CN102130418B - Polarization-entangled quantum light source - Google Patents
Polarization-entangled quantum light source Download PDFInfo
- Publication number
- CN102130418B CN102130418B CN 201110028755 CN201110028755A CN102130418B CN 102130418 B CN102130418 B CN 102130418B CN 201110028755 CN201110028755 CN 201110028755 CN 201110028755 A CN201110028755 A CN 201110028755A CN 102130418 B CN102130418 B CN 102130418B
- Authority
- CN
- China
- Prior art keywords
- polarization
- filter
- light
- light source
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 claims abstract description 98
- 230000003287 optical effect Effects 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims abstract description 32
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 27
- 238000002156 mixing Methods 0.000 claims abstract description 26
- 238000005086 pumping Methods 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 34
- 239000013307 optical fiber Substances 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 239000002178 crystalline material Substances 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000002070 nanowire Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000004038 photonic crystal Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 230000005610 quantum mechanics Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种偏振纠缠量子光源,该光源包括:泵浦光发生装置,用于生成脉冲泵浦光,并将其输入至三阶非线性光学波导;三阶非线性光学波导,具有双折射特性,用于在两个偏振轴上独立激发自发标量四波混频过程,产生具有偏振纠缠特性的信号和闲频双光子,并抑制自发矢量四波混频过程;分光滤波装置,用于将所述三阶非线性光学波导输出的信号和闲频光子以及脉冲泵浦光分离,得到偏振纠缠双光子。本发明的偏振纠缠量子光源结构简单且紧凑,偏振纠缠双光子产生和收集的效率高。
The invention discloses a polarization-entangled quantum light source. The light source includes: a pump light generating device for generating pulsed pump light and inputting it into a third-order nonlinear optical waveguide; a third-order nonlinear optical waveguide with a double Refractive properties, used to independently excite the spontaneous scalar four-wave mixing process on two polarization axes, generate signal and idler two-photons with polarization entanglement properties, and suppress the spontaneous vector four-wave mixing process; optical splitting filter device for The signal output by the third-order nonlinear optical waveguide is separated from the idler frequency photon and the pulse pumping light to obtain polarization-entangled two-photon. The polarization-entangled quantum light source of the invention has a simple and compact structure, and the efficiency of generating and collecting polarization-entangled two-photons is high.
Description
技术领域 technical field
本发明涉及量子信息科学技术领域,尤其涉及一种偏振纠缠量子光源。The invention relates to the technical field of quantum information science, in particular to a polarization-entangled quantum light source.
背景技术 Background technique
利用量子力学基本原理,量子信息技术可以实现很多经典信息技术无法实现的应用,具有重要的学术意义和应用价值。量子纠缠(quantum entanglement)是量子信息功能实现所依赖的重要量子资源,是一种量子力学现象。其定义上描述复合系统(具有两个以上的子系统)的一类特殊的量子态。此量子态无法分解为子系统各自量子态的张量积(tensor product),是物理上分离的子系统之间的非定域关联。对处于量子纠缠的多个子系统而言,其任一子系统的测量结果无法独立于其他子系统的状态。实现量子纠缠的量子系统多种多样,如原子、离子和光子等。其中,由于光子具有便于传输、不易与环境相互作用而退相干的特性,使得纠缠双光子成为量子信息技术中使用最方便的纠缠量子系统。常见的双光子间纠缠形式包括:动量和位置、时间和能量、时间片、偏振态、频率以及光场的正交振幅和位相信息等。在量子信息技术应用中,由于光子的偏振态易于控制和转换,使得偏振纠缠双光子被广泛使用。因此,产生偏振纠缠双光子的偏振纠缠量子光源成为量子信息技术中的关键功能单元。Using the basic principles of quantum mechanics, quantum information technology can realize many applications that cannot be realized by classical information technology, which has important academic significance and application value. Quantum entanglement (quantum entanglement) is an important quantum resource on which the realization of quantum information functions depends, and it is a phenomenon of quantum mechanics. It describes by definition a special class of quantum states of composite systems (having more than two subsystems). This quantum state cannot be decomposed into the tensor product (tensor product) of the respective quantum states of the subsystems, which is a non-local correlation between physically separated subsystems. For multiple subsystems in quantum entanglement, the measurement result of any subsystem cannot be independent of the state of other subsystems. Quantum systems that realize quantum entanglement are diverse, such as atoms, ions, and photons. Among them, due to the characteristics of photons that are easy to transmit and not easy to interact with the environment to cause decoherence, entangled two-photons become the most convenient entangled quantum system in quantum information technology. Common two-photon entanglement forms include: momentum and position, time and energy, time slice, polarization state, frequency, and orthogonal amplitude and phase information of the light field. In quantum information technology applications, polarization-entangled two-photons are widely used because the polarization state of photons is easy to control and switch. Therefore, the polarization-entangled quantum light source that produces polarization-entangled two-photons has become a key functional unit in quantum information technology.
