CN102128990A - Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test - Google Patents
Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test Download PDFInfo
- Publication number
- CN102128990A CN102128990A CN2011100254409A CN201110025440A CN102128990A CN 102128990 A CN102128990 A CN 102128990A CN 2011100254409 A CN2011100254409 A CN 2011100254409A CN 201110025440 A CN201110025440 A CN 201110025440A CN 102128990 A CN102128990 A CN 102128990A
- Authority
- CN
- China
- Prior art keywords
- power amplifier
- signal source
- difference
- output amplitude
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Amplifiers (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明公开了一种电磁辐射敏感度自动测试中判断功率放大器饱和的方法,属于电磁兼容敏感度测试领域,该方法通过增加信号源输出幅度和计算标准极限值E与实际测得的电场强度值E0之间的差值Δ,在差值Δ没有满足阀值X的情况下,根据差值Δ调整信号源输出幅度增量的同时比较差值Δ与信号源输出增量之间的关系,确定功率放大器是否出现增益压缩情况,以此来判断功率放大器是否进入非线性的饱和区域,达到在动态调整幅度增量来确定信号源输出幅度的同时判断功率放大器输出能否满足标准极限值要求的目的。本发明的判断功率放大器饱和的方法,节省试验时间,提高试验效率,延长功率放大器使用寿命;同时保证电磁兼容测试结果的准确性。
The invention discloses a method for judging the saturation of a power amplifier in an automatic electromagnetic radiation sensitivity test, belonging to the field of electromagnetic compatibility sensitivity testing. The method increases the output amplitude of a signal source and calculates the standard limit value E and the actually measured electric field strength value. The difference Δ between E 0 , when the difference Δ does not meet the threshold X, adjust the signal source output amplitude increment according to the difference Δ while comparing the relationship between the difference Δ and the signal source output increment, Determine whether the power amplifier has gain compression, so as to judge whether the power amplifier enters the nonlinear saturation region, so as to determine whether the output of the power amplifier can meet the standard limit value requirements while dynamically adjusting the amplitude increment to determine the output amplitude of the signal source Purpose. The method for judging the saturation of the power amplifier of the present invention saves test time, improves test efficiency, and prolongs the service life of the power amplifier; at the same time, it ensures the accuracy of electromagnetic compatibility test results.
Description
技术领域technical field
本发明涉及电磁兼容自动测试领域,具体涉及一种电磁辐射敏感度自动测试中判断功率放大器饱和的方法。The invention relates to the field of electromagnetic compatibility automatic testing, in particular to a method for judging the saturation of a power amplifier in the automatic testing of electromagnetic radiation sensitivity.
背景技术Background technique
根据GJB151A-97《军用设备和分系统电磁发射和敏感度要求》规定,电磁兼容测试包括电磁干扰(EMI)试验和电磁敏感度(EMS)试验两大部分,其中电磁敏感度测试又包括传导敏感度和辐射敏感度测试。敏感度测试的基本原理是干扰发生设备产生一定量级的电磁干扰,而手动对信号源进行调节非常浪费时间,所以使用电磁兼容自动测试系统分别对被试品的每一频点进行信号源幅值的自动调节。如图1所示,电磁辐射敏感度自动测试系统一般由信号源、功率放大器、辐射天线、场传感器、监视设备、PC机组成。信号源输出信号经射频电缆传输至功率放大器的输入端,功率放大器输出端输出大功率信号至辐射天线激励端,辐射天线在大功率信号激励下产生一定强度的干扰信号,监视设备采集并显示场传感器在被试品所在位置处接收到的外加干扰信号的强度,PC机分别连接监视设备的控制端口和信号源,一方面对监测设备接收到的外加电磁辐射场采集处理并控制监测设备的仪器参数设置;另一方面也控制信号源的仪器参数设置,根据GJB151A-97标准对于场强极限值的规定,对信号源的输出幅度进行调整,使其达到GJB151A-97标准所要求的极限值。According to GJB151A-97 "Requirements for Electromagnetic Emission and Susceptibility of Military Equipment and Subsystems", electromagnetic compatibility testing includes two parts: electromagnetic interference (EMI) testing and electromagnetic susceptibility (EMS) testing, and electromagnetic susceptibility testing includes conduction sensitivity. Accuracy and radiation susceptibility testing. The basic principle of the sensitivity test is that the interference generating equipment produces a certain level of electromagnetic interference, and it is very time-consuming to manually adjust the signal source, so the EMC automatic test system is used to test the amplitude of the signal source for each frequency point of the tested product. Automatic adjustment of the value. As shown in Figure 1, the electromagnetic radiation susceptibility automatic