CN102128599B - Contact aspheric surface shape test device - Google Patents
Contact aspheric surface shape test device Download PDFInfo
- Publication number
- CN102128599B CN102128599B CN2010106073421A CN201010607342A CN102128599B CN 102128599 B CN102128599 B CN 102128599B CN 2010106073421 A CN2010106073421 A CN 2010106073421A CN 201010607342 A CN201010607342 A CN 201010607342A CN 102128599 B CN102128599 B CN 102128599B
- Authority
- CN
- China
- Prior art keywords
- measured
- aspheric surface
- sin
- coordinate
- cos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种接触式光学非球面面形检验装置。The invention relates to a contact optical aspheric surface shape inspection device.
背景技术 Background technique
当前,检验非球面元件的方法有很多种,主要分为接触式测量和非接触式测量。接触式测量主要借助轮廓仪或者三坐标测量仪通过对光学元件进行多个离散点的测量,然后经过数据处理,拟合得到面形误差。非接触式测量主要有阴影法、激光扫描法、干涉法等。阴影法主要分为刀口法和哈特曼法(光阑法),该方法主要观察阴影分布的图形和阴影图的明暗对比。这种方法设备简单,对于某些二次曲面测量方便,适于现场检验。但存在主观、定量困难、灵敏度欠高等缺点。激光扫描法可分平移法、旋转法,以及平移旋转法,这是一种利用光的直线性进行面形检测的方法,通过用激光束对被测面进行逐点测量可计算出非球面的面形参数。它通用性强,可以测量各种非球面,而且是对被测面进行绝对测量,精度高,缺点是相应的数据处理比较复杂。干涉法是一种短时间检测非球面的方法,由于它具有高分辨、高精度、高灵敏度、重复性好等优点,但是利用该技术测量非球面面形时,要求非球面表面有很好的光洁度和很高的反射能力。因此,干涉法一般适用于非球面精抛光和最终阶段的检测。At present, there are many methods for inspecting aspheric components, which are mainly divided into contact measurement and non-contact measurement. Contact measurement mainly uses a profiler or a three-coordinate measuring instrument to measure multiple discrete points on the optical element, and then after data processing, the surface shape error is obtained by fitting. Non-contact measurement mainly includes shadow method, laser scanning method, interferometry and so on. The shadow method is mainly divided into the knife-edge method and the Hartmann method (aperture method). This method mainly observes the shadow distribution graph and the light-dark contrast of the shadow map. This method has simple equipment, is convenient for measuring some quadratic surfaces, and is suitable for on-site inspection. However, there are disadvantages such as subjectivity, quantitative difficulty, and low sensitivity. The laser scanning method can be divided into translation method, rotation method, and translation and rotation method. This is a method of surface shape detection using the linearity of light. The aspheric surface can be calculated by point-by-point measurement of the measured surface with a laser beam. Surface parameters. It has strong versatility and can measure various aspheric surfaces, and it is an absolute measurement of the measured surface with high precision. The disadvantage is that the corresponding data processing is relatively complicated. Interferometry is a method for detecting aspheric surfaces in a short time. It has the advantages of high resolution, high precision, high sensitivity, and good repeatability. However, when using this technology to measure the aspheric surface shape, it is required to have a good smooth and highly reflective. Therefore, interferometry is generally suitable for aspheric surface finishing and final stage detection.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种适用于非球面加工整个过程的接触式非球面面形检验装置,该装置能够直接实现对非球面的测量,数据处理和数学运算简单,实验操作简单易行,测量时间短、测试成本低。The technical problem to be solved by the present invention is to provide a contact-type aspheric surface shape inspection device suitable for the entire process of aspheric surface processing. The device can directly realize the measurement of aspheric surfaces, and the data processing and mathematical operations are simple, and the experimental operation is simple and easy. OK, short measurement time and low cost of testing.