利用非线性光学材料中自发非线性光学过程可以实现偏振纠缠量子光源。目前实验室普遍采用的方法是利用晶体中二阶非线性参量下转换过程实现偏振纠缠双光子的产生。一方面,这种方法依赖体光学器件,需要精密的光学准直和调节;另一方面,从晶体中产生的光子难以高效率的收集到光纤中。这些都限制了基于晶体的偏振纠缠量子光源的实用化发展。Polarization-entangled quantum light sources can be realized by utilizing spontaneous nonlinear optical processes in nonlinear optical materials. At present, the method commonly used in the laboratory is to use the second-order nonlinear parametric down-conversion process in the crystal to realize the generation of polarization-entangled two-photons. On the one hand, this method relies on bulk optics and requires precise optical collimation and adjustment; on the other hand, it is difficult to efficiently collect photons generated from crystals into optical fibers. These all limit the practical development of crystal-based polarization-entangled quantum light sources.
发明内容 Contents of the invention
(一)技术问题(1) Technical issues
本发明要解决的一个技术问题是:如何提供一种简单且紧凑的偏振纠缠量子光源,提高偏振纠缠双光子产生和收集的效率。A technical problem to be solved by the present invention is: how to provide a simple and compact polarization-entangled quantum light source to improve the efficiency of polarization-entangled two-photon generation and collection.
(二)技术方案(2) Technical solutions
为解决上述问题,本发明提供了一种偏振纠缠量子光源,该光源包括:泵浦光发生装置,用于生成脉冲泵浦光,并将其输入至三阶非线性光学波导;三阶非线性光学波导,将其均分为两段,并进行偏振主轴90度偏移熔接,具有双折射特性,用于在两个偏振轴上独立激发自发标量四波混频过程,产生具有偏振纠缠特性的信号和闲频双光子,并抑制自发矢量四波混频过程;分光滤波装置,用于将所述三阶非线性光学波导输出的信号光子、闲频光子以及脉冲泵浦光分离,得到偏振纠缠双光子;In order to solve the above problems, the present invention provides a polarization-entangled quantum light source, which includes: a pump light generating device for generating pulsed pump light and inputting it into a third-order nonlinear optical waveguide; a third-order nonlinear optical waveguide The optical waveguide, which is divided into two sections equally and welded with a 90-degree offset of the polarization axis, has birefringence properties and is used to independently excite the spontaneous scalar four-wave mixing process on the two polarization axes to generate polarization entanglement properties. Signal and idler two-photon, and suppress the spontaneous vector four-wave mixing process; optical splitting filter device, used to separate the signal photon, idler photon and pulse pump light output by the third-order nonlinear optical waveguide to obtain polarization entanglement two-photon;
所述泵浦光发生装置进一步包括:脉冲光源,用于输出脉冲泵浦光,通过调整泵浦光的偏振态使两光纤偏振轴上的泵浦光分量功率水平一致,沿两光纤偏振轴方向被激发的两自发标量四波混频过程的强度相等,独立产生的信号和闲频双光子态在时空上重叠;泵浦滤波器,与所述脉冲光源的输出相连,用于将所述脉冲光源输出的脉冲泵浦光波长以外的杂散光滤除;可调衰减器,用于调节所述泵浦光滤波器输出的脉冲泵浦光的功率;起偏器,用于将所述可调衰减器调整后的脉冲泵浦光的偏振态转变为线偏振;偏振控制器,用于调整经所述起偏器调整后的脉冲泵浦光的偏振态,并将调整后的脉冲泵浦光输入所述三阶非线性光学波导。The pump light generating device further includes: a pulse light source, used to output pulse pump light, by adjusting the polarization state of the pump light to make the power levels of the pump light components on the polarization axes of the two optical fibers consistent, and along the polarization axis direction of the two optical fibers The intensity of the excited two spontaneous scalar four-wave mixing processes is equal, and the independently generated signal and idler two-photon states overlap in time and space; the pump filter is connected to the output of the pulsed light source, and is used to convert the pulsed The stray light other than the wavelength of the pulse pump light output by the light source is filtered; the adjustable attenuator is used to adjust the power of the pulse pump light output by the pump light filter; the polarizer is used to adjust the adjustable The polarization state of the pulse pump light adjusted by the attenuator is converted into linear polarization; the polarization controller is used to adjust the polarization state of the pulse pump light adjusted by the polarizer, and the adjusted pulse pump light Input the third-order nonlinear optical waveguide.
其中,所有器件呈直线型排列。Among them, all devices are arranged in a straight line.
其中,所述脉冲光源为被动锁模激光器、主动锁模激光器、被动调Q激光器、主动调Q激光器、直调半导体激光器、或外调制半导体激光器。Wherein, the pulsed light source is a passively mode-locked laser, an actively mode-locked laser, a passively Q-switched laser, an actively Q-switched laser, a directly modulated semiconductor laser, or an externally modulated semiconductor laser.
