CN102142089A - Semantic binary tree-based image annotation method - Google Patents
Semantic binary tree-based image annotation method Download PDFInfo
- Publication number
- CN102142089A CN102142089A CN 201110002770 CN201110002770A CN102142089A CN 102142089 A CN102142089 A CN 102142089A CN 201110002770 CN201110002770 CN 201110002770 CN 201110002770 A CN201110002770 A CN 201110002770A CN 102142089 A CN102142089 A CN 102142089A
- Authority
- CN
- China
- Prior art keywords
- image
- word
- binary tree
- semantic
- mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000002372 labelling Methods 0.000 claims abstract description 8
- 238000003709 image segmentation Methods 0.000 claims abstract description 4
- 238000011524 similarity measure Methods 0.000 claims description 3
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 claims 4
- 239000004744 fabric Substances 0.000 claims 2
- 230000035807 sensation Effects 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000000007 visual effect Effects 0.000 abstract description 17
- 230000010354 integration Effects 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
本发明提供的是一种基于语义二叉树的图像标注方法。步骤1,对于特定场景的图像集,采用图像分割算法对用于学习的标注图像进行分割,获得图像区域的视觉描述;步骤2,构造用于学习的所有图像的视觉最近邻图;步骤3,根据步骤2中的最近邻图建立所述场景的语义二叉树;步骤4,对所述场景下的待标注图像,从语义二叉树的根节点到叶子节点找到相应位置,并将该节点处到根节点的所有标注字传递给所述图像。本发明旨在对特定场景下的训练用的标注图像集建立语义二叉树,来提高利用图像视觉特征进行场景分类后的图像的自动语义标注的精度。
The invention provides an image labeling method based on a semantic binary tree. Step 1, for the image set of a specific scene, use the image segmentation algorithm to segment the labeled images used for learning to obtain the visual description of the image area; Step 2, construct the visual nearest neighbor graph of all images used for learning; Step 3, Establish the semantic binary tree of the scene according to the nearest neighbor graph in step 2; step 4, find the corresponding position from the root node to the leaf node of the semantic binary tree for the image to be labeled under the scene, and place the node to the root node All annotation words are passed to the image. The present invention aims to establish a semantic binary tree for a labeled image set used for training in a specific scene, so as to improve the accuracy of automatic semantic labeling of images after scene classification using image visual features.
Description
技术领域technical field
本发明涉及的是一种图像的自动语义标注方法。The invention relates to an automatic semantic labeling method for images.
背景技术Background technique
图像的标注字作为一种非常宝贵的图像描述资源,较好地反映了图像的高级语义信息。如何充分利用训练图像的标注字信息,是提高图像标注精度的重要手段。本发明的背景是在综合利用图像语义与视觉特征的相关性基础上,提取出训练图像的语义场景,并对不同场景的训练图像建立视觉模型,最后按照视觉特征对待标注图像进行语义归类。As a very valuable image description resource, image annotations better reflect the high-level semantic information of images. How to make full use of the annotation word information of the training image is an important means to improve the accuracy of image annotation. The background of the present invention is to extract the semantic scene of the training image based on the comprehensive utilization of the correlation between image semantics and visual features, and establish a visual model for the training images of different scenes, and finally perform semantic classification on the labeled images according to the visual features.
发明内容Contents of the invention
本发明的目的在于提供一种能提高对经过场景归类后待标注图像的标注精度的基于语义二叉树的图像标注方法。The object of the present invention is to provide an image tagging method based on a semantic binary tree that can improve the tagging accuracy of images to be tagged after scene classification.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
步骤1,对于特定场景的图像集,采用图像分割算法对用于学习的标注图像进行分割,获得图像区域的视觉描述;Step 1. For the image set of a specific scene, the image segmentation algorithm is used to segment the labeled image for learning to obtain the visual description of the image area;
步骤2,构造用于学习的所有图像的视觉最近邻图;Step 2, constructing visual nearest neighbor graphs of all images used for learning;
步骤3,根据步骤2中的最近邻图建立所述场景的语义二叉树;Step 3, establishing a semantic binary tree of the scene according to the nearest neighbor graph in step 2;
步骤4,对所述场景下的待标注图像,从语义二叉树的根节点到叶子节点找到相应位置,并将该节点处到根节点的所有标注字传递给所述图像。Step 4, for the image to be labeled in the scene, find the corresponding position from the root node to the leaf node of the semantic binary tree, and transfer all the labeled words from the node to the root node to the image.
所述构造用于学习的所有图像的视觉最近邻图的方法为:图像间的视觉距离采用多区域集成匹配的相似性测度推土机距离,图的顶点对应每一幅图像,连接顶点的边对应图像间的视觉距离。The method of constructing the visual nearest neighbor graph of all images used for learning is: the visual distance between images adopts the similarity measure bulldozer distance of multi-region integration matching, the vertices of the graph correspond to each image, and the edges connecting the vertices correspond to the images visual distance between.
所述建立语义二叉树的方法为:二叉树的根节点处汇集了场景中的所有标注图像,代表所述场景的标注字对应根节点的语义表示,对步骤2中的最近邻图采用规格化切分的二分算法,将图像分成两个集合,分别代表根节点的左子树和右子树,统计两个集合中除了根节点处的标注字外的一个显著标注字,并按该标注字重新确定每幅图像的归属;寻找显著标注字的方法是统计集合中各标注字的出现次数,将出现次数最高的标注字作为显著标注字;如果出现次数最多的标注字不止一个,将词频较低的一个标注字作为显著标注字;The method for establishing a semantic binary tree is as follows: at the root node of the binary tree, all marked images in the scene are collected, and the marked words representing the scene correspond to the semantic representation of the root node, and the nearest neighbor graph in step 2 is normalized and segmented Divide the image into two sets, representing the left subtree and the right subtree of the root node respectively, count a significant label word in the two sets except the label word at the root node, and re-determine according to the label word The attribution of each image; the method of finding the prominent marked words is to count the number of occurrences of each marked word in the collection, and use the marked word with the highest frequency of occurrence as the marked marked word; One marked word as a prominent marked word;
对根节点的左子树和右子树重复上述操作,直到只有一副图像或者集合中无显著出现的标注字,底端的叶子节点对应了出现频度较低的标注字的图像。Repeat the above operations on the left subtree and right subtree of the root node until there is only one image or no marked words appearing in the collection, and the bottom leaf nodes correspond to images with less frequent marked words.
本发明利用标注字和视觉信息对特定场景的标注图像建立语义二叉树,提出了一个对特定场景的标注图像建立语义树的具体方法。树的顶点对应该场景下最常见的标注字,随着语义树的生长,每个叶子节点对应的语义被分支裁剪,子节点的语义逐渐细化,代表的标注字逐步具体,趋于并通过建立的语义二叉树,对该场景的待标注图像,从该场景语义树的根部到叶子节点,得到相应的标注信息。The present invention uses marked words and visual information to build a semantic binary tree for marked images of specific scenes, and proposes a specific method for building semantic trees for marked images of specific scenes. The vertices of the tree correspond to the most common marked words in this scene. As the semantic tree grows, the semantics corresponding to each leaf node are cut by branches, and the semantics of the sub-nodes are gradually refined, and the represented marked words are gradually specific, tending to and passing The established semantic binary tree obtains corresponding annotation information from the root of the semantic tree of the scene to the leaf nodes of the image to be annotated for the scene.
本发明旨在对特定场景下的训练用的标注图像集建立语义二叉树,来提高利用图像视觉特征进行场景分类后的图像的自动语义标注的精度。The present invention aims to establish a semantic binary tree for a labeled image set used for training in a specific scene, so as to improve the accuracy of automatic semantic labeling of images after scene classification is performed using image visual features.
本发明将结点带有关键字的二叉树用于图像标注,具有较高的实用价值。将对许多CBIR应用有重要帮助,例如google的图像索索引擎。The invention uses the binary tree with keywords in the nodes for image labeling, and has high practical value. It will be of great help to many CBIR applications, such as Google's image search engine.
附图说明Description of drawings
附图是本发明的流程图。Accompanying drawing is the flowchart of the present invention.
具体实施方式Detailed ways
下面结合附图举例对本发明做更详细的描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
步骤1,对于特定场景的图像集,采用图像分割算法对用于学习的标注图像进行分割,获得图像区域的视觉描述。Step 1. For an image set of a specific scene, an image segmentation algorithm is used to segment the annotated image used for learning to obtain a visual description of the image region.
步骤2,构造用于学习的所有图像的视觉最近邻图。图像间的视觉距离采用多区域集成匹配的相似性测度推土机距离(Earth Mover’s Distance,EMD)。图的顶点对应每一幅图像,连接顶点的边对应图像间的视觉距离。Step 2, construct visual nearest neighbor graphs of all images used for learning. The visual distance between images uses the similarity measure of multi-region integrated matching, the Earth Mover's Distance (EMD). The vertices of the graph correspond to each image, and the edges connecting the vertices correspond to the visual distance between the images.
步骤3,根据步骤2中的最近邻图建立该场景的语义二叉树。方法如下。Step 3, build a semantic binary tree of the scene according to the nearest neighbor graph in step 2. Methods as below.
二叉树的根节点处汇集了该场景中的所有标注图像,代表该场景的标注字对应根节点的语义表示。对步骤2中的最近邻图采用N-Cut(Normalized Cut,规格化切分)的二分算法,将图像分成两个集合,分别代表根节点的左子树和右子树。统计两个集合中除了根节点处的标注字外的一个显著标注字,并按该标注字重新确定每幅图像的归属。寻找显著标注字的方法是统计集合中各标注字的出现次数,将出现次数最高的标注字作为显著标注字。如果出现次数最多的标注字不止一个,将词频较低的一个标注字作为显著标注字。The root node of the binary tree collects all the labeled images in the scene, and represents the semantic representation of the labeled words of the scene corresponding to the root node. Use the N-Cut (Normalized Cut) bisection algorithm for the nearest neighbor graph in step 2 to divide the image into two sets, representing the left subtree and right subtree of the root node respectively. Count a significant tag word in the two sets except the tag word at the root node, and re-determine the attribution of each image according to the tag word. The method of finding the marked words is to count the occurrence times of each marked word in the set, and take the marked word with the highest number of occurrences as the significant marked word. If there is more than one marked word with the most frequent occurrences, the marked word with a lower word frequency is taken as a significant marked word.
对根节点的左子树和右子树重复上述操作,直到只有一副图像或者集合中无显著出现的标注字。底端的叶子节点对应了出现频度较低的标注字的图像。Repeat the above operations on the left subtree and right subtree of the root node until there is only one image or no marked words appearing in the collection. The leaf nodes at the bottom correspond to images of labeled words that appear less frequently.
步骤4,对该场景下的待标注图像,从语义二叉树的根节点到叶子节点找到相应位置,并将该节点处到根节点的所有标注字传递给该图像。Step 4, for the image to be labeled in the scene, find the corresponding position from the root node to the leaf node of the semantic binary tree, and transfer all the labeled words from the node to the root node to the image.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110002770A CN102142089B (en) | 2011-01-07 | 2011-01-07 | Semantic binary tree-based image annotation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110002770A CN102142089B (en) | 2011-01-07 | 2011-01-07 | Semantic binary tree-based image annotation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102142089A true CN102142089A (en) | 2011-08-03 |
CN102142089B CN102142089B (en) | 2012-09-26 |
Family
ID=44409586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110002770A Expired - Fee Related CN102142089B (en) | 2011-01-07 | 2011-01-07 | Semantic binary tree-based image annotation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102142089B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102436583A (en) * | 2011-09-26 | 2012-05-02 | 哈尔滨工程大学 | Image segmentation method based on annotated image learning |
CN103365850A (en) * | 2012-03-27 | 2013-10-23 | 富士通株式会社 | Method and device for annotating images |
CN103530415A (en) * | 2013-10-29 | 2014-01-22 | 谭永 | Natural language search method and system compatible with keyword search |
CN103632388A (en) * | 2013-12-19 | 2014-03-12 | 百度在线网络技术(北京)有限公司 | Semantic annotation method, device and client for image |
CN106814162A (en) * | 2016-12-15 | 2017-06-09 | 珠海华海科技有限公司 | A kind of Outdoor Air Quality solution and system |
CN108171283A (en) * | 2017-12-31 | 2018-06-15 | 厦门大学 | A kind of picture material automatic describing method based on structuring semantic embedding |
CN108182443A (en) * | 2016-12-08 | 2018-06-19 | 广东精点数据科技股份有限公司 | A kind of image automatic annotation method and device based on decision tree |
WO2019021088A1 (en) * | 2017-07-24 | 2019-01-31 | International Business Machines Corporation | Navigating video scenes using cognitive insights |
CN110199525A (en) * | 2017-01-18 | 2019-09-03 | Pcms控股公司 | For selecting scene with the system and method for the browsing history in augmented reality interface |
CN110288019A (en) * | 2019-06-21 | 2019-09-27 | 北京百度网讯科技有限公司 | Image labeling method, device and storage medium |
CN110413820A (en) * | 2019-07-12 | 2019-11-05 | 深兰科技(上海)有限公司 | A kind of acquisition methods and device of picture description information |
US10916013B2 (en) | 2018-03-14 | 2021-02-09 | Volvo Car Corporation | Method of segmentation and annotation of images |
CN112347278A (en) * | 2019-10-25 | 2021-02-09 | 北京沃东天骏信息技术有限公司 | Method and apparatus for training a characterization model |
US11100366B2 (en) | 2018-04-26 | 2021-08-24 | Volvo Car Corporation | Methods and systems for semi-automated image segmentation and annotation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936892A (en) * | 2006-10-17 | 2007-03-28 | 浙江大学 | Image content semanteme marking method |
-
2011
- 2011-01-07 CN CN201110002770A patent/CN102142089B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936892A (en) * | 2006-10-17 | 2007-03-28 | 浙江大学 | Image content semanteme marking method |
Non-Patent Citations (2)
Title |
---|
《IEEE》 20091231 Lixing Jianga等 Automatic Image Annotation Based on Decision Tree Machine Learning , * |
《智能系统学报》 20100228 刘咏梅等 基于空间位置约束的K均值图像分割 第5卷, 第1期 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102436583A (en) * | 2011-09-26 | 2012-05-02 | 哈尔滨工程大学 | Image segmentation method based on annotated image learning |
CN103365850A (en) * | 2012-03-27 | 2013-10-23 | 富士通株式会社 | Method and device for annotating images |
CN103365850B (en) * | 2012-03-27 | 2017-07-14 | 富士通株式会社 | Image labeling method and image labeling device |
CN103530415A (en) * | 2013-10-29 | 2014-01-22 | 谭永 | Natural language search method and system compatible with keyword search |
CN103632388A (en) * | 2013-12-19 | 2014-03-12 | 百度在线网络技术(北京)有限公司 | Semantic annotation method, device and client for image |
CN108182443A (en) * | 2016-12-08 | 2018-06-19 | 广东精点数据科技股份有限公司 | A kind of image automatic annotation method and device based on decision tree |
CN108182443B (en) * | 2016-12-08 | 2020-08-07 | 广东精点数据科技股份有限公司 | Automatic image labeling method and device based on decision tree |
CN106814162A (en) * | 2016-12-15 | 2017-06-09 | 珠海华海科技有限公司 | A kind of Outdoor Air Quality solution and system |
US11663751B2 (en) | 2017-01-18 | 2023-05-30 | Interdigital Vc Holdings, Inc. | System and method for selecting scenes for browsing histories in augmented reality interfaces |
CN110199525B (en) * | 2017-01-18 | 2021-12-14 | Pcms控股公司 | System and method for browsing history records in augmented reality interface |
CN110199525A (en) * | 2017-01-18 | 2019-09-03 | Pcms控股公司 | For selecting scene with the system and method for the browsing history in augmented reality interface |
WO2019021088A1 (en) * | 2017-07-24 | 2019-01-31 | International Business Machines Corporation | Navigating video scenes using cognitive insights |
US10970334B2 (en) | 2017-07-24 | 2021-04-06 | International Business Machines Corporation | Navigating video scenes using cognitive insights |
CN108171283B (en) * | 2017-12-31 | 2020-06-16 | 厦门大学 | Image content automatic description method based on structured semantic embedding |
CN108171283A (en) * | 2017-12-31 | 2018-06-15 | 厦门大学 | A kind of picture material automatic describing method based on structuring semantic embedding |
US10916013B2 (en) | 2018-03-14 | 2021-02-09 | Volvo Car Corporation | Method of segmentation and annotation of images |
US11100366B2 (en) | 2018-04-26 | 2021-08-24 | Volvo Car Corporation | Methods and systems for semi-automated image segmentation and annotation |
CN110288019A (en) * | 2019-06-21 | 2019-09-27 | 北京百度网讯科技有限公司 | Image labeling method, device and storage medium |
CN110413820B (en) * | 2019-07-12 | 2022-03-29 | 深兰科技(上海)有限公司 | Method and device for acquiring picture description information |
CN110413820A (en) * | 2019-07-12 | 2019-11-05 | 深兰科技(上海)有限公司 | A kind of acquisition methods and device of picture description information |
CN112347278A (en) * | 2019-10-25 | 2021-02-09 | 北京沃东天骏信息技术有限公司 | Method and apparatus for training a characterization model |
Also Published As
Publication number | Publication date |
---|---|
CN102142089B (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102142089A (en) | Semantic binary tree-based image annotation method | |
Goëau et al. | Pl@ ntnet mobile app | |
CN102012939B (en) | Method for automatically tagging animation scenes for matching through comprehensively utilizing overall color feature and local invariant features | |
CN102768670B (en) | Webpage clustering method based on node property label propagation | |
CN115294150A (en) | Image processing method and terminal equipment | |
CN101963995A (en) | Image marking method based on characteristic scene | |
CN105389326B (en) | Image labeling method based on weak matching probability typical relevancy models | |
Weyand et al. | Visual landmark recognition from internet photo collections: A large-scale evaluation | |
CN103425757A (en) | Cross-medial personage news searching method and system capable of fusing multi-mode information | |
CN104050682A (en) | Image segmentation method fusing color and depth information | |
CN112464328A (en) | Deep design method and system based on BIM technology and atlas | |
Cai et al. | A comparative study of deep learning approaches to rooftop detection in aerial images | |
CN110377659A (en) | A kind of intelligence chart recommender system and method | |
Lynen et al. | Trajectory-based place-recognition for efficient large scale localization | |
Li et al. | Multi-label pattern image retrieval via attention mechanism driven graph convolutional network | |
CN104392439A (en) | Image similarity confirmation method and device | |
Kuric et al. | ANNOR: Efficient image annotation based on combining local and global features | |
CN104063701A (en) | Rapid television station caption recognition system based on SURF vocabulary tree and template matching and implementation method of rapid television station caption recognition system | |
Huang et al. | Improved small-object detection using YOLOv8: A comparative study | |
JP2012022419A (en) | Learning data creation device, learning data creation method, and program | |
CN107480693A (en) | Condition random field framework is embedded in the Weakly supervised image scene understanding method of registration information | |
CN110766045A (en) | Underground drainage pipeline disease identification method, intelligent terminal and storage medium | |
CN103744903A (en) | Sketch based scene image retrieval method | |
CN105574535A (en) | Graphic symbol identification method based on indirect distance angle histogram space relation expression model | |
Wang et al. | GOReloc: Graph-Based Object-Level Relocalization for Visual SLAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120926 Termination date: 20180107 |
|
CF01 | Termination of patent right due to non-payment of annual fee |