procedure of Example 1.

图3为5种等规聚丙烯样品在实例1热分级程序下的晶片厚度分布曲线。Fig. 3 is the wafer thickness distribution curve of 5 kinds of isotactic polypropylene samples under the thermal classification procedure of Example 1.

具体实施方式Detailed ways

下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制。该领域的技术熟练人员可以根据上述本发明的内容,对本发明作出一些非本质的改进和调整。The present invention is specifically described below through the examples. It is necessary to point out that the present examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Those skilled in the art can make some non-essential improvements and adjustments to the present invention based on the contents of the present invention described above.

实施例1Example 1

用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:

①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.

②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.

③将样品在温度180℃下停留2min,然后,以7℃/min的降温速率降至25℃,停留1min,以7℃/min的升温速率将样品加热至180℃,记录降温结晶曲线和升温熔融曲线,结果见图1.a和图1.b;③Stay the sample at 180°C for 2 minutes, then lower the temperature to 25°C at a cooling rate of 7°C/min, stay for 1 minute, heat the sample to 180°C at a heating rate of 7°C/min, record the cooling crystallization curve and temperature rise Melting curve, the results are shown in Figure 1.a and Figure 1.b;

从图1.a上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从图1.b上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度XcThe crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from Figure 1.a, and the melting point T m , melting start temperature T monset , and melting end temperature of the material are obtained from Figure 1.b T mendset and relative crystallinity X c ;

④将上述样品在温度180℃下停留2min,然后,以5℃/min的降温速率降至25℃,停留1min,以5℃/min的升温速率加热至第一个自成核-退火温度Ts1=163℃,停留ts=5min,以5℃/min的降温速率降温至25℃,停留1min;继续加热至第二个自成核-退火温度Ts2=160℃,停留ts=5min,将样品降温至25℃,停留1min;以5℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=5min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=3℃,当样品在最后一个自成核-退火温度Tsn=136℃下停留ts=5min后,降温至25℃,停留1min,以5℃/min的升温速率升温至180℃,记录最终的熔融曲线,实验结果见图2;④Stay the above sample at a temperature of 180°C for 2min, then lower the temperature to 25°C at a cooling rate of 5°C/min, stay for 1min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 5°C/min s1 = 163°C, stay for t s = 5min, cool down to 25°C at a cooling rate of 5°C/min, stay for 1min; continue heating to the second self-nucleation-annealing temperature T s2 = 160°C, stay for t s = 5min , cool the sample to 25°C and stay for 1min; raise the temperature to the third self-nucleation-annealing temperature T s3 = 157°C at a heating rate of 5°C/min, and stay for ts = 5min, thus, through continuous heating and cooling , the sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=3°C, when the sample is at the last self-nucleation-annealing temperature After staying at T sn =136°C for t s =5min, cool down to 25°C, stay for 1min, raise the temperature to 180°C at a heating rate of 5°C/min, and record the final melting curve. The experimental results are shown in Figure 2;

⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:

a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak

使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表1;Use professional peak fitting processing software to perform peak split fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 1;

b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve

计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:

TT mm == TT mm 00 (( 11 -- 22 σσ ΔΔ Hh 00 LL )) -- -- -- (( 11 ))

式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;

c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters

使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表2:The number average wafer thickness L n and the weight average wafer thickness L w of the material were calculated using formula (2) and formula (3), and the wafer thickness distribution coefficient I of the material was calculated using formula (4). The experimental results are listed in Table 2:

LL nno == nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, KK ,, ++ nno jj LL jj nno 11 ++ nno 22 ++ nno 33 ++ nno 44 ++ ,, .. .. .. ,, ++ nno jj == ΣΣ ff ii LL ii -- -- -- (( 22 ))

LL ww == nno 11 LL 11 22 ++ nno 22 LL 22 22 ++ nno 33 LL 33 22 ++ nno 44 LL 44 22 ++ ,, KK ,, ++ nno jj LL jj 22 nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, .. .. .. ,, ++ nno jj LL jj == ΣΣ ff ii LL ii 22 ΣΣ ff ii LL ii -- -- -- (( 33 ))

II == LL ww LL nno -- -- -- (( 44 ))

其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;

另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。结果见图3。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad. The results are shown in Figure 3.