其中,所述泵浦滤波器为边带抑制比大于115分贝的滤波器或者滤波器组合。Wherein, the pump filter is a filter or filter combination with a sideband suppression ratio greater than 115 decibels.
其中,所述泵浦滤波器为环形器加光纤光栅、镀膜型光学滤波器、微机电系统MEMS光学滤波器、法布里-珀罗光学滤波器、阵列波导光栅滤波器以及光波分复用器件中的一种或任意种的组合。Wherein, the pump filter is a circulator plus a fiber grating, a coated optical filter, a MEMS optical filter, a Fabry-Perot optical filter, an arrayed waveguide grating filter, and an optical wavelength division multiplexing device one or any combination of them.
其中,所述可调衰减器为光纤挤压或镀膜形式的可调衰减器。Wherein, the adjustable attenuator is an adjustable attenuator in the form of optical fiber extrusion or coating.
其中,所述起偏器为光纤偏振分束器、镀金属的光纤起偏器、或光学晶体偏振分光棱镜。Wherein, the polarizer is an optical fiber polarization beam splitter, a metal-coated optical fiber polarizer, or an optical crystal polarization beam splitter prism.
其中,所述偏振控制器为带光纤输出的偏振控制器。Wherein, the polarization controller is a polarization controller with an optical fiber output.
其中,所述偏振控制器为光纤绕制的偏振控制器、基于光纤挤压的偏振控制器、或由带光输出封装的晶体材料切割而成的半波片及四分之一波片组成的偏振控制器。Wherein, the polarization controller is a polarization controller wound by an optical fiber, a polarization controller based on optical fiber extrusion, or a half-wave plate and a quarter-wave plate cut from a crystal material with an optical output package. Polarization controller.
其中,所述三阶非线性光学波导为:保偏光纤、微结构光纤、光子晶体光纤、硫化物光纤、纳米硅线波导、光子晶体结构硅波导、砷化镓波导、或硫化物波导。Wherein, the third-order nonlinear optical waveguide is: polarization maintaining fiber, microstructure fiber, photonic crystal fiber, sulfide fiber, nano silicon wire waveguide, photonic crystal structure silicon waveguide, gallium arsenide waveguide, or sulfide waveguide.
其中,所述分光滤波装置为通带隔离度大于110分贝的多端口滤波器或滤波器组合。Wherein, the spectral filtering device is a multi-port filter or a filter combination with a passband isolation greater than 110 decibels.
其中,所述分光滤波装置为环形器加光纤光栅、镀膜型光学滤波器、微机电系统MEMS光学滤波器、法布里-珀罗光学滤波器、阵列波导光栅滤波器以及光波分复用器件中的一种或任意种的组合。Wherein, the optical splitting and filtering device is a circulator plus a fiber grating, a coated optical filter, a MEMS optical filter, a Fabry-Perot optical filter, an arrayed waveguide grating filter, and an optical wavelength division multiplexing device. one or any combination of them.
(三)有益效果(3) Beneficial effects
本发明的偏振纠缠量子光源利用具有三阶光学非线性的光学材料中自发四波混频过程同样偏振纠缠双光子的产生。偏振纠缠双光子的产生、收集和传输效率高;采用简单的直线型结构,无需附加复杂的时分复用或多样性偏振环路等装置,具有结构简单、性能稳定、以及便于实现的优点;利用非线性光学波导中可灵活设计的双折射特性调控其中的非线性光学过程特性,为精简偏振纠缠量子光源的物理实现方案开辟了新的途径。The polarization-entangled quantum light source of the present invention utilizes the spontaneous four-wave mixing process in the optical material with third-order optical nonlinearity to generate the same polarization-entangled two-photon. The generation, collection and transmission efficiency of polarization entangled two-photons is high; the simple linear structure is adopted, and there is no need for additional complex time division multiplexing or diversity polarization loops and other devices, and has the advantages of simple structure, stable performance, and easy implementation; using The birefringence properties that can be flexibly designed in nonlinear optical waveguides control the characteristics of nonlinear optical processes, which opens up a new way for the physical realization of simplified polarization-entangled quantum light sources.