为了解决上述技术问题,本发明的接触式非球面面形检验装置包括计算机和激光跟踪仪;所述计算机包括存储待测非球面CAD模型的装置、坐标变换装置、求解位置坐标的装置和求解待测非球面面形分布的装置;激光跟踪仪首先测量待测非球面上特征点的位置坐标并将其传输给坐标变换装置,由坐标变换装置利用测量的待测非球面上特征点的位置坐标及CAD模型上对应的特征点的位置坐标,通过坐标变换求解得到待测非球面、CAD模型两个坐标系之间的平移量和旋转量,将待测非球面此时的物理坐标系与CAD模型的坐标系统一到同一坐标系;激光跟踪仪测量在统一坐标系下待测非球面上多点的位置坐标并将其传输给求解位置坐标的装置,由求解位置坐标的装置利用测得的统一坐标系下待测非球面上多点的位置坐标进行插值计算得到待测非球面上各点的位置坐标;求解待测非球面面形分布的装置分析求解得到统一坐标系下待测非球面上各点的坐标值与CAD数模上对应的各点坐标值之间的偏差,并对偏差数据进行拟合,得到待测非球面面形分布。In order to solve the above-mentioned technical problems, the contact type aspheric surface shape inspection device of the present invention includes a computer and a laser tracker; A device for measuring the distribution of an aspheric surface; the laser tracker first measures the position coordinates of the feature points on the aspheric surface to be measured and transmits it to the coordinate transformation device, and the coordinate transformation device uses the measured position coordinates of the feature points on the aspheric surface to be measured and the position coordinates of the corresponding feature points on the CAD model, the translation and rotation between the two coordinate systems of the aspheric surface to be measured and the CAD model are obtained by solving the coordinate transformation, and the physical coordinate system of the aspheric surface to be measured at this time is compared with the CAD The coordinate system of the model is one to the same coordinate system; the laser tracker measures the position coordinates of multiple points on the aspheric surface to be measured under the unified coordinate system and transmits them to the device for solving the position coordinates, and the device for solving the position coordinates uses the measured The position coordinates of multiple points on the aspheric surface to be measured are interpolated in the unified coordinate system to obtain the position coordinates of each point on the aspheric surface to be measured; the device analysis and solution for solving the surface shape distribution of the aspheric surface to be measured is obtained to obtain the aspheric surface to be measured in the unified coordinate system The deviation between the coordinate values of each point on the map and the corresponding coordinate values of each point on the CAD digital model, and the deviation data are fitted to obtain the aspherical surface shape distribution to be measured.
所述特征点为在待测非球面上设定的三个点,如侧面或者背部的轻量化圆孔、锥孔的圆心或者三角形孔的中心等。The feature points are three points set on the aspheric surface to be tested, such as the lightweight circular hole on the side or back, the center of the cone hole or the center of the triangular hole, etc.
本发明通过扩充激光跟踪仪的现有功能,利用激光跟踪仪的靶标球对非球面表面进行多点接触测量,并将测量的结果与数据模型进行分析对比、处理和运算,获得非球面的面形分布信息,无需其它辅助光学元件就能够准确的实现对大口径非球面面形的检测。本发明数据处理和数学运算简单,实验操作简单易行,检测成本很低,测试时间短,适用于非球面加工整个过程的面形检测。The present invention expands the existing functions of the laser tracker, uses the target ball of the laser tracker to perform multi-point contact measurement on the aspheric surface, and analyzes, compares, processes and calculates the measurement results with the data model to obtain the aspheric surface The shape distribution information can accurately realize the detection of the large-aperture aspheric surface shape without other auxiliary optical elements. The invention has simple data processing and mathematical operation, simple and easy experimental operation, low detection cost and short test time, and is suitable for surface shape detection in the whole process of aspheric surface processing.
附图说明 Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明的接触式非球面面形检验装置结构示意图。Fig. 1 is a schematic structural view of a contact-type aspheric surface shape testing device of the present invention.
图2是计算机测量软件功能模块示意图。Figure 2 is a schematic diagram of the functional modules of the computer measurement software.
图3是待测非球面结构示意图。Fig. 3 is a schematic diagram of the structure of the aspheric surface to be tested.
图4是利用本发明对非球面面形进行检验的流程图。Fig. 4 is a flow chart of checking the aspheric surface shape by using the present invention.
具体实施方式 Detailed ways
如图1所示,本发明的接触式非球面面形检验装置包括计算机1和激光跟踪仪2;所述激光跟踪仪2与计算机1通过数据线进行连接。As shown in FIG. 1 , the contact-type aspheric surface shape inspection device of the present invention includes a computer 1 and a laser tracker 2; the laser tracker 2 is connected to the computer 1 through a data line.
激光跟踪仪2是一种高精度、大容量的便携式三位坐标测量设备,该激光跟踪仪使用两个旋转角编码器和一个激光距离测量系统,以跟踪和测量靶标球3的位置。靶标球3是由空心的直角反射镜组成,此反射镜精确固定在加工球体内。球体外表面到中心的距离已知(即球体半径),激光跟踪仪测量软件利用球体半径进行测量偏移或补偿测量。激光跟踪仪发射并接收从靶标球返回的红色氦氖激光,激光跟踪仪机械轴的方向会根据其内部的位置感应探测器接收的两个旋转角编码器及距离测量系统反馈的信息不断进行调整。激光跟踪仪通过测量两个角度和一个距离来确定目标的坐标。这些角度由安装在顶点角轴和方位角轴上的编码器来测量。径向距离是由条纹计数干涉仪或一种相位偏移绝对距离测量系统(XtremeADM)来测量。激光跟踪仪一般用来测量物体之间的相对位置关系,并可以直接检验平面和球面物体的面形,但是对于非球面元件的面形却不能实现直接检验。The laser tracker 2 is a high-precision, large-capacity portable three-position coordinate measuring device, which uses two rotary angle encoders and a laser distance measurement system to track and measure the position of the
如图2所示,所述计算机1的测量软件包括存储待测非球面CAD模型的装置11、坐标变换装置12、求解位置坐标的装置13和求解待测非球面面形分布的装置14。As shown in Figure 2, the measurement software of the computer 1 includes a
所述坐标变换装置12查找待测非球面的CAD模型,提取与激光跟踪仪2测量的特征点p1(x1,y1,z1),p2(x2,y2,z2)和p3(x3,y3,z3)相对应的CAD模型上的特征点的位置坐标P1(X1,Y1,Z1),P2(X2,Y2,Z2)和P3(X3,Y3,Z3),如图3所示;通过迭代法求解公式(1)和公式(5)联立的非线性方程组,得到待测非球面的物理坐标系相对CAD模型的坐标系在x方向、y方向、z方向上的平移量dx、dy和dz以及待测非球面的物理坐标系相对CAD模型的坐标系绕x轴、y轴、z轴的转动角度量α、β和γ,进而将两个坐标系统一到同一坐标系;The
其中(x1,y1,z1,1)为p1(x1,y1,z1)点在待测非球面的物理坐标系中的坐标行矩阵,(X1,Y1,Z1,1)为与p1(x1,y1,z1)点相对应的P1(X1,Y1,Z1)点在CAD模型坐标系中的坐标行矩阵;(x2,y2,z2,1)为p2(x2,y2,z2)点在待测非球面的物理坐标系中的坐标行矩阵,(X2,Y2,Z2,1)为与p2(x2,y2,z2)点相对应的P2(X2,Y2,Z2)点在CAD模型坐标系中的坐标行矩阵;(x3,y3,z3,1)为p3(x3,y3,z3)点在待测非球面的物理坐标系中的坐标行矩阵,(X3,Y3,Z3,1)为与p3(x3,y3,z3)点相对应的P3(X3,Y3,Z3)点在CAD模型坐标系中的坐标行矩阵;dx、dy和dz分别为待测非球面的物理坐标系相对CAD模型坐标系在x方向、y方向、z方向上的平移量,α、β和γ分别为待测非球面的物理坐标系相对CAD模型坐标系绕x轴、y轴、z轴的转动角度量。Where (x 1 , y 1 , z 1 , 1) is the coordinate row matrix of point p 1 (x 1 , y 1 , z 1 ) in the physical coordinate system of the aspherical surface to be measured, (X 1 , Y 1 , Z 1 , 1) is the coordinate row matrix of point P 1 (X 1 , Y 1 , Z 1 ) corresponding to point p 1 (x 1 , y 1 , z 1 ) in the CAD model coordinate system; (x 2 , y 2 , z 2 , 1) is the coordinate row matrix of point p 2 (x 2 , y 2 , z 2 ) in the physical coordinate system of the aspheric surface to be measured, and (X 2 , Y 2 , Z 2 , 1) is The coordinate row matrix of point P 2 (X 2 , Y 2 , Z 2 ) corresponding to point p 2 (x 2 , y 2 , z 2 ) in the coordinate system of the CAD model; (x 3 , y 3 , z 3 , 1) is the coordinate row matrix of point p 3 (x 3 , y 3 , z 3 ) in the physical coordinate system of the aspheric surface to be measured, (X 3 , Y 3 , Z 3 , 1) is the coordinate matrix of point p 3 (x 3 ,
所述特征点p1(x1,y1,z1),p2(x2,y2,z2)和p3(x3,y3,z3)为待测非球面侧面或者背部的轻量化圆孔、锥孔的圆心或者三角形孔的中心。可通过先测量圆孔或锥孔边缘上任意三个点的坐标,然后再计算得到其圆心坐标;三角形孔中心的坐标可利用三角形三个顶点的坐标通过计算得到。The feature points p 1 (x 1 , y 1 , z 1 ), p 2 (x 2 , y 2 , z 2 ) and p 3 (x 3 , y 3 , z 3 ) are the side or back of the aspheric surface to be measured The lightweight round hole, the center of a tapered hole or the center of a triangular hole. The coordinates of any three points on the edge of the circular hole or tapered hole can be measured first, and then the coordinates of the center of the circle can be obtained by calculation; the coordinates of the center of the triangular hole can be obtained by calculation using the coordinates of the three vertices of the triangle.
所述求解位置坐标的装置13利用测量得到的非球面上多点的位置坐标,通过三次样条插值或牛顿插值方法计算求解得到非球面上各点的位置坐标。The
如图4所示,利用本发明对非球面面形进行检验的步骤如下:As shown in Figure 4, the steps of utilizing the present invention to check the aspherical surface shape are as follows:
1)首先,建立待测非球面的CAD模型,并将该CAD模型导入计算机1的测量软件中;1) First, set up the CAD model of the aspheric surface to be measured, and import the CAD model into the measurement software of computer 1;
2)利用激光跟踪仪2测量待测非球面侧面或者背部的三个特征点p1,p2和p3的位置坐标p1(x1,y1,z1),p2(x2,y2,z2)和p3(x3,y3,z3);2) Use the laser tracker 2 to measure the position coordinates p 1 (x 1 , y 1 , z 1 ) , p 2 ( x 2 , y 2 , z 2 ) and p 3 (x 3 , y 3 , z 3 );
3)查找非球面的CAD模型,提取与测量的特征点p1(x1,y1,z1),p2(x2,y2,z2)和p3(x3,y3,z3)相对应的CAD数模上的特征点的位置坐标P1(X1,Y1,Z1),P2(X2,Y2,Z2)和P3(X3,Y3,Z3);3) Find the CAD model of the aspheric surface, extract and measure the feature points p 1 (x 1 , y 1 , z 1 ), p 2 (x 2 , y 2 , z 2 ) and p 3 (x 3 , y 3 , z 3 ) corresponding to the position coordinates P 1 (X 1 , Y 1 , Z 1 ), P 2 (X 2 , Y 2 , Z 2 ) and P 3 (X 3 , Y 3 ) of the feature points on the CAD digital model , Z 3 );
4)通过坐标变换,可以求解得到两个坐标系之间的平移量和旋转量,从而使得待测非球面此时的物理坐标系与CAD模型的坐标系一致;4) Through coordinate transformation, the translation and rotation between the two coordinate systems can be solved, so that the physical coordinate system of the aspheric surface to be measured at this time is consistent with the coordinate system of the CAD model;
具体算法步骤如下:The specific algorithm steps are as follows:
设定p1点在待测非球面的物理坐标系中的坐标表示为行矩阵(x1,y1,z1,1),与p1相对应的P1点在CAD模型坐标系中的坐标表示为行矩阵(X1,Y1,Z1,1);假定待测非球面的物理坐标系相对CAD模型的坐标系在x方向、y方向、z方向上的平移量分别为dx、dy和dz,待测非球面的物理坐标系相对CAD模型的坐标系绕x轴、y轴、z轴的转动角度量分别为α、β和γ,则根据坐标变换理论,待测非球面的物理坐标系上的特征位置坐标与CAD模型上对应特征的位置坐标有如下关系:Set the coordinates of point p 1 in the physical coordinate system of the aspheric surface to be measured as a row matrix (x 1 , y 1 , z 1 , 1), and the coordinates of point P 1 corresponding to p 1 in the coordinate system of the CAD model The coordinates are expressed as a row matrix (X 1 , Y 1 , Z 1 , 1); it is assumed that the translation of the physical coordinate system of the aspheric surface to be measured relative to the coordinate system of the CAD model in the x direction, y direction, and z direction is respectively d x , d y and d z , the rotation angles of the physical coordinate system of the aspheric surface to be measured relative to the coordinate system of the CAD model around the x-axis, y-axis and z-axis are α, β and γ respectively, then according to the coordinate transformation theory, the measured The feature position coordinates on the physical coordinate system of the aspheric surface have the following relationship with the position coordinates of the corresponding features on the CAD model:
其中V为两个坐标系之间的变换矩阵,它是平移变换矩阵T和旋转变换矩阵R之间的乘积,即:where V is the transformation matrix between two coordinate systems, which is the product between the translation transformation matrix T and the rotation transformation matrix R, namely:
V=T·R (2)V=T·R (2)
其中Tx、Ty和Tz分别为两个行矩阵在x方向、y方向和z方向上的平移矩阵。T x , T y and T z are the translation matrices of the two row matrices in the x direction, y direction and z direction respectively.
其中Rx、Ry和Rz分别为两个行矩阵在x方向、y方向和z方向上的旋转矩阵。Among them, R x , R y and R z are the rotation matrices of the two row matrices in the x direction, y direction and z direction respectively.