从表1、图2的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,从表2、图3中可以看出,从PP-1到PP-5,较厚晶片的含量逐渐减小,较薄晶片的含量逐渐增多,平均晶片厚度变小,晶片厚度分布指数变大。以上的结果表明,从PP-1到PP-5,高等规度组分含量的下降,树脂晶片厚度下降,由此可知,在加工过程中,从PP-1到PP-5,聚丙烯树脂的成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 1 and Figure 2, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. It can be seen from Table 2 and Figure 3 that from PP-1 to PP-5, the content of thicker wafers gradually decreases, the content of thinner wafers gradually increases, the average wafer thickness decreases, and the wafer thickness distribution index increases. The above results show that from PP-1 to PP-5, the content of high isotactic components decreases, and the thickness of the resin wafer decreases. It can be seen that in the process of processing, from PP-1 to PP-5, the content of polypropylene resin decreases. The stability of film formation gradually increased, while the rate of film rupture gradually decreased. This result is consistent with the test results of a large film stretching machine.

实施例2Example 2

用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:

①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.

②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.

③将样品在温度210℃下停留7min,然后,以12℃/min的降温速率降至50℃,停留5min,以12℃/min的升温速率将样品加热至210℃,记录降温结晶曲线和升温熔融曲线;③Stay the sample at 210°C for 7 minutes, then lower the temperature to 50°C at a cooling rate of 12°C/min, stay for 5 minutes, heat the sample to 210°C at a heating rate of 12°C/min, record the cooling crystallization curve and temperature rise melting curve;

从结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从熔融曲线上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度XcThe crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and relative Crystallinity X c ;

④将上述样品在温度210℃下停留7min,然后,以20℃/min的降温速率降至50℃,停留5min,以20℃/min的升温速率加热至第一个自成核-退火温度Ts1=170℃,停留ts=40min,以20℃/min的速率降温至50℃,停留5min;继续加热至第二个自成核-退火温度Ts2=163℃,停留ts=40min,以20℃/min的速率降温至50℃,停留5min;以20℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=40min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=7℃,当样品在最后一个自成核-退火温度Tsn=136℃下停留ts=40min后,降温至50℃,停留5min,以20℃/min的升温速率升温至210℃,记录最终的熔融曲线;④Stay the above sample at 210°C for 7min, then lower the temperature to 50°C at a cooling rate of 20°C/min, stay for 5min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 20°C/min s1 =170°C, stay at t s =40min, cool down to 50°C at a rate of 20°C/min, and stay for 5min; continue heating to the second self-nucleation-annealing temperature T s2 =163°C, stay at t s =40min, Cool down to 50°C at a rate of 20°C/min, and stay for 5 minutes; raise the temperature to the third self-nucleation-annealing temperature T s3 = 157°C at a rate of 20°C/min, and stay at t s =40min. In this way, through continuous The temperature rise and fall treatment, the sample is heat-treated at successively lower self-nucleation-annealing temperatures, and each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature by △T=7°C. Nucleation-annealing temperature T sn =136°C, stay at t s =40min, then cool down to 50°C, stay for 5min, raise the temperature to 210°C at a heating rate of 20°C/min, and record the final melting curve;

⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:

a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak

使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表3;Use professional peak fitting processing software to perform peak split fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 3;

b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve

计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:

TT mm == TT mm 00 (( 11 -- 22 σσ ΔΔ Hh 00 LL )) -- -- -- (( 11 ))

式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;

c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters

使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表4:Use formula (2) and formula (3) to calculate the number average wafer thickness Ln and weight average wafer thickness Lw of material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of material, the experimental results are listed in Table 4:

LL nno == nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, KK ,, ++ nno jj LL jj nno 11 ++ nno 22 ++ nno 33 ++ nno 44 ++ ,, .. .. .. ,, ++ nno jj == ΣΣ ff ii LL ii -- -- -- (( 22 ))

LL ww == nno 11 LL 11 22 ++ nno 22 LL 22 22 ++ nno 33 LL 33 22 ++ nno 44 LL 44 22 ++ ,, KK ,, ++ nno jj LL jj 22 nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, .. .. .. ,, ++ nno jj LL jj == ΣΣ ff ii LL ii 22 ΣΣ ff ii LL ii -- -- -- (( 33 ))

II == LL ww LL nno -- -- -- (( 44 ))

其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;

另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film-forming stability of acrylic resin is good or bad.