test system generally consists of a signal source, a power amplifier, a radiation antenna, a field sensor, monitoring equipment, and a PC. The output signal of the signal source is transmitted to the input terminal of the power amplifier through the radio frequency cable, and the output terminal of the power amplifier outputs a high-power signal to the excitation terminal of the radiation antenna. The radiation antenna generates a certain intensity of interference signal under the excitation of the high-power signal, and the monitoring equipment collects and displays the The strength of the external interference signal received by the sensor at the location of the tested product, the PC is respectively connected to the control port and the signal source of the monitoring equipment, on the one hand, it collects and processes the external electromagnetic radiation field received by the monitoring equipment and controls the instrument of the monitoring equipment Parameter setting; on the other hand, it also controls the instrument parameter setting of the signal source. According to the provisions of the GJB151A-97 standard on the field strength limit value, the output amplitude of the signal source is adjusted to make it reach the limit value required by the GJB151A-97 standard.
在电磁辐射敏感度测试中,需要在较宽的频率范围内对被试品施加一定强度的外加电磁辐射场以考察被试品的电磁敏感性。被试品所在位置处的外加电磁辐射场强度必须符合一定的测试标准的极限值要求,所以在每一个频点施加干扰时,需要对信号源设置一个初始幅度,以此为起点调整信号源输出幅度,使得场传感器接收到的外加电磁辐射场强度达到测试标准规定的强度(极限值),然后才可以步进至下一测试频率点继续试验。在电磁辐射敏感度自动测试中,对信号源输出幅度进行调节的同时需要判断功率放大器是否进入非线性饱和区,如图2所示,在输入信号未进入功率放大器非线性饱和区时,功率放大器的特性曲线具有较好的放大特性,可继续增加输入信号强度直至输出满足标准极限值要求;若输入信号进入放大器非线性饱和区,则继续增加输入信号强度将不会改变功率放大器输出信号强度,不能达到标准所要求的极限值,还有可能将功率放大器烧坏。在功率放大器非线性饱和区出现增益压缩现象是功率放大器的一项固有属性,不可避免,但是非线性饱和区的位置不能精确定位。因此,在增加功率放大器输入信号幅度(即信号源输出幅度)的同时需要判别是否进入功率放大器的非线性饱和区。In the electromagnetic radiation susceptibility test, it is necessary to apply an external electromagnetic radiation field of a certain intensity to the tested product in a wide frequency range to investigate the electromagnetic sensitivity of the tested product. The strength of the applied electromagnetic radiation field at the location of the tested product must meet the limit value requirements of certain test standards. Therefore, when interference is applied to each frequency point, it is necessary to set an initial amplitude for the signal source, and adjust the signal source output based on this. Amplitude, so that the field strength of the applied electromagnetic radiation received by the field sensor reaches the strength (limit value) specified in the test standard, and then it can step to the next test frequency point to continue the test. In the automatic test of electromagnetic radiation sensitivity, it is necessary to judge whether the power amplifier enters the nonlinear saturation region while adjusting the output amplitude of the signal source. As shown in Figure 2, when the input signal does not enter the nonlinear saturation region of the power amplifier, the power amplifier The characteristic curve has better amplification characteristics, and the input signal strength can continue to increase until the output meets the standard limit value requirements; if the input signal enters the nonlinear saturation region of the amplifier, continuing to increase the input signal strength will not change the output signal strength of the power amplifier. If the limit value required by the standard cannot be reached, the power amplifier may be burned out. Gain compression in the nonlinear saturation region of the power amplifier is an inherent property of the power amplifier, which is unavoidable, but the location of the nonlinear saturation region cannot be precisely located. Therefore, while increasing the input signal amplitude of the power amplifier (that is, the output amplitude of the signal source), it is necessary to judge whether to enter the nonlinear saturation region of the power amplifier.
现有的判断功率放大器饱和的方法都以经验控制循环次数来判别。如图3所示,图3中的E为标准电场强度,试验过程中当标准极限值与测试位置的场强值的差值Δ没有满足阀值X要求,但是在一个较小的范围Z(Z>X)内时,即|Δ|<Z,开始循环计数,当循环次数达到一个经验值时,一般为6次,认为功率放大器进入非线性饱和区,判断功率放大器输出不能满足标准极限值要求,退出程序。Existing methods for judging the saturation of power amplifiers are all judged by the number of empirical control cycles. As shown in Figure 3, E in Figure 3 is the standard electric field strength. During the test, when the difference Δ between the standard limit value and the field strength value at the test position does not meet the threshold X requirement, but in a small range Z( When Z>X), that is, |Δ|<Z, start counting cycles. When the number of cycles reaches an empirical value, generally 6 times, it is considered that the power amplifier has entered the nonlinear saturation region, and it is judged that the output of the power amplifier cannot meet the standard limit value. request, exit the program.
按照此方法对功率放大器是否饱和进行判断有以下缺点:Judging whether the power amplifier is saturated according to this method has the following disadvantages:
1、此方法采用经验循环次数,可能在功率放大器的饱和区中进行了多次循环,花费大量时间,降低了试验的效率。1. This method adopts the number of empirical cycles, which may be repeated many times in the saturation region of the power amplifier, which takes a lot of time and reduces the efficiency of the test.
2、在功率放大器饱和区中不断增加输入信号幅度可能会对功率放大器造成损害,降低功率放大器性能。2. Continuously increasing the input signal amplitude in the saturation region of the power amplifier may cause damage to the power amplifier and reduce the performance of the power amplifier.
发明内容Contents of the invention
本发明为了通过观察功率放大器是否出现增益压缩情况判断其是否进入非线性饱和区,来确定功率放大器输出能否满足标准极限值要求,同时保护功率放大器,采用了一种快速判断功率放大器饱和的方法。通过比较测试位置场强增量与信号源输出信号幅度增量的关系,来判断功率放大器是否进入非线性饱和区。In order to judge whether the power amplifier enters the nonlinear saturation region by observing whether the power amplifier has gain compression, to determine whether the output of the power amplifier can meet the standard limit value requirements, and to protect the power amplifier at the same time, a method for quickly judging the saturation of the power amplifier is adopted. . By comparing the relationship between the field strength increment at the test position and the signal source output signal amplitude increment, it is judged whether the power amplifier enters the nonlinear saturation region.
一种电磁辐射敏感度自动测试中判断功率放大器饱和的方法,包括如下步骤:A method for judging the saturation of a power amplifier in an automatic electromagnetic radiation susceptibility test, comprising the following steps:
步骤一、将初始循环计数值设为i=1,同时设定信号源输出幅度S,在不同测试频点信号源输出幅度S根据所用天线的天线系数进行设定;
步骤二、读取测试位置处的电场强度值E0,电场强度值E0使用单位为dBμV/m;Step 2. Read the electric field strength value E 0 at the test position, and the unit of the electric field strength value E 0 is dBμV/m;
步骤三、判断循环次数i,根据循环次数i进行不同的操作:Step 3: Determine the number of cycles i, and perform different operations according to the number of cycles i:
a、若i=1,则执行第四步;a. If i=1, execute the fourth step;
b、若i>1,并且测试位置处的电场强度增量(E0-E1)与信号源输出幅度增量(αΔ)之间满足0.8<(E0-E1)/αΔ<1.25,则功率放大器没有进入非线性饱和区,执行第四步;否则,功率放大器进入非线性饱和区,记录信号源输出幅度并进行下一频点调整。b. If i>1, and the distance between the electric field strength increment (E 0 -E 1 ) at the test position and the signal source output amplitude increment (αΔ) satisfies 0.8<(E 0 -E 1 )/αΔ<1.25, If the power amplifier does not enter the nonlinear saturation region, perform the fourth step; otherwise, the power amplifier enters the nonlinear saturation region, record the output amplitude of the signal source and adjust the next frequency point.