附图说明 Description of drawings
图1为依照本发明一种实施方式的偏振纠缠量子光源结构示意图;Fig. 1 is a schematic structural diagram of a polarization-entangled quantum light source according to an embodiment of the present invention;
图2(a)-图2(d)为实施例的偏振纠缠量子光源中保偏的色散位移光纤中可能激发的两种自发四波混频过程示意图;Fig. 2(a)-Fig. 2(d) are schematic diagrams of two kinds of spontaneous four-wave mixing processes that may be excited in the polarization-maintaining dispersion-shifted fiber in the polarization-entangled quantum light source of the embodiment;
图3为实施例的偏振纠缠量子光源中保偏的色散位移光纤中具有偏振纠缠特性的双光子产生的物理过程示意图;3 is a schematic diagram of the physical process of two-photon generation with polarization entanglement characteristics in the polarization-maintaining dispersion-shifted fiber in the polarization-entangled quantum light source of the embodiment;
图4为实施例的偏振纠缠量子光源的偏振纠缠双光子检测装置示意图;4 is a schematic diagram of a polarization-entangled two-photon detection device of the polarization-entangled quantum light source of the embodiment;
图5为实施例的偏振纠缠量子光源生成的闲频光子单边计数检测结果;Fig. 5 is the unilateral counting detection result of idler photons generated by the polarization-entangled quantum light source of the embodiment;
图6为实施例的偏振纠缠量子光源的双光子干涉检测结果。Fig. 6 is a two-photon interference detection result of the polarization-entangled quantum light source of the embodiment.
具体实施方式 Detailed ways
本发明的偏振纠缠量子光源,结合附图和实施例详细说明如下。The polarization-entangled quantum light source of the present invention is described in detail as follows with reference to the drawings and embodiments.
本发明的核心思想在于:通过控制泵浦光偏振态,使三阶非线性光学波导的两偏振轴上可等强度地独立激发自发标量四波混频过程;同时,利用三阶非线性光学波导的双折射特性,抑制波导中的自发矢量四波混频过程,使三阶非线性光学波导在泵浦光激发下输出偏振纠缠双光子。The core idea of the present invention is: by controlling the polarization state of the pump light, the spontaneous scalar four-wave mixing process can be independently excited on the two polarization axes of the third-order nonlinear optical waveguide with equal intensity; at the same time, using the third-order nonlinear optical waveguide The birefringence characteristic of the waveguide suppresses the spontaneous vector four-wave mixing process in the waveguide, so that the third-order nonlinear optical waveguide outputs polarization-entangled two-photons under pump light excitation.
如图1所示,依照本发明一种实施方式的偏振纠缠量子光源包括:As shown in Figure 1, a polarization-entangled quantum light source according to an embodiment of the present invention includes:
泵浦光发生装置(图中虚线框所示),用于生成脉冲泵浦光,并将其输入至三阶非线性光学波导;三阶非线性光学波导6,具有双折射特性,用于在两个偏振轴上独立激发自发标量四波混频过程,产生信号和闲频双光子,并抑制自发矢量四波混频过程;分光滤波装置7,用于将三阶非线性光学波导6输出的信号光子、闲频光子(idler sidephoton)以及脉冲泵浦光分离,选取出来的信号和闲频光子具有偏振纠缠的特征,即为偏振纠缠双光子。The pump light generating device (shown by the dotted line box in the figure) is used to generate pulsed pump light and input it to the third-order nonlinear optical waveguide; the third-order nonlinear optical waveguide 6 has birefringence characteristics and is used for The spontaneous scalar four-wave mixing process is independently excited on the two polarization axes to generate signal and idler two-photons, and the spontaneous vector four-wave mixing process is suppressed; the optical
其中,可通过成熟的光学微细加工工艺,将三阶非线性光学材料制作成传输损耗低、空间模式单一且可与光纤低损耗连接的非线性光学波导6。这种利用三阶非线性光波导6的双折射特性抑制自发矢量四波混频过程包括两个可能的物理机理:一是利用具有双折射特性的三阶非线性光学波导的双折射特性实现其中自发矢量四波混频过程产生的信号和闲频双光子与自发标量四波混频过程产生的信号和闲频双光子在光波长上的分离;通过光学滤波选取自发标量四波混频过程产生的信号和闲频双光子,同时抑制自发矢量四波混频过程产生的信号和闲频双光子输出;二是利用三阶非线性光波导6中的双折射使注入到波导6中的脉冲泵浦光的两个偏振分量在时-空上发生走离,由于时-空上走离开的两个泵浦脉冲偏振分量无法形成自发矢量四波混频过程,从而实现自发矢量四波混频过程的抑制。Among them, the third-order nonlinear optical material can be fabricated into a nonlinear optical waveguide 6 with low transmission loss, single spatial mode, and low-loss connection with optical fiber through mature optical microfabrication technology. This process of suppressing spontaneous vector four-wave mixing using the birefringence of the third-order nonlinear optical waveguide 6 includes two possible physical mechanisms: one is to use the birefringence of the third-order nonlinear optical waveguide with birefringence to realize the process of Separation of signal and idler two-photons generated by spontaneous vector four-wave mixing process and signal and idler two-photon generated by spontaneous scalar four-wave mixing process on optical wavelength; selection of spontaneous scalar four-wave mixing process generated by optical filtering The signal and the idler two-photon, while suppressing the signal and the idler two-photon output of the spontaneous vector four-wave mixing process; the second is to use the birefringence in the third-order nonlinear optical waveguide 6 to make the pulse pump injected into the waveguide 6 The two polarization components of the pump light walk away in time-space, because the two polarization components of the pump pulse separated in time-space cannot form a spontaneous vector four-wave mixing process, thereby realizing the spontaneous vector four-wave mixing process suppression.