从表3、表4的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,树脂所能形成的平均晶片厚度变小,晶片厚度分布指数变大;高等规度组分的含量逐渐下降,而中低等规度组分的含量逐渐上升。以上的结果表明,从PP-1到PP-5,由于高等规度组分含量的下降,树脂晶片厚度下降,在加工过程中树脂更容易被拉伸成膜,成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 3 and Table 4, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. The average wafer thickness that can be formed becomes smaller, and the wafer thickness distribution index becomes larger; the content of high isotactic components gradually decreases, while the content of medium and low isotactic components gradually increases. The above results show that from PP-1 to PP-5, due to the decrease in the content of high isotactic components, the thickness of the resin wafer decreases, and the resin is more likely to be stretched into a film during processing, and the stability of the film is gradually increased. film rate gradually decreased. This result is consistent with the test results of a large film stretching machine.

实施例3Example 3

用热分析方法检测聚丙烯在双向拉伸中的成膜稳定性包括以下步骤:Testing the film-forming stability of polypropylene in biaxial stretching by thermal analysis involves the following steps:

①实验样品:五个具有不同分子结构和成膜稳定性的等规聚丙烯,编号为PP-1,PP-2,PP-3,PP-4,PP-5。将五种聚丙烯树脂在大型拉膜机器上进行测试,结果表明,从PP-1到PP-5,树脂的破膜率逐渐降低,成膜稳定性越来越好。①Experimental samples: five isotactic polypropylenes with different molecular structures and film-forming stability, numbered PP-1, PP-2, PP-3, PP-4, PP-5. Five polypropylene resins were tested on a large-scale film-drawing machine. The results showed that from PP-1 to PP-5, the film rupture rate of the resins gradually decreased, and the film-forming stability became better and better.

②将样品用模压成型机压制成厚度均一的薄板,制备热分析专用测试样品。②Use a compression molding machine to press the sample into a thin plate with uniform thickness to prepare a special test sample for thermal analysis.

③将样品在温度210℃下停留5min,然后,以9℃/min的降温速率降至40℃,停留3min,以9℃/min的升温速率将样品加热至200℃,记录降温结晶曲线和升温熔融曲线;③Stay the sample at 210°C for 5 minutes, then lower the temperature to 40°C at a cooling rate of 9°C/min, stay for 3 minutes, heat the sample to 200°C at a heating rate of 9°C/min, record the cooling crystallization curve and temperature rise melting curve;

从结晶曲线上得到材料的结晶温度Tc、结晶起始温度Tconset和结晶终止温度Tcendset,从熔融曲线上得到材料的熔点Tm、熔融起始温度Tmonset、熔融终止温度Tmendset和相对结晶度XcThe crystallization temperature T c , crystallization start temperature T conset and crystallization end temperature T cendset of the material are obtained from the crystallization curve, and the melting point T m , melting start temperature T monset , melting end temperature T mendset and relative Crystallinity X c ;

④将上述样品在温度200℃下停留5min,然后,以15℃/min的降温速率降至40℃,停留3min,以15℃/min的升温速率加热至第一个自成核-退火温度Ts1=167℃,停留ts=20min,以15℃/min的降温速率降至40℃,停留3min;继续加热至第二个自成核-退火温度Ts2=162℃,停留ts=20min,以15℃/min的降温速率降至40℃,停留3min;以15℃/min的升温速率升温至第三个自成核-退火温度Ts3=157℃,停留ts=20min,如此,通过连续的升降温处理,将样品在依次降低的自成核-退火温度下进行热处理,每个自成核-退火温度比上一个自成核温度低△T=5℃,当样品在最后一个自成核-退火温度Tsn=137℃下停留ts=20min后,降温至40℃,停留3min,以15℃/min的升温速率升温至200℃,记录最终的熔融曲线;④Stay the above sample at 200°C for 5min, then lower the temperature to 40°C at a cooling rate of 15°C/min, stay for 3min, and heat to the first self-nucleation-annealing temperature T at a heating rate of 15°C/min s1 = 167°C, stay for t s = 20min, drop to 40°C at a cooling rate of 15°C/min, stay for 3min; continue heating to the second self-nucleation-annealing temperature T s2 = 162°C, stay for t s = 20min , lower the temperature to 40°C at a cooling rate of 15°C/min, and stay for 3 minutes; raise the temperature to the third self-nucleation-annealing temperature T s3 =157°C at a heating rate of 15°C/min, and stay at t s =20min, so, Through continuous temperature rise and fall treatment, the sample is heat-treated at successively lower self-nucleation-annealing temperatures, each self-nucleation-annealing temperature is lower than the previous self-nucleation temperature After the self-nucleation-annealing temperature T sn =137°C, stay at t s =20min, cool down to 40°C, stay for 3min, raise the temperature to 200°C at a heating rate of 15°C/min, and record the final melting curve;