步骤四、计算标准极限值E与实际测得的电场强度值E0之间的差值Δ,此时标准极限值E同样使用dBμV/m,得到差值Δ的单位为dB,Δ=E-E0;Step 4: Calculate the difference Δ between the standard limit value E and the actual measured electric field strength value E 0 , at this time, the standard limit value E also uses dBμV/m, and the unit of the difference Δ is dB, Δ=EE 0 ;
步骤五、判断差值Δ是否满足|Δ|<X,若差值Δ满足要求,则记录信号源输出幅度并进行下一频点调整;若差值Δ不满足要求,则进入步骤六;X一般取值为0.1~0.5,优选的取为0.1。Step 5. Determine whether the difference Δ satisfies |Δ|<X. If the difference Δ meets the requirements, record the output amplitude of the signal source and adjust the next frequency point; if the difference Δ does not meet the requirements, go to
步骤六、调整信号源输出幅度S=S+α·Δ,同时循环次数加1,即i=i+1,并令E1=E0;其中,α为调整系数,一般取为0.5≤α≤0.9,优选的取为0.8。
步骤七、重复步骤二~步骤六,直到差值Δ满足|Δ|<X,则当前频点的信号源调整完毕,继续进行下一频点的幅度调整。Step 7. Repeat steps 2 to 6 until the difference Δ satisfies |Δ|<X, then the signal source adjustment of the current frequency point is completed, and the amplitude adjustment of the next frequency point is continued.
本发明的优点在于:The advantages of the present invention are:
1、减少试验测试的时间,提高试验的效率。1. Reduce test time and improve test efficiency.
2、以步进的方式使测试位置场强值向标准极限值靠拢,既保护了测试设备,又保证了测试的准确性。2. Make the field strength value of the test position close to the standard limit value in a step-by-step manner, which not only protects the test equipment, but also ensures the accuracy of the test.
3、通过快速判断功率放大器是否进入非线性饱和区,减少在非线性饱和区中增加输入信号的次数,保护功率放大器,延长功率放大器寿命。3. By quickly judging whether the power amplifier has entered the nonlinear saturation region, reducing the number of times the input signal is increased in the nonlinear saturation region, protecting the power amplifier and prolonging the life of the power amplifier.
附图说明Description of drawings
图1是现有技术中辐射敏感度试验框图;Fig. 1 is a radiation sensitivity test block diagram in the prior art;
图2是功率放大器特性曲线;Fig. 2 is a power amplifier characteristic curve;
图3是现有的判断功率放大器饱和方法流程图;Fig. 3 is a flow chart of an existing method for judging power amplifier saturation;
图4是本发明方法的流程图。Fig. 4 is a flowchart of the method of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的方法进行详细说明。The method of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种电磁辐射敏感度自动测试中判断功率放大器饱和的方法,流程如图4所示,具有如下步骤:A method for judging the saturation of a power amplifier in an automatic electromagnetic radiation susceptibility test, as shown in Figure 4, has the following steps:
第一步、将初始循环计数值设为i=1,同时设定信号源初始幅度S;The first step is to set the initial cycle count value as i=1, and set the initial amplitude S of the signal source at the same time;
在不同测试频点信号源输出幅度S根据所用天线的天线系数进行设定。The output amplitude S of the signal source at different test frequency points is set according to the antenna factor of the antenna used.