此外,泵浦光发生装置进一步包括:脉冲光源1,用于输出脉冲泵浦光;泵浦滤波器2,与脉冲光源1的输出相连,用于将脉冲光源1输出的脉冲泵浦光波长以外的杂散光滤除;可调衰减器3,用于调节泵浦光滤波器2输出的脉冲泵浦光的功率;起偏器4,用于将可调衰减器3调整的脉冲泵浦光的偏振态转变为线偏振;偏振控制器5,用于调整经起偏器4调整后的脉冲泵浦光的偏振态,并将调整后的脉冲泵浦光输入三阶非线性光学波导6。In addition, the pumping light generating device further includes: a pulsed light source 1 for outputting pulsed pumping light; a
脉冲光源1可以是具有脉冲输出的任何形式的光源,可为被动锁模激光器、主动锁模激光器、被动调Q激光器、主动调Q激光器、直调半导体激光器、或外调制半导体激光器等。The pulsed light source 1 can be any form of light source with pulsed output, such as passive mode-locked laser, active mode-locked laser, passive Q-switched laser, active Q-switched laser, directly modulated semiconductor laser, or externally modulated semiconductor laser, etc.
泵浦滤波器2为任何具有边带抑制比大于115分贝的滤波器或者滤波器组合,可为环形器加光纤光栅、镀膜型光学滤波器、微机电系统MEMS光学滤波器、法布里-珀罗光学滤波器、阵列波导光栅滤波器以及光波分复用器件中的一种任意种的组合。The
可调衰减器3可以是任何光纤挤压或镀膜形式的可调衰减器。The
起偏器4是任何能够形成特定光偏振态的光学器件,可为光纤偏振分束器、镀金属的光纤起偏器、或光学晶体偏振分光棱镜等。The polarizer 4 is any optical device capable of forming a specific polarization state of light, which may be a fiber optic polarization beam splitter, a metal-coated fiber optic polarizer, or an optical crystal polarization beam splitter prism.
偏振控制器5是任何带光纤输出的偏振控制器,可为光纤绕制的偏振控制器、基于光纤挤压的偏振控制器、或由带光输出封装的晶体材料切割而成的半波片及四分之一波片组成的偏振控制器。The polarization controller 5 is any polarization controller with an optical fiber output, which can be a polarization controller wound by an optical fiber, a polarization controller based on optical fiber extrusion, or a half-wave plate cut from a crystal material with an optical output package and Polarization controller consisting of a quarter-wave plate.
三阶非线性光学波导6为:保偏光纤、微结构光纤、光子晶体光纤、硫化物光纤、纳米硅线波导、光子晶体结构硅波导、砷化镓波导、或硫化物波导等。The third-order nonlinear optical waveguide 6 is: polarization maintaining fiber, microstructure fiber, photonic crystal fiber, sulfide fiber, nano silicon wire waveguide, photonic crystal structure silicon waveguide, gallium arsenide waveguide, or sulfide waveguide, etc.
分光滤波装置7是任何通带隔离度大于110分贝的多端口滤波器或滤波器组合。可为环形器加光纤光栅、镀膜型光学滤波器、微机电系统MEMS光学滤波器、法布里-珀罗光学滤波器、阵列波导光栅滤波器以及广播分复用器件中的一种或任意种的组合。The
优选地,构成本发明的偏振纠缠量子光源的所有器件呈直线型排列。Preferably, all devices constituting the polarization-entangled quantum light source of the present invention are arranged in a straight line.
以下通过具体实施例进一步说明本发明的偏振纠缠量子光源。The polarization-entangled quantum light source of the present invention will be further described below through specific examples.
本实施例为一个1.5微米波段偏振纠缠量子光源,其结构如图1所示。其中,以具有双折射特性的三阶非线性光波导为保偏的色散位移光纤。为了避免光纤双折射走离带来的量子纠缠退相干效应,将150米长的光纤均分为75米的两段,并将两段光纤进行偏振主轴90度偏移熔接。保偏的色散位移光纤具体的参数如表1所示。This embodiment is a polarization-entangled quantum light source with a wavelength of 1.5 microns, and its structure is shown in FIG. 1 . Among them, a third-order nonlinear optical waveguide with birefringence characteristics is used as a polarization-maintaining dispersion-shifted fiber. In order to avoid the quantum entanglement decoherence effect caused by fiber birefringence walk-off, the 150-meter-long fiber was divided into two sections of 75 meters, and the two sections were welded with a 90-degree polarization axis offset. Specific parameters of the polarization-maintaining dispersion-shifted fiber are shown in Table 1.