则由(3)-(4)可推导得到两个坐标系之间的变换矩阵V为公式(5),Then from (3)-(4), the transformation matrix V between the two coordinate systems can be derived as formula (5),
因为三个特征点分别在两个坐标系中的坐标值是已知的,通过迭代法求解公式(1)和公式(5)联立的非线性方程组,即可得到待测非球面的物理坐标系相对CAD模型的坐标系在x方向、y方向、z方向上的平移量dx、dy和dz以及待测非球面的物理坐标系相对CAD模型的坐标系绕x轴、y轴、z轴的转动角度量α、β和γ,从而可以将两个坐标系统一起来;Because the coordinate values of the three feature points in the two coordinate systems are known, the physical properties of the aspheric surface to be measured can be obtained by solving the nonlinear equations of formula (1) and formula (5) by iterative method The translation of the coordinate system relative to the coordinate system of the CAD model in the x direction, y direction, and z direction d x , d y and d z and the physical coordinate system of the aspheric surface to be measured are relative to the coordinate system of the CAD model around the x axis and the y axis , the rotation angles of the z axis α, β and γ, so that the two coordinate systems can be combined;
5)两个坐标系一致后,利用激光跟踪仪1测量在统一坐标系下待测非球面上多点的位置坐标;5) After the two coordinate systems are consistent, use the laser tracker 1 to measure the position coordinates of multiple points on the aspheric surface to be measured under the unified coordinate system;
6)利用测量得到的待测非球面上多点的位置坐标,通过三次样条插值计算求解得到待测非球面上各点的位置坐标;6) Using the measured position coordinates of multiple points on the aspheric surface to be measured, the position coordinates of each point on the aspheric surface to be measured are obtained through cubic spline interpolation calculation;
7)分析求解得到统一坐标系下待测非球面上各点的坐标值与对应CAD模型上各点坐标值的偏差,对偏差数据进行拟合,即为待测非球面的面形分布。7) Analyze and solve to obtain the deviation between the coordinate values of each point on the aspheric surface to be measured in the unified coordinate system and the coordinate values of each point on the corresponding CAD model, and fit the deviation data, which is the surface shape distribution of the aspheric surface to be measured.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106073421A CN102128599B (en) | 2010-12-27 | 2010-12-27 | Contact aspheric surface shape test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106073421A CN102128599B (en) | 2010-12-27 | 2010-12-27 | Contact aspheric surface shape test device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102128599A CN102128599A (en) | 2011-07-20 |
CN102128599B true CN102128599B (en) | 2012-06-13 |
Family
ID=44266781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106073421A Expired - Fee Related CN102128599B (en) | 2010-12-27 | 2010-12-27 | Contact aspheric surface shape test device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102128599B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106705880A (en) * | 2016-12-05 | 2017-05-24 | 北京空间机电研究所 | Large diameter mirror surface profile in-place detecting method and device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435150B (en) * | 2011-09-15 | 2013-07-24 | 湘潭电机股份有限公司 | Method and device for detecting surface precision of dish parabolic reflecting mirror |
CN103335609B (en) * | 2013-07-05 | 2016-01-20 | 中国科学院光电技术研究所 | Method for determining rotation center, rotation angle and translation amount of optical surface shape data |
CN103439085B (en) * | 2013-08-29 | 2016-03-09 | 中国科学院光电研究院 | A kind of method of contact type measurement curved surface prism parameter and device |
CN103591888B (en) * | 2013-10-28 | 2016-04-27 | 中国科学院长春光学精密机械与物理研究所 | The measuring method of large-caliber off-axis non-spherical optical element geometric parameter |
CN104501722B (en) * | 2015-01-07 | 2017-04-26 | 中国科学院光电技术研究所 | Aspheric optical fiber filament measuring method |
CN109029285B (en) * | 2018-07-06 | 2020-08-28 | 江西洪都航空工业集团有限责任公司 | Hybrid measurement method integrating contact measurement and non-contact measurement |
CN110440689B (en) * | 2019-07-25 | 2023-07-28 | 中国人民解放军火箭军工程大学 | Self-adaptive spherical taper hole vision reaming and repairing equipment |
CN115096214A (en) * | 2022-06-30 | 2022-09-23 | 中国科学院长春光学精密机械与物理研究所 | Spherical turntable target alignment device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101464676A (en) * | 2009-01-08 | 2009-06-24 | 上海交通大学 | System and method for part process feature detection in three-coordinate numerical control machining |
CN101672637A (en) * | 2009-09-24 | 2010-03-17 | 华东理工大学 | Digitizing detection method of complicated curved face |
CN101802542A (en) * | 2007-09-14 | 2010-08-11 | 莱卡地球系统公开股份有限公司 | Method and measuring device for gauging surfaces |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010032380A (en) * | 2008-07-29 | 2010-02-12 | Hitachi Engineering & Services Co Ltd | Noncontact-type three-dimensional size measuring device |
-
2010
- 2010-12-27 CN CN2010106073421A patent/CN102128599B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101802542A (en) * | 2007-09-14 | 2010-08-11 | 莱卡地球系统公开股份有限公司 | Method and measuring device for gauging surfaces |
CN101464676A (en) * | 2009-01-08 | 2009-06-24 | 上海交通大学 | System and method for part process feature detection in three-coordinate numerical control machining |
CN101672637A (en) * | 2009-09-24 | 2010-03-17 | 华东理工大学 | Digitizing detection method of complicated curved face |
Non-Patent Citations (2)
Title |
---|
JP特开2010-32380A 2010.02.12 |
张彬 等.基于数据拟合提高非球曲面面形精度的方法.《航空科学技术》.2010,(第4期),41-43. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106705880A (en) * | 2016-12-05 | 2017-05-24 | 北京空间机电研究所 | Large diameter mirror surface profile in-place detecting method and device |
CN106705880B (en) * | 2016-12-05 | 2018-11-23 | 北京空间机电研究所 | A kind of large caliber reflecting mirror face shape profile detection method and device in place |
Also Published As
Publication number | Publication date |
---|---|
CN102128599A (en) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102128599B (en) | Contact aspheric surface shape test device | |
CN103737426B (en) | A kind of Digit Control Machine Tool rotating shaft geometric error three line mensuration | |
Muralikrishnan et al. | Laser trackers for large-scale dimensional metrology: A review | |
CN103697824B (en) | For the system calibrating method of the gauge head of coordinate measuring machine | |
CN103926058B (en) | The method using autocollimatic plane mirror measurement optical axis in Aspherical-surface testing | |
CN103591888B (en) | The measuring method of large-caliber off-axis non-spherical optical element geometric parameter | |
Chao et al. | Calibration of laser beam direction for optical coordinate measuring system | |
CN102494634B (en) | Off-axis aspherical mirror detection method based on fringe reflection | |
Chao et al. | Extrinsic calibration of a laser displacement sensor in a non-contact coordinate measuring machine | |
CN105651166A (en) | Spacecraft product final assembly precision measuring method based on workpiece coordinate system | |
Acero et al. | Verification of an articulated arm coordinate measuring machine using a laser tracker as reference equipment and an indexed metrology platform | |
CN102168955A (en) | Method for detecting curvature radius of optical spherical surface | |
CN103017690A (en) | Method for measuring straightness of super-long guide rail | |
CN102589429A (en) | On-line engine cylinder hexahedral hole set position error detecting method | |
CN106643613A (en) | Position error calibration method for on-line measurement of aspheric surface | |
CN102980532B (en) | Method for measuring large-diameter aspheric surface shapes in splicing manner by adopting three-coordinate measuring machine | |
CN102288132A (en) | Method for measuring vertex curvature radius deviation of aspheric surface by using laser tracking instrument | |
Shen et al. | A robust and efficient calibration method for spot laser probe on CMM | |
CN109520417A (en) | Lathe geometric error and turntable corner position error calibrating installation and method | |
CN111238372B (en) | Synchronous detection method for joint position error of double-compound coordinate measurement system | |
CN103344209B (en) | A kind of surface shape of reflector in zero gravity state testing method | |
Chen et al. | Multi-beam angle sensor for flatness measurement of mirror using circumferential scan technology | |
Xin et al. | Measurement techniques for complex surface based on a non-contact measuring machine | |
CN113587819A (en) | Three-laser-tracking-based large-scale space pose dynamic measurement method and measurement precision verification method | |
Acero et al. | Evaluation of a metrology platform for an articulated arm coordinate measuring machine verification under the ASME B89. 4.22-2004 and VDI 2617_9-2009 standards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120613 Termination date: 20131227 |