第二步、读取测试位置处的电场强度值E0,电场强度值E0使用单位为dBμV/m,便于后续计算;The second step is to read the electric field strength value E 0 at the test position, and the unit of the electric field strength value E 0 is dBμV/m, which is convenient for subsequent calculations;
第三步、判断循环次数i,根据循环次数i的不同进行不同的操作:The third step is to judge the number of cycles i, and perform different operations according to the number of cycles i:
a、若i=1,则顺序执行第四步;a. If i=1, execute the fourth step sequentially;
b、若i>1,则先将测试位置处的电场强度增量与信号源输出幅度增量进行比较,判断功率放大器是否进入非线性饱和区,若功率放大器进入非线性饱和区,则在此测试频点功率放大器输出信号强度不能满足标准要求,则记录信号源输出幅度并进行下一频点调整;若功率放大器没有进入非线性饱和区,则顺序执行第四步;b. If i>1, first compare the electric field strength increment at the test position with the signal source output amplitude increment to determine whether the power amplifier has entered the nonlinear saturation region. If the power amplifier enters the nonlinear saturation region, then If the output signal strength of the power amplifier at the test frequency cannot meet the standard requirements, record the output amplitude of the signal source and adjust the next frequency point; if the power amplifier does not enter the nonlinear saturation zone, perform the fourth step in sequence;
将测试位置处的电场强度增量(E0-E1)与信号源输出幅度增量(αΔ)进行比较,考虑功率放大器的动态范围内线性不理想的情况,使用判别式0.8<(E0-E1)/αΔ<1.25进行判别,判断功率放大器是否出现增益压缩情况,其中,α为调整系数,一般取为0.5~0.9。如果0.8<(E0-E1)/αΔ<1.25成立,功率放大器没有进入非线性饱和区;否则,功率放大器进入非线性饱和区。Compare the electric field strength increment (E 0 -E 1 ) at the test position with the signal source output amplitude increment (αΔ), considering the unsatisfactory linearity within the dynamic range of the power amplifier, use the discriminant formula 0.8<(E 0 -E 1 )/αΔ<1.25 to determine whether the power amplifier has gain compression, wherein α is an adjustment coefficient, generally set at 0.5-0.9. If 0.8<(E 0 -E 1 )/αΔ<1.25 holds, the power amplifier does not enter the nonlinear saturation region; otherwise, the power amplifier enters the nonlinear saturation region.
第四步、计算标准极限值E与实际测得的电场强度值E0之间的差值Δ,Δ=E-E0,此时标准极限值E同样使用dBμV/m,得到差值Δ的单位为dB;The fourth step is to calculate the difference Δ between the standard limit value E and the actual measured electric field strength value E 0 , Δ=EE 0 , at this time, the standard limit value E also uses dBμV/m, and the unit of the difference Δ is dB;
第五步、判断差值Δ是否满足阀值X的要求,即|Δ|<X,X一般取值为0.1~0.5,优选的取为0.1。若差值Δ满足阀值X的要求,则记录信号源输出幅度并进行下一频点调整;若差值Δ不满足阀值X的要求,则进入第六步;The fifth step is to judge whether the difference Δ satisfies the requirement of the threshold X, that is, |Δ|<X, where X generally takes a value of 0.1-0.5, preferably 0.1. If the difference Δ meets the requirements of the threshold X, record the output amplitude of the signal source and adjust the next frequency point; if the difference Δ does not meet the requirements of the threshold X, enter the sixth step;
实际测得的电场强度值是通过监视设备得到的。The actual measured electric field strength value is obtained by monitoring equipment.
差值Δ用来估算测试的电场强度值与标准极限值之间的距离,是下一步调整信号源幅度增量的依据。The difference Δ is used to estimate the distance between the tested electric field strength value and the standard limit value, which is the basis for adjusting the amplitude increment of the signal source in the next step.
第六步、调整信号源输出幅度S=S+α·Δ,同时循环次数加1,即i=i+1,并令E1=E0;其中,α为调整系数,一般取为0.5≤α≤0.9,优选的取为0.8。Step 6: Adjust the output amplitude of the signal source S=S+α·Δ, and add 1 to the number of cycles at the same time, that is, i=i+1, and set E 1 =E 0 ; where α is the adjustment coefficient, generally taken as 0.5≤ α≤0.9, preferably 0.8.
第七步、重复第二步~第六步,直到差值Δ满足阀值X的要求,即|Δ|<X,则当前频点的信号源调整完毕,继续进行下一频点的幅度调整。The seventh step, repeat the second step to the sixth step until the difference Δ meets the requirements of the threshold X, that is, |Δ|<X, then the signal source adjustment of the current frequency point is completed, and the amplitude adjustment of the next frequency point is continued .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110025440 CN102128990B (en) | 2011-01-24 | 2011-01-24 | Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110025440 CN102128990B (en) | 2011-01-24 | 2011-01-24 | Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102128990A true CN102128990A (en) | 2011-07-20 |
CN102128990B CN102128990B (en) | 2013-05-08 |
Family
ID=44267148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110025440 Active CN102128990B (en) | 2011-01-24 | 2011-01-24 | Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102128990B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106990311A (en) * | 2017-05-22 | 2017-07-28 | 中国电子科技集团公司第四十研究所 | Judge the system and method whether field strength is stablized in a kind of radiosensitivity test |
CN107121647A (en) * | 2017-04-06 | 2017-09-01 | 上海斐讯数据通信技术有限公司 | The sensitivity measuring method and system of a kind of core inductance |
CN107657386A (en) * | 2017-09-30 | 2018-02-02 | 北京无线电测量研究所 | A kind of method and system for the damage risk for determining device |
CN110595524A (en) * | 2018-06-12 | 2019-12-20 | 迈来芯保加利亚有限公司 | Sensor saturation fault detection |
CN111025028A (en) * | 2019-12-30 | 2020-04-17 | 内蒙合成化工研究所 | Solid propellant electromagnetic radiation sensitivity testing device and method |
CN112415265A (en) * | 2020-09-04 | 2021-02-26 | 西安益翔航电科技有限公司 | System and method for testing radio frequency conducted sensitivity of redundancy |
CN112904091A (en) * | 2021-01-13 | 2021-06-04 | 成都四威功率电子科技有限公司 | PID-based field intensity radiation automatic test system control method |
CN113114392A (en) * | 2021-03-23 | 2021-07-13 | 中国电子科技集团公司第二十九研究所 | Method and device for automatically testing sensitivity of broadband radio frequency system |
CN113866516A (en) * | 2021-09-30 | 2021-12-31 | 北京航空航天大学 | A signal source amplitude adjustment method and device based on noise floor area judgment |
CN114217141A (en) * | 2021-10-29 | 2022-03-22 | 江铃汽车股份有限公司 | Vehicle electromagnetic compatibility test method, system, storage medium and test equipment |
CN117375736A (en) * | 2023-12-08 | 2024-01-09 | 南京纳特通信电子有限公司 | Differential mode injection test method and system for electromagnetic compatibility sensitivity test |
WO2025123537A1 (en) * | 2023-12-14 | 2025-06-19 | 南方电网科学研究院有限责任公司 | Method, apparatus and device for testing electromagnetic pulse interference resistance of electromagnetic relay |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191806A (en) * | 2006-11-29 | 2008-06-04 | 比亚迪股份有限公司 | Apparatus and method for testing automobile electromagnetic sensitivity |
CN101344557A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | A radiation susceptibility test method for protecting power amplifiers |
CN101344559A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | Amplitude Adjustment Method of Signal Source in Electromagnetic Compatibility Susceptibility Test |
CN101344560A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | A Method of Adjusting the Output Amplitude of Signal Source in Electromagnetic Compatibility Susceptibility Test |
CN101349730A (en) * | 2008-09-04 | 2009-01-21 | 北京航空航天大学 | A Method for Setting Initial Value of Signal Source Amplitude in Automatic Electromagnetic Radiation Sensitivity Test |
-
2011
- 2011-01-24 CN CN 201110025440 patent/CN102128990B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191806A (en) * | 2006-11-29 | 2008-06-04 | 比亚迪股份有限公司 | Apparatus and method for testing automobile electromagnetic sensitivity |
CN101344557A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | A radiation susceptibility test method for protecting power amplifiers |
CN101344559A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | Amplitude Adjustment Method of Signal Source in Electromagnetic Compatibility Susceptibility Test |
CN101344560A (en) * | 2008-09-04 | 2009-01-14 | 北京航空航天大学 | A Method of Adjusting the Output Amplitude of Signal Source in Electromagnetic Compatibility Susceptibility Test |
CN101349730A (en) * | 2008-09-04 | 2009-01-21 | 北京航空航天大学 | A Method for Setting Initial Value of Signal Source Amplitude in Automatic Electromagnetic Radiation Sensitivity Test |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107121647A (en) * | 2017-04-06 | 2017-09-01 | 上海斐讯数据通信技术有限公司 | The sensitivity measuring method and system of a kind of core inductance |
CN107121647B (en) * | 2017-04-06 | 2020-02-11 | 上海斐讯数据通信技术有限公司 | Magnetic core inductance sensitivity measurement method and system |
CN106990311A (en) * | 2017-05-22 | 2017-07-28 | 中国电子科技集团公司第四十研究所 | Judge the system and method whether field strength is stablized in a kind of radiosensitivity test |
CN107657386A (en) * | 2017-09-30 | 2018-02-02 | 北京无线电测量研究所 | A kind of method and system for the damage risk for determining device |
CN110595524A (en) * | 2018-06-12 | 2019-12-20 | 迈来芯保加利亚有限公司 | Sensor saturation fault detection |
CN111025028A (en) * | 2019-12-30 | 2020-04-17 | 内蒙合成化工研究所 | Solid propellant electromagnetic radiation sensitivity testing device and method |
CN112415265A (en) * | 2020-09-04 | 2021-02-26 | 西安益翔航电科技有限公司 | System and method for testing radio frequency conducted sensitivity of redundancy |
CN112904091B (en) * | 2021-01-13 | 2023-11-21 | 成都四威功率电子科技有限公司 | Control method of field intensity radiation automatic test system based on PID |
CN112904091A (en) * | 2021-01-13 | 2021-06-04 | 成都四威功率电子科技有限公司 | PID-based field intensity radiation automatic test system control method |
CN113114392A (en) * | 2021-03-23 | 2021-07-13 | 中国电子科技集团公司第二十九研究所 | Method and device for automatically testing sensitivity of broadband radio frequency system |
CN113866516A (en) * | 2021-09-30 | 2021-12-31 | 北京航空航天大学 | A signal source amplitude adjustment method and device based on noise floor area judgment |
CN113866516B (en) * | 2021-09-30 | 2022-05-10 | 北京航空航天大学 | A signal source amplitude adjustment method and device based on noise floor area judgment |
CN114217141A (en) * | 2021-10-29 | 2022-03-22 | 江铃汽车股份有限公司 | Vehicle electromagnetic compatibility test method, system, storage medium and test equipment |
CN114217141B (en) * | 2021-10-29 | 2024-04-30 | 江铃汽车股份有限公司 | Vehicle electromagnetic compatibility testing method, system, storage medium and testing equipment |
CN117375736A (en) * | 2023-12-08 | 2024-01-09 | 南京纳特通信电子有限公司 | Differential mode injection test method and system for electromagnetic compatibility sensitivity test |
CN117375736B (en) * | 2023-12-08 | 2024-02-27 | 南京纳特通信电子有限公司 | Differential mode injection test method and system for electromagnetic compatibility sensitivity test |
WO2025123537A1 (en) * | 2023-12-14 | 2025-06-19 | 南方电网科学研究院有限责任公司 | Method, apparatus and device for testing electromagnetic pulse interference resistance of electromagnetic relay |
Also Published As
Publication number | Publication date |
---|---|
CN102128990B (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102128990B (en) | Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test | |
CN105067989B (en) | A universal power amplifier automatic test system and automatic test method thereof | |
CN105224002B (en) | Temperature compensating method and device for radio frequency system and mobile terminal | |
CN101349730B (en) | Method for setting signal source amplitude initial value in electromagnetic radiation sensitiveness automatic test | |
CN101344557B (en) | A radiation susceptibility test method for protecting power amplifiers | |
CN114755553B (en) | Test system of low-power consumption shielding grid semiconductor power device | |
CN101344559A (en) | Amplitude Adjustment Method of Signal Source in Electromagnetic Compatibility Susceptibility Test | |
CN106027173B (en) | A kind of sensitivity test method and system | |
CN209296828U (en) | A Radio Frequency Field Induced Conducted Disturbance Immunity Test System | |
CN101344560A (en) | A Method of Adjusting the Output Amplitude of Signal Source in Electromagnetic Compatibility Susceptibility Test | |
CN106053957A (en) | Test fixture line loss test method and test fixture line loss test system | |
US20150189427A1 (en) | Device and method for generating driving signal of loudspeaker | |
CN102830420A (en) | Method and system for calibrating working voltage of nuclear radiation detector | |
CN102707159B (en) | Radiated emission testing and calibrating method used in pre-compatible laboratory | |
CN102680777B (en) | Intelligent realization method for measuring gain compression by utilizing network instrument | |
CN113630192B (en) | Method and device for testing transponder, electronic equipment and computer storage medium | |
CN101377534A (en) | Method for setting signal source amplitude initial value in electromagnetic compatible sensitivity test | |
CN107958206B (en) | Temperature measurement data preprocessing method for aircraft surface heat flow identification device | |
CN102156231A (en) | Method for judging power amplifier entering noise bottom area in electromagnetic radiation sensitivity test | |
CN104485900A (en) | Antenna impedance matching method on basis of key index data of power amplifier | |
CN118707425A (en) | A current transformer calibration error correction method and device based on harmonic analysis | |
CN118549731A (en) | Method, device, equipment and storage medium for predicting electromagnetic compatibility performance of vehicle | |
CN106556788A (en) | A kind of travelling-wave tube input-output characteristic automatic test approach with pre-amplifier | |
CN118150932A (en) | Device and method for verifying field performance of semi-anechoic chamber based on loop antenna | |
CN116893309A (en) | Conduction sensitivity testing method based on loop impedance characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110720 Assignee: BEIJING HANGTIAN HENGRONG TECHNOLOGY CO.,LTD. CASIC Assignor: Beihang University Contract record no.: 2017990000116 Denomination of invention: Method for judging power amplifier saturation in electromagnetic radiation sensitivity automatic test Granted publication date: 20130508 License type: Exclusive License Record date: 20170406 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: BEIJING HANGTIAN HENGRONG TECHNOLOGY CO.,LTD. CASIC Assignor: BEIHANG University Contract record no.: 2017990000116 Date of cancellation: 20230215 |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20110720 Assignee: Beijing Changying Hengrong Electromagnetic Technology Co.,Ltd. Assignor: BEIHANG University Contract record no.: X2023990000297 Denomination of invention: A Method for Determining Power Amplifier Saturation in Automatic Testing of Electromagnetic Radiation Sensitivity Granted publication date: 20130508 License type: Exclusive License Record date: 20230306 |
|
EE01 | Entry into force of recordation of patent licensing contract |