CN102127722B - Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof - Google Patents
Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof Download PDFInfo
- Publication number
- CN102127722B CN102127722B CN201110068847XA CN201110068847A CN102127722B CN 102127722 B CN102127722 B CN 102127722B CN 201110068847X A CN201110068847X A CN 201110068847XA CN 201110068847 A CN201110068847 A CN 201110068847A CN 102127722 B CN102127722 B CN 102127722B
- Authority
- CN
- China
- Prior art keywords
- carbon fiber
- dimensional orthogonal
- fiber reinforced
- aluminum
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 59
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 59
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 7
- 230000002787 reinforcement Effects 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000011156 metal matrix composite Substances 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Woven Fabrics (AREA)
Abstract
一种碳纤维技术领域的三维正交碳纤维增强铝基复合材料及其制备方法,该材料的组分及体积比为30~60%碳纤维增强体和40~70%铝或铝合金基体组成,其中:铝或铝合金基体的组分和质量百分比为:0~13%Si、0~11%Mg、0~10%Zn、0~8%Cu、0~2%Mn、0~1%Ti,其余为Al。本发明有效解决了现有技术中三维正交碳纤维结构体与金属复合时的缺陷,在金属基复合材料中采用三维正交碳纤维作为增强体,实现三维正交碳纤维与铝或铝合金的复合。
A three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite material in the field of carbon fiber technology and a preparation method thereof. The composition and volume ratio of the material are composed of 30-60% carbon fiber reinforcement and 40-70% aluminum or aluminum alloy matrix, wherein: The composition and mass percentage of the aluminum or aluminum alloy matrix are: 0-13% Si, 0-11% Mg, 0-10% Zn, 0-8% Cu, 0-2% Mn, 0-1% Ti, the rest for Al. The invention effectively solves the defects in the composite of three-dimensional orthogonal carbon fiber structure and metal in the prior art, adopts three-dimensional orthogonal carbon fiber as a reinforcement in the metal matrix composite material, and realizes the composite of three-dimensional orthogonal carbon fiber and aluminum or aluminum alloy.
Description
技术领域 technical field
本发明涉及的是一种碳纤维材料技术领域的复合材料及其制备,具体是一种三维正交碳纤维增强铝基复合材料及其制备方法。The invention relates to a composite material in the technical field of carbon fiber materials and its preparation, in particular to a three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite material and a preparation method thereof.
背景技术 Background technique
碳纤维增强铝基复合材料在具有高比强度的同时,还有接近于零的热膨胀系数和良好的尺寸稳定性,成功应用于人造卫星支架、人造卫星抛物面天线、空间望远镜等。但以上应用多采用单向碳纤维增强铝基复合材料。单向结构复合材料具有各向异性的缺点,而层合结构复合材料也存在着易分层,沿厚度方向的刚度和强度低、冲击韧性和损伤容限低、抗面内剪切强度低等不足。上述结构的复合材料存在以上结构和性能缺陷,不能满足轻质高强结构材料多向受力的使用要求。另外,单向和层合结构的碳纤维预制件在制备复合材料的过程中,碳纤维容易发生偏聚以及弯曲现象,从而导致整体材料力学性能下降。而三维正交碳纤维预制件呈整体框架结构,具有很高的刚度,从而克服了碳纤维在制备复合材料的过程中发生偏聚和弯曲的问题。Carbon fiber reinforced aluminum matrix composites not only have high specific strength, but also have a thermal expansion coefficient close to zero and good dimensional stability, and have been successfully used in satellite brackets, satellite parabolic antennas, and space telescopes. However, the above applications mostly use unidirectional carbon fiber reinforced aluminum matrix composites. Unidirectional structural composite materials have the disadvantages of anisotropy, while laminated structural composite materials also have the disadvantages of easy delamination, low stiffness and strength along the thickness direction, low impact toughness and damage tolerance, and low in-plane shear strength, etc. insufficient. The composite material with the above structure has the above structural and performance defects, and cannot meet the multi-directional force-bearing requirements of lightweight and high-strength structural materials. In addition, in the process of preparing composite materials for unidirectional and laminated carbon fiber preforms, carbon fibers are prone to segregation and bending, which leads to a decrease in the mechanical properties of the overall material. The three-dimensional orthogonal carbon fiber prefabricated part is an integral frame structure with high rigidity, which overcomes the problems of segregation and bending of carbon fibers in the process of preparing composite materials.
经过对现有技术的检索发现,中国专利申请号200910249794,公开日2010年5月26日,记载了一种“金属基三维网状碳纤维复合材料及其制造方法”,该技术由多层碳纳米管构成三维网状碳纤维结构体,但是该现有技术制备工艺复杂,首先需配制悬浮液,再经过干燥处理、压缩成型、硬化处理、高温烧结和复合成型等工艺。悬浮沉降法制备的预制件中碳纤维分布不均匀,纤维体积分数在厚度方向上呈梯度分布。此外,配制悬浮液时引入的粘结剂和分散剂对复合材料界面性能有不利影响。After searching the existing technology, it is found that Chinese patent application number 200910249794, published on May 26, 2010, records a "metal-based three-dimensional network carbon fiber composite material and its manufacturing method", which consists of multi-layer carbon nano The tube constitutes a three-dimensional network carbon fiber structure, but the preparation process of this prior art is complicated. Firstly, it needs to prepare a suspension, and then go through processes such as drying treatment, compression molding, hardening treatment, high temperature sintering and composite molding. The carbon fiber distribution in the preform prepared by the suspension sedimentation method is not uniform, and the fiber volume fraction is distributed in a gradient in the thickness direction. In addition, the binders and dispersants introduced during the preparation of suspensions have adverse effects on the interfacial properties of the composites.
发明内容 Contents of the invention
本发明针对现有技术存在的上述不足,提供一种三维正交碳纤维增强铝基复合材料及其制备方法,采用三维正交碳纤维增强体,通过挤压铸造的方法获得一种三维正交碳纤维增强铝基复合材料,其中纤维束贯穿材料的X、Y、Z三个方向,纤维束彼此不交织,从根本上解决了现有连续碳纤维增强铝基复合材料在结构和性能上的缺陷。采用机织工艺直接制备出三维正交碳纤维结构体,不存在配制悬浮液以及后续的干燥处理、压缩成型、硬化处理、高温烧结工艺,从而大大简化制备工艺、缩短制备时间,避免了纤维体积分数在厚度方向上呈梯度分布的问题,也避免了配制悬浮液时引入的粘结剂和分散剂对复合材料界面性能的不利影响。由于三维正交碳纤维结构体的纤维体积分数较高,所以液态金属对预制件的充填难度较大。针对碳纤维预制件的三维正交结构特点,通过选取合适的挤压铸造工艺参数,实现了三维正交碳纤维与铝或铝合金的复合。与此同时,高刚度的整体框架结构克服了碳纤维在制备复合材料的过程中发生偏聚和弯曲的问题。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite material and its preparation method. A three-dimensional orthogonal carbon fiber reinforced body is used to obtain a three-dimensional orthogonal carbon fiber reinforced material by extrusion casting. The aluminum matrix composite material, in which the fiber bundles run through the X, Y, and Z directions of the material, and the fiber bundles do not interweave with each other, fundamentally solves the defects in the structure and performance of the existing continuous carbon fiber reinforced aluminum matrix composite materials. The three-dimensional orthogonal carbon fiber structure is directly prepared by the weaving process, and there is no preparation of suspension and subsequent drying treatment, compression molding, hardening treatment, and high-temperature sintering process, which greatly simplifies the preparation process, shortens the preparation time, and avoids the fiber volume fraction. The problem of gradient distribution in the thickness direction also avoids the adverse effects of the binder and dispersant introduced in the preparation of the suspension on the interfacial properties of the composite material. Due to the high fiber volume fraction of the three-dimensional orthogonal carbon fiber structure, it is difficult to fill the prefabricated part with liquid metal. According to the three-dimensional orthogonal structure characteristics of carbon fiber prefabricated parts, the composite of three-dimensional orthogonal carbon fiber and aluminum or aluminum alloy is realized by selecting appropriate extrusion casting process parameters. At the same time, the high-rigidity overall frame structure overcomes the problems of segregation and bending of carbon fibers during the preparation of composite materials.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明涉及一种三维正交碳纤维增强铝基复合材料,其组分及体积比为30~60%碳纤维增强体和40~70%铝或铝合金基体组成,其中:铝或铝合金基体的组分和质量百分比为:0~13%Si、0~11%Mg、0~10%Zn、0~8%Cu、0~2%Mn、0~1%Ti,其余为Al。The invention relates to a three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite material, the composition and volume ratio of which are composed of 30-60% carbon fiber reinforcement and 40-70% aluminum or aluminum alloy matrix, wherein: the composition of aluminum or aluminum alloy matrix The composition and mass percentage are: 0-13% Si, 0-11% Mg, 0-10% Zn, 0-8% Cu, 0-2% Mn, 0-1% Ti, and the rest is Al.
本发明涉及上述三维正交碳纤维增强铝基复合材料的制备方法,利用机织加工方法将碳纤维束织成三维整体网状结构体,并置于金属模具中预热;然后将熔融的铝或铝合金熔体浇注入金属模具中,在压力下成型,得到三维正交碳纤维增强铝基复合材料。The present invention relates to the preparation method of the above-mentioned three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite material. The carbon fiber bundle is woven into a three-dimensional integral network structure by a weaving processing method, and placed in a metal mold for preheating; then the melted aluminum or aluminum The alloy melt is poured into a metal mold and shaped under pressure to obtain a three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite.
所述的预热的温度为400℃~600℃。The temperature of the preheating is 400°C-600°C.
所述的浇注的温度为740℃~760℃。The pouring temperature is 740°C-760°C.
所述的成型的压力为10~50MPa,保压时间60秒。The molding pressure is 10-50 MPa, and the holding time is 60 seconds.
本发明解决了现有连续碳纤维增强铝基复合材料在结构和性能上的缺陷,而高刚度的整体框架结构克服了碳纤维在制备复合材料的过程中发生偏聚和弯曲的问题。本发明所制备的三维正交碳纤维增强铝基复合材料结构致密,碳纤维与基体结合良好,碳纤维分布均匀,未发生偏聚和弯曲现象。复合材料的综合性能优异,在航天航空、军工、电子封装、汽车、体育器械、精密制造等领域有着广泛的应用前景。The invention solves the defects in the structure and performance of the existing continuous carbon fiber reinforced aluminum matrix composite material, and the high-rigidity overall frame structure overcomes the problems of segregation and bending of the carbon fiber in the process of preparing the composite material. The three-dimensional orthogonal carbon fiber-reinforced aluminum matrix composite material prepared by the invention has a dense structure, good combination of carbon fibers and matrix, uniform distribution of carbon fibers, and no segregation and bending phenomena. Composite materials have excellent comprehensive properties and have broad application prospects in aerospace, military, electronic packaging, automobiles, sports equipment, precision manufacturing and other fields.
附图说明 Description of drawings
图1是三维正交碳纤维预制件的立体结构示意图,其中:棒状阵列代表碳纤维束阵列,碳纤维束沿X、Y、Z三个方向阵列排布,X、Y、Z三个方向彼此正交。Figure 1 is a schematic diagram of the three-dimensional structure of a three-dimensional orthogonal carbon fiber preform, in which: the rod array represents the array of carbon fiber bundles, and the carbon fiber bundles are arranged in arrays along the X, Y, and Z directions, and the X, Y, and Z directions are orthogonal to each other.
具体实施方式 Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
三维正交碳纤维增强体的经纱、纬纱和Z向纱都采用T300。碳纤维占复合材料体积分数约40%。基体采用纯铝。碳纤维预热温度400℃,浇注温度740℃,挤压压力10MPa,保压时间60秒,得到三维正交碳纤维增强铝基复合材料的结构致密,碳纤维与基体结合良好,碳纤维分布均匀,未发生偏聚和弯曲。复合材料沿经纱和纬纱方向的强度为304MPa。The warp, weft and Z-direction yarns of the three-dimensional orthogonal carbon fiber reinforcement are all T300. Carbon fiber accounts for about 40% of the volume fraction of the composite. The base is made of pure aluminum. The carbon fiber preheating temperature is 400°C, the pouring temperature is 740°C, the extrusion pressure is 10MPa, and the holding time is 60 seconds. The structure of the three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite is dense, the carbon fiber is well bonded to the matrix, and the carbon fiber is evenly distributed without deviation. Poly and bend. The composite material has a strength of 304MPa along the warp and weft directions.
实施例2Example 2
三维正交碳纤维增强体的经纱、纬纱和Z向纱都采用T700。碳纤维占复合材料体积分数约50%。基体采用铝合金为ZL101。碳纤维预热温度500℃,浇注温度750℃,挤压压力30MPa,保压时间60秒,得到三维正交碳纤维增强铝基复合材料的结构致密,碳纤维与基体结合良好,碳纤维分布均匀,未发生偏聚和弯曲现象。复合材料沿经纱和纬纱方向的强度为590MPa。The warp, weft and Z-direction yarns of the three-dimensional orthogonal carbon fiber reinforcement are all T700. Carbon fiber accounts for about 50% of the volume fraction of the composite. The substrate is made of aluminum alloy ZL101. The carbon fiber preheating temperature is 500°C, the pouring temperature is 750°C, the extrusion pressure is 30MPa, and the holding time is 60 seconds. The structure of the three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite is dense, the carbon fiber is well bonded to the matrix, and the carbon fiber is