⑤对材料的热分级测试结果进行数学拟合和理论计算,分析聚丙烯材料在拉伸成膜时的稳定性:⑤ Carry out mathematical fitting and theoretical calculation on the thermal classification test results of the material, and analyze the stability of the polypropylene material when it is stretched into a film:

a.各熔融峰相对含量的计算a. Calculation of the relative content of each melting peak

使用专业分峰拟合处理软件对最终熔融曲线进行分峰拟合处理,将曲线分离成彼此独立的熔融峰,并计算各个峰的熔点及相对含量,分峰结果列于表5;Use professional peak fitting processing software to perform peak fitting processing on the final melting curve, separate the curve into independent melting peaks, and calculate the melting point and relative content of each peak. The peak split results are listed in Table 5;

b.晶片厚度分布曲线的计算b. Calculation of wafer thickness distribution curve

计算热分级曲线各个熔融峰所对应的晶片厚度,进而计算聚丙烯树脂的晶片厚度分布情况,利用Thomson-Gibbs方程(1)计算热分级曲线各个熔融峰所对应的晶片厚度L,进而计算聚丙烯树脂的晶片厚度分布情况:Calculate the wafer thickness corresponding to each melting peak of the thermal classification curve, and then calculate the wafer thickness distribution of polypropylene resin, use the Thomson-Gibbs equation (1) to calculate the wafer thickness L corresponding to each melting peak of the thermal classification curve, and then calculate the polypropylene resin Resin wafer thickness distribution:

TT mm == TT mm 00 (( 11 -- 22 σσ ΔΔ Hh 00 LL )) -- -- -- (( 11 ))

式中,Tm是聚丙烯的熔融温度,聚丙烯的平衡熔点Tm 0=460K,聚丙烯的熔融焓△H0=184×106J/m3,聚丙烯的表面自由能σ=0.0496J/m2In the formula, T m is the melting temperature of polypropylene, the equilibrium melting point of polypropylene T m 0 =460K, the melting enthalpy of polypropylene △H 0 =184×10 6 J/m 3 , the surface free energy of polypropylene σ=0.0496 J/ m2 ;

c.晶片厚度分布参数的计算c. Calculation of wafer thickness distribution parameters

使用(2)式和(3)式分别计算材料的数均晶片厚度Ln和重均晶片厚度Lw,使用(4)式计算材料的晶片厚度分布系数I,实验结果列于表6:Use formula (2) and formula (3) to calculate number average wafer thickness Ln and weight average wafer thickness Lw of material respectively, use formula (4) to calculate the wafer thickness distribution coefficient I of material, experimental result is listed in Table 6:

LL nno == nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, KK ,, ++ nno jj LL jj nno 11 ++ nno 22 ++ nno 33 ++ nno 44 ++ ,, .. .. .. ,, ++ nno jj == ΣΣ ff ii LL ii -- -- -- (( 22 ))

LL ww == nno 11 LL 11 22 ++ nno 22 LL 22 22 ++ nno 33 LL 33 22 ++ nno 44 LL 44 22 ++ ,, KK ,, ++ nno jj LL jj 22 nno 11 LL 11 ++ nno 22 LL 22 ++ nno 33 LL 33 ++ nno 44 LL 44 ++ ,, .. .. .. ,, ++ nno jj LL jj == ΣΣ ff ii LL ii 22 ΣΣ ff ii LL ii -- -- -- (( 33 ))

II == LL ww LL nno -- -- -- (( 44 ))

其中,L1,L2...Lj是熔融峰的晶片厚度,n1,n2...nj是熔融峰面积的相对百分含量;Wherein, L 1 , L 2 ... L j is the wafer thickness of the melting peak, n 1 , n 2 ... n j is the relative percentage of the melting peak area;

另外,对热分级熔融曲线直接使用(1)式进行均一化处理,得到可以定量比较的各样品的晶片厚度的分布曲线,从而将分子结构规整度的不均匀性反映出来,进而根据结果分析聚丙烯树脂的成膜稳定性优劣。In addition, the thermal classification melting curve is directly processed by formula (1) to obtain the distribution curve of the wafer thickness of each sample that can be quantitatively compared, so as to reflect the inhomogeneity of the molecular structure regularity, and then analyze the aggregation according to the results. The film stability of acrylic resin is good or bad.

从表5、表6的结果中可以看出,从PP-1到PP-5,在样品的热分级曲线上,高温熔融峰的相对含量逐渐减小,次高温熔融峰的含量逐渐增多,树脂所能形成的平均晶片厚度变小,晶片厚度分布指数变大;高等规度组分的含量逐渐下降,而中低等规度组分的含量逐渐上升。以上的结果表明,从PP-1到PP-5,由于高等规度组分含量的下降,树脂晶片厚度下降,在加工过程中树脂更容易被拉伸成膜,成膜稳定性逐步上升,破膜率逐渐降低。该结果与大型拉膜机的测试结果一致。From the results in Table 5 and Table 6, it can be seen that from PP-1 to PP-5, on the thermal classification curve of the samples, the relative content of the high-temperature melting peak gradually decreases, and the content of the secondary high-temperature melting peak gradually increases. The average wafer thickness that can be formed becomes smaller, and the wafer thickness distribution index becomes larger; the content of high isotactic components gradually decreases, while the content of medium and low isotactic components gradually increases. The above results show that from PP-1 to PP-5, due to the decrease in the content of high isotactic components, the thickness of the resin wafer decreases, and the resin is more likely to be stretched into a film during processing, and the stability of the film is gradually increased. film rate gradually decreased. This result is consistent with the test results of a large film stretching machine.

表1 5个等规聚丙烯样品在实施例1热分级程序下的熔融曲线分峰结果Table 1 The melting curve peak splitting results of 5 isotactic polypropylene samples under the thermal classification procedure of Example 1

Figure BDA0000049116170000091
Figure BDA0000049116170000091

表2 5个等规聚丙烯样品在实施例1热分级程序下的晶片厚度分布参数Table 2 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 1

Figure BDA0000049116170000092
Figure BDA0000049116170000092

表3 5个等规聚丙烯样品在实施例2热分级程序下的熔融曲线分峰结果Table 3 The melting curve peak splitting results of 5 isotactic polypropylene samples under the thermal classification procedure of Example 2

Figure BDA0000049116170000101
Figure BDA0000049116170000101

表4 5个等规聚丙烯样品在实施例2热分级程序下的晶片厚度分布参数Table 4 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 2

Figure BDA0000049116170000102
Figure BDA0000049116170000102

表5 5个等规聚丙烯样品在实施例3热分级程序下的熔融曲线分峰结果Table 5 5 isotactic polypropylene samples under the thermal classification procedure of embodiment 3 The results of the melting curve peak division

Figure BDA0000049116170000103
Figure BDA0000049116170000103

表6 5个等规聚丙烯样品在实施例3热分级程序下的晶片厚度分布参数Table 6 The wafer thickness distribution parameters of 5 isotactic polypropylene samples under the thermal classification procedure of Example 3

Figure BDA0000049116170000111
Figure BDA0000049116170000111

Claims (1)

1. detect the one-tenth membrane stability of polypropylene in two-way stretch with heat analysis method, it is characterized in that this method may further comprise the steps:
(1) acrylic resin is made the hot analytical test standard model of thickness homogeneous;
(2) acrylic resin is carried out heat and analyzes the heating and cooling scan process, obtain the crystallization and the melting behavior parameter of material:
Sample is stopped 2~7min down for 180~210 ℃ in temperature, to eliminate any residual thermal history, then, sample is reduced to 25~50 ℃ with the rate of temperature fall of 7~12 ℃/min, stop 1~5min, heating rate with 7~12 ℃/min is heated to 180~210 ℃ with sample, record decrease temperature crystalline curve and intensification melting curve subsequently;
Obtain the Tc T of material from the decrease temperature crystalline curve c, crystallization onset temperature T ConsetWith crystallization final temperature T Cendset, obtain the fusing point T of material from the intensification melting curve m, melt initiation temperature degree T Monset, fusion final temperature T MendsetWith relative crystallinity X c
(3) heat treatment process of hot classification:
Above-mentioned sample is stopped 2~7min down for 180~210 ℃ in temperature, to eliminate any residual thermal history, then, reduce to 25~50 ℃ with the rate of temperature fall of 5~20 ℃/min, stop 1~5min, be heated to first spontaneous nucleation-annealing temperature T with the heating rate of 5~20 ℃/min S1=164~170 ℃, stop t s=5~40min is cooled to 25~50 ℃ with the speed of 5~20 ℃/min, stops 1~5min; Continue to be heated to second spontaneous nucleation-annealing temperature T S2=160~163 ℃, stop t s=5~40min is cooled to 25~50 ℃ with the speed of 5~20 ℃/min, stops 1~5min; Heating rate with 5~20 ℃/min is warming up to the 3rd spontaneous nucleation-annealing temperature T S3=155~159 ℃, stop t s=5~40min, so, handle, sample is heat-treated under the spontaneous nucleation-annealing temperature that reduces successively by continuous heating and cooling, each spontaneous nucleation-annealing temperature is than the low △ T=2 of a last spontaneous nucleation temperature~7 ℃, as sample spontaneous nucleation-annealing temperature T in the end Sn=135~142 ℃ stop t down sBehind=5~40min, be cooled to 25~50 ℃, stop 1~5min, be warming up to 180~210 ℃, write down final melting curve with the heating rate of 5~20 ℃/min;
(4) polyacrylic hot hierarchical test result is carried out mathematics match and Theoretical Calculation, analyzes the stability of polypropylene material when the stretching film forming:
A. the calculating of each melting peak relative content
Use professional swarming process of fitting treatment software that final melting curve is carried out the swarming process of fitting treatment, curve is separated into melting peak independent of each other, and calculate the fusing point and the relative content at each peak;
B. the calculating of wafer thickness distribution curve
Calculate the pairing wafer thickness of each melting peak of hot grading curve, and then the wafer thickness distribution situation of calculating acrylic resin, utilize Thomson-Gibbs equation (1) to calculate the pairing wafer thickness L of each melting peak of hot grading curve, and then calculate the wafer thickness distribution situation of acrylic resin:
T m = T m 0 ( 1 - 2 σ Δ H 0 L ) - - - ( 1 )
In the formula, T mBe polyacrylic melt temperature, T m 0Be polyacrylic equilibrium melting point, △ H 0Be polyacrylic melting enthalpy, σ is polyacrylic surface free energy;
C. the calculating of wafer thickness distribution parameter
(2) formula of use and (3) formula are calculated polyacrylic number average wafer thickness L respectively nWith weight average wafer thickness L w, use (4) formula to calculate the wafer thickness distribution coefficient I of material:
L n = n 1 L 1 + n 2 L 2 + n 3 L 3 + n 4 L 4 + , K , + n j L j n 1 + n 2 + n 3 + n 4 + , . . . , + n j = Σ f i L i - - - ( 2 )
L w = n 1 L 1 2 + n 2 L 2 2 + n 3 L 3 2 + n 4 L 4 2 + , K , + n j L j 2 n 1 L 1 + n 2 L 2 + n 3 L 3 + n 4 L 4 + , . . . , + n j L j = Σ f i L i 2 Σ f i L i - - - ( 3 )
I = L w L n - - - ( 4 )
Wherein, L 1, L 2... L jBe the wafer thickness of melting peak, n 1, n 2... n jIt is the relative percentage composition of melting peak area;
In addition, directly using (1) formula to carry out homogenization to hot classification melting curve handles, obtain the distribution curve of the wafer thickness of each sample that can quantitative comparison, thereby the unevenness of molecular structure regularity is reflected, and then according to the one-tenth membrane stability quality of interpretation of result acrylic resin.
CN2011100537037A 2011-03-07 2011-03-07 Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method Expired - Fee Related CN102156147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100537037A CN102156147B (en) 2011-03-07 2011-03-07 Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100537037A CN102156147B (en) 2011-03-07 2011-03-07 Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method

Publications (2)

Publication Number Publication Date
CN102156147A true CN102156147A (en) 2011-08-17
CN102156147B CN102156147B (en) 2012-07-25

Family

ID=44437719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100537037A Expired - Fee Related CN102156147B (en) 2011-03-07 2011-03-07 Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method

Country Status (1)

Country Link
CN (1) CN102156147B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408627A (en) * 2011-09-08 2012-04-11 复旦大学 Method of regulating polypropylene crystallization behavior and crystal structure
CN103454303A (en) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 Method for rapidly evaluating processing linear velocity of special material for biaxially oriented polypropylene
CN104483235A (en) * 2014-12-05 2015-04-01 浙江万马高分子材料有限公司 Method for detecting crosslinkable vinyl polymer chain structure for high voltage cable
CN105911089A (en) * 2016-04-19 2016-08-31 中南林业科技大学 A method of measuring the degree of aging of fresh wet boodles by using a differential scanning calorimeter
CN106248722A (en) * 2016-07-25 2016-12-21 成都慧成科技有限责任公司 A kind of predict polyvinyl alcohol resin work in-process water suction and the method for dewatering
CN106248731A (en) * 2016-09-05 2016-12-21 哈尔滨电机厂有限责任公司 Utilize the method that heat enthalpy value chooses molding parameters
CN106596624A (en) * 2016-12-21 2017-04-26 深圳市星源材质科技股份有限公司 Fractional crystallization analysis method of polyolefin resin
CN109655486A (en) * 2017-09-29 2019-04-19 本田技研工业株式会社 The determination of residual amount method of resin material in metal porous plastid
CN109725020A (en) * 2018-11-21 2019-05-07 北方华锦化学工业股份有限公司 A kind of fractional crystallization method of polypropylene lithium battery diaphragm PP Pipe Compound
CN113724797A (en) * 2021-09-02 2021-11-30 成都慧成科技有限责任公司 Method for evaluating stability of polyamide stretch film forming
CN114813606A (en) * 2022-04-24 2022-07-29 四川大学 Method for evaluating the processing stability of polyphenylene sulfide resin during melt molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426396B1 (en) * 1989-10-31 1994-08-10 Nippon Petrochemicals Company, Limited Method for determining branch distribution of polymer
CN1432802A (en) * 2002-01-17 2003-07-30 扬子石油化工股份有限公司 Fast infrared spectrometric process of isotactic degree of biaxial stretched polypropylene
CN1963501A (en) * 2006-11-24 2007-05-16 福州大学 Forecasting method for isothermal crystal dynamics parameter of high polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426396B1 (en) * 1989-10-31 1994-08-10 Nippon Petrochemicals Company, Limited Method for determining branch distribution of polymer
CN1432802A (en) * 2002-01-17 2003-07-30 扬子石油化工股份有限公司 Fast infrared spectrometric process of isotactic degree of biaxial stretched polypropylene
CN1963501A (en) * 2006-11-24 2007-05-16 福州大学 Forecasting method for isothermal crystal dynamics parameter of high polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《塑料》 20020430 刘芳等 原位反应增容制备非卤阻燃聚丙烯热稳定性研究 44-46,15 1 第31卷, 第2期 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408627B (en) * 2011-09-08 2014-06-11 复旦大学 Method of regulating polypropylene crystallization behavior and crystal structure
CN102408627A (en) * 2011-09-08 2012-04-11 复旦大学 Method of regulating polypropylene crystallization behavior and crystal structure
CN103454303A (en) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 Method for rapidly evaluating processing linear velocity of special material for biaxially oriented polypropylene
CN104483235A (en) * 2014-12-05 2015-04-01 浙江万马高分子材料有限公司 Method for detecting crosslinkable vinyl polymer chain structure for high voltage cable
CN105911089A (en) * 2016-04-19 2016-08-31 中南林业科技大学 A method of measuring the degree of aging of fresh wet boodles by using a differential scanning calorimeter
CN106248722B (en) * 2016-07-25 2019-09-06 成都慧成科技有限责任公司 A method of the water suction of prediction polyvinyl alcohol resin work in-process and dewatering
CN106248722A (en) * 2016-07-25 2016-12-21 成都慧成科技有限责任公司 A kind of predict polyvinyl alcohol resin work in-process water suction and the method for dewatering
CN106248731A (en) * 2016-09-05 2016-12-21 哈尔滨电机厂有限责任公司 Utilize the method that heat enthalpy value chooses molding parameters
CN106248731B (en) * 2016-09-05 2019-02-15 哈尔滨电机厂有限责任公司 The method for choosing molding parameters using heat enthalpy value
CN106596624A (en) * 2016-12-21 2017-04-26 深圳市星源材质科技股份有限公司 Fractional crystallization analysis method of polyolefin resin
CN109655486A (en) * 2017-09-29 2019-04-19 本田技研工业株式会社 The determination of residual amount method of resin material in metal porous plastid
CN109725020A (en) * 2018-11-21 2019-05-07 北方华锦化学工业股份有限公司 A kind of fractional crystallization method of polypropylene lithium battery diaphragm PP Pipe Compound
CN113724797A (en) * 2021-09-02 2021-11-30 成都慧成科技有限责任公司 Method for evaluating stability of polyamide stretch film forming
CN113724797B (en) * 2021-09-02 2024-03-08 成都慧成科技有限责任公司 Method for evaluating stability of polyamide stretch film
CN114813606A (en) * 2022-04-24 2022-07-29 四川大学 Method for evaluating the processing stability of polyphenylene sulfide resin during melt molding

Also Published As

Publication number Publication date
CN102156147B (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN102156147B (en) Method for detecting film forming stability of polypropylene in bidirectional stretching by using thermal analysis method
CN1970613B (en) Raw sheet for capacitor film and capacitor film
CN108516212A (en) A kind of multi-layer co-extruded low temperature polyolefin crosslinking heat shrink films and preparation method thereof
Vedula et al. Effect of topological disorder on structural, mechanical, and electronic properties of amorphous silicon nitride: An atomistic study
CN103608669B (en) Characterize the method for ethene and vinyl acetate copolymer
KR20160034302A (en) Stretched polypropylene film
CN102183539A (en) Method for quickly detecting crosslinked polyethylene cable insulating material structure
JP7238779B2 (en) Polypropylene laminated film
Nitta et al. Three dimensional molecular orientation of isotactic polypropylene films under biaxial deformation at higher temperatures
EP3291960A1 (en) Polyethylene for superior sheet extrusion thermoforming performance
CN103434110A (en) High-performance polypropylene film for heavy-current capacitors and manufacturing method thereof
CN105097421B (en) Method for the temperature correction of MASSON fast bench heat treaters
CN102408627B (en) Method of regulating polypropylene crystallization behavior and crystal structure
JPS6040383B2 (en) Polypropylene composite biaxially stretched film
CN105479781B (en) A kind of method that polypropylene beta crystal content is improved using heat treatment
CN105463253B (en) A kind of low-expansion zircaloy and preparation method thereof
CN106626457A (en) Preparation method of polyolefin microporous membrane
Amini et al. Evaluation of interface thermal transport of Cu-Graphene nanocomposite under cascade overlaps and its effects on irradiation-induced defects
CN107459745A (en) A kind of promotion method of the Kynoar alpha-crystal form to γ crystal transfers
CN106596624A (en) Fractional crystallization analysis method of polyolefin resin
CN116026756A (en) Device for measuring slip characteristic in prepreg forming process and model building method
CN108941197A (en) A kind of preparation method of high thermal conductivity alusil alloy plate
CN108656689B (en) High thermal performance cooking film and method of making the same
Wohlgemuth et al. Round-Robin Verification and Final Development of the IEC 62788-1-5 Encapsulation Size Change Test; NREL (National Renewable Energy Laboratory)
CN114106373A (en) Preparation method of PVDF (polyvinylidene fluoride) film with high beta crystal content

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725

Termination date: 20180307

CF01 Termination of patent right due to non-payment of annual fee