表1Table 1
本实施例选用的脉冲光源为1.5微米波段的被动锁模光纤激光器加光学滤波展宽;脉冲泵浦光的波长为1552.75nm,线宽为0.2nm,重复频率为1MHz;泵浦滤波器采用环行器加光纤光栅配合镀膜型可调光滤波器实现,滤波带宽为0.2nm,边带抑制比大于115分贝;可调衰减器采用镀膜型可调光衰减器;起偏器选用具有光纤封装的光学晶体;偏振控制器是光纤绕制而成的光纤偏振控制器;分光滤波装置由波导阵列光栅结合光纤光栅和镀膜型可调光滤波器组成,且其对泵浦光的抑制大于110分贝,最终选取的信号和闲频双光子的波长分别为1555.15nm和1550.35nm。The pulse light source selected in this embodiment is a passive mode-locked fiber laser in the 1.5 micron band plus optical filter stretching; the wavelength of the pulsed pump light is 1552.75nm, the line width is 0.2nm, and the repetition frequency is 1MHz; the pump filter uses a circulator It is realized by adding a fiber grating and a coated tunable optical filter, the filtering bandwidth is 0.2nm, and the sideband suppression ratio is greater than 115 decibels; the adjustable attenuator adopts a coated tunable optical attenuator; the polarizer adopts an optical crystal with optical fiber packaging ; The polarization controller is a fiber optic polarization controller wound by optical fiber; the splitting filter device is composed of a waveguide array grating combined with a fiber grating and a coated tunable optical filter, and its suppression of the pump light is greater than 110 decibels. The signal and idler two-photon wavelengths are 1555.15nm and 1550.35nm, respectively.
保偏的色散位移光纤中产生偏振纠缠双光子的物理过程如图2所示。图2(a)和图2(b)为两个自发矢量四波混频过程的示意图,在这一过程中,两个不同偏振态的泵浦光子湮灭,产生一对具有不同偏振态的信号和闲频双光子。图2(c)和图2(d)为两个自发标量四波混频过程的示意图,在这一过程中,两个同偏振态的泵浦光子湮灭,产生一对具有相同偏振态的信号和闲频双光子。The physical process of generating polarization-entangled two-photons in a polarization-maintaining dispersion-shifted fiber is shown in Figure 2. Figure 2(a) and Figure 2(b) are schematic diagrams of two spontaneous vector four-wave mixing processes, in which two pump photons with different polarization states are annihilated to generate a pair of signals with different polarization states and idler two-photons. Figure 2(c) and Figure 2(d) are schematic diagrams of two spontaneous scalar four-wave mixing processes, in which two pump photons with the same polarization state are annihilated to generate a pair of signals with the same polarization state and idler two-photons.
在本实施例中,采用短脉冲泵浦150米长的保偏的色散位移光纤。由于保偏的色散位移光纤的高双折射特性,在两光纤偏振轴上的短脉冲泵浦光分量迅速走离,使得自发矢量四波混频过程被抑制。则光纤中仅有分别沿两偏振轴方向的自发标量四波混频过程被激发。In this embodiment, a 150-meter-long polarization-maintaining dispersion-shifted fiber is pumped with short pulses. Due to the high birefringence characteristics of the polarization-maintaining dispersion-shifted fiber, the short-pulse pump light components on the polarization axes of the two fibers walk away quickly, so that the spontaneous vector four-wave mixing process is suppressed. Then only the spontaneous scalar four-wave mixing processes along the two polarization axes are excited in the fiber.
如图3所示,通过调整泵浦光的偏振态使两光纤偏振轴上的泵浦光分量功率水平一致,沿两光纤偏振轴方向被激发的两自发标量四波混频过程的强度相等,独立产生的信号和闲频双光子态在时空上重叠,形成1.5微米偏振纠缠双光子。As shown in Figure 3, by adjusting the polarization state of the pump light, the power levels of the pump light components on the polarization axes of the two fibers are consistent, and the intensities of the two spontaneous scalar four-wave mixing processes excited along the polarization axes of the two fibers are equal. The independently generated signal and idler two-photon states overlap in space and time to form polarization-entangled two-photons at 1.5 μm.
产生的偏振纠缠双光子的检测由如图4中虚线框内所示的装置完成。由偏振纠缠量子光源产生的信号光子进入由偏振控制器8,可旋转半波片10和偏振分束器12构成的偏振分析仪,而后由单光子探测器14计数测量。闲频光子进入由偏振控制器9,可旋转半波片11和偏振分束器13构成的偏振分析仪,而后由单光子探测器15计数测量。输出的剩余泵浦光由光电探测器17探测后输出电脉冲,用作单光子探测器的触发信号。单光子探测器14和单光子探测器15的输出信号送到复合计数系统16进行量子纠缠特性分析。The detection of the generated polarization-entangled two-photons is completed by the device shown in the dashed box in Fig. 4 . Signal photons generated by the polarization-entangled quantum light source enter a polarization analyzer composed of a
图5为闲频光子在不同偏振分析仪角度下测量得到的光子计数结果。可见,闲频光子计数几乎不随偏振分析仪角度的改变而改变,论证了产生的双光子态具有单边偏振态不可区分的特性。图6为闲频光子的偏振分析仪角度分别为0度和135度下,在不同的信号光子偏振分析仪角度下测量得到的信号和闲频双光子复合计数结果。可见,测量到的信号和闲频双光子复合计数结果在非正交偏振基下均呈现双光子干涉特性,干涉条纹对比度分别达到92%和89%。由此论证了本实施例的偏振纠缠量子光源输出双光子态的偏振纠缠特性。Figure 5 shows the photon counting results measured by idler photons at different angles of the polarization analyzer. It can be seen that the idler photon count hardly changes with the angle of the polarization analyzer, which demonstrates that the generated two-photon state has the indistinguishable property of a single polarization state. Fig. 6 shows the signal and idler two-photon composite counting results measured at different signal photon polarization analyzer angles when the idler photon polarization analyzer angles are 0 degrees and 135 degrees respectively. It can be seen that the measured signal and idler two-photon recombination counting results show two-photon interference characteristics under non-orthogonal polarization bases, and the interference fringe contrast reaches 92% and 89%, respectively. Thus, the polarization entanglement characteristic of the output two-photon state of the polarization-entangled quantum light source in this embodiment is demonstrated.
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110028755 CN102130418B (en) | 2011-01-26 | 2011-01-26 | Polarization-entangled quantum light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110028755 CN102130418B (en) | 2011-01-26 | 2011-01-26 | Polarization-entangled quantum light source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102130418A CN102130418A (en) | 2011-07-20 |
CN102130418B true CN102130418B (en) | 2013-07-17 |
Family
ID=44268365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110028755 Active CN102130418B (en) | 2011-01-26 | 2011-01-26 | Polarization-entangled quantum light source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102130418B (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102654716B (en) * | 2012-04-18 | 2014-06-25 | 苏州广泰量子科技有限公司 | Tangled photon source |
CN103034015B (en) * | 2012-12-28 | 2016-03-30 | 清华大学 | Polarization entanglement two-photon produces system |
CN103106725A (en) * | 2013-01-11 | 2013-05-15 | 西安交通大学 | Quantum lottery ticket machine |
GB2510130B (en) * | 2013-01-24 | 2015-05-13 | Toshiba Res Europ Ltd | Modulation Unit |
CN104698720A (en) * | 2015-03-19 | 2015-06-10 | 山西大学 | Generating set of continuous-variable multi-component polarized entangled optical field |
CN104967824B (en) * | 2015-06-30 | 2018-02-09 | 清华大学 | Image delivery system based on quantum ghost image and single-mode fiber |
WO2018232689A1 (en) * | 2017-06-22 | 2018-12-27 | 华为技术有限公司 | Time-entangled photon pair generating device |
CN107392322B (en) * | 2017-09-13 | 2020-10-02 | 刘东升 | Quantum entanglement tube |
CN107800035A (en) * | 2017-11-14 | 2018-03-13 | 北京信息科技大学 | A kind of changeable mode-locked fiber lasers device of wavelength |
CN108981935B (en) * | 2017-12-28 | 2020-07-21 | 三维通信股份有限公司 | Method for realizing two-photon high-dimensional space entanglement based on spontaneous parametric down-conversion |
CN108761958B (en) * | 2018-04-18 | 2020-11-24 | 中国地质大学(武汉) | An optical waveguide structure and method for generating mid-infrared entangled photons |
US11165508B2 (en) * | 2018-07-25 | 2021-11-02 | Corning Incorporated | Communications systems comprising waveguide arrays for realizing localized quantum walks |
CN109164663B (en) * | 2018-08-21 | 2020-08-25 | 中国科学技术大学 | A miniaturized entanglement source, its preparation method, and a device-independent quantum random number generator |
CN109656078B (en) * | 2019-01-29 | 2020-03-31 | 电子科技大学 | An energy-time entangled two-photon generation method |
CN110187586A (en) * | 2019-05-27 | 2019-08-30 | 青岛鲲腾量子应用技术有限公司 | The thin chamber of compact monocrystal and the entangled photons source system for using the thin chamber |
CN111176050B (en) * | 2020-01-09 | 2022-12-13 | 郑州轻工业大学 | Device and method for generating all-fiber frequency degenerated entangled light beam |
IT202000005521A1 (en) * | 2020-03-16 | 2021-09-16 | Univ Degli Studi Di Trento | PHOTON PRODUCTION APPARATUS INCLUDING SINGLE PHOTON STATES IN QUANTUM CORRELATION. |
CN111510225B (en) * | 2020-03-20 | 2021-07-06 | 军事科学院系统工程研究院网络信息研究所 | Quantum communication networking method and system based on multi-wavelength entangled light source |
CN111585659B (en) * | 2020-04-30 | 2021-03-30 | 山西大学 | A quantum communication device based on multi-entangled sideband modes |
CN111830629B (en) * | 2020-08-03 | 2021-10-29 | 上海交通大学 | A method for realizing scalable quantum light sources on photonic chips |
CN112305831B (en) * | 2020-10-19 | 2022-11-08 | 中国人民解放军国防科技大学 | A setup method of a quantum frequency comb-based GHZ state generation chip |
CN113055098B (en) * | 2021-03-15 | 2022-03-08 | 电子科技大学 | Frequency domain multiplexing propaganda type single photon source of optical communication waveband |
CN113504687A (en) * | 2021-06-30 | 2021-10-15 | 广东国腾量子科技有限公司 | Magnesium fluoride resonant cavity for generating high-dimensional quantum entanglement |
CN114755870B (en) * | 2022-03-30 | 2023-04-07 | 电子科技大学 | Frequency chip entangled double photon source |
CN115524894B (en) * | 2022-09-20 | 2024-07-26 | 上海交通大学 | Topology-protected two-photon energy-time entangled waveguide structure and generation method |
CN116594239B (en) * | 2023-05-26 | 2023-11-24 | 安徽鲲腾量子科技有限公司 | Quantum light source system based on back phase matching |
CN116827447B (en) * | 2023-08-31 | 2023-11-24 | 深圳市光为光通信科技有限公司 | Optical communication module based on co-packaging technology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013245A (en) * | 2007-02-01 | 2007-08-08 | 上海交通大学 | Four-photon resonance entangled photon pairs generator |
CN101495907A (en) * | 2006-07-27 | 2009-07-29 | 惠普开发有限公司 | Compact systems for generating polarization-entangled photons |
-
2011
- 2011-01-26 CN CN 201110028755 patent/CN102130418B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101495907A (en) * | 2006-07-27 | 2009-07-29 | 惠普开发有限公司 | Compact systems for generating polarization-entangled photons |
CN101013245A (en) * | 2007-02-01 | 2007-08-08 | 上海交通大学 | Four-photon resonance entangled photon pairs generator |
Non-Patent Citations (1)
Title |
---|
Qiang Zhou et al..1.5 micro m polarization entangled photon pair generation based on birefringence in microstructure fibers.《2009 Conference on Optical Fiber Communication》.2009,第1-3页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102130418A (en) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102130418B (en) | Polarization-entangled quantum light source | |
Zhang et al. | Spontaneous parametric down‐conversion sources for multiphoton experiments | |
JP5488342B2 (en) | Quantum correlation photon pair generation method and quantum correlation photon pair generation apparatus | |
JP4781426B2 (en) | Quantum entangled photon pair generator and method for generating entangled photon pairs | |
CN103034015B (en) | Polarization entanglement two-photon produces system | |
CN103901700B (en) | Wavelength tunable and frequency spectrum controllable small-sized Quantum Correlation photon pair source and the method for generation | |
Jin et al. | Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories | |
WO2009035585A2 (en) | Hybrid integrated source of polarization-entangled photons | |
CN109085728A (en) | The method and apparatus that frequencies into degeneration multi-photon tangles source are prepared using integrated waveguide | |
Hall et al. | All-optical switching of photonic entanglement | |
CN104181748B (en) | Microwave pulse signal generating device based on light-operated nonlinear annular mirror | |
Kang et al. | Two polarization-entangled sources from the same semiconductor chip | |
Zhao et al. | Scaling optical computing in synthetic frequency dimension using integrated cavity acousto-optics | |
JP5091196B2 (en) | Quantum correlated photon pair generator and entangled photon pair generator | |
Zhou et al. | A polarization maintaining scheme for 1.5 μ m polarization entangled photon pair generation in optical fibers | |
Jamshidi-Ghaleh et al. | Electrically tunable polarization splitting and conversion based on 1DPC structure with anisotropic defect layer | |
Hou et al. | Observation of bound solitons generated by a figure-9 fiber laser in the 1 µm band | |
Lourdesamy et al. | Polychromatic soliton molecules | |
Zhao | Vector dissipative solitons | |
Mukherjee et al. | Impact of self-steepening and intra-pulse Raman scattering on modulation instability in multiple quantum wells | |
CN219936257U (en) | Broadband entanglement source | |
Milione | Vector beams for fundamental physics and applications | |
WO2016115513A1 (en) | Multi-mode waveguide using space-division multiplexing | |
Jaramillo-Villegas et al. | Frequency domain processing of on-chip biphoton frequency comb | |
JP2014067061A (en) | Quantum entangled photon pair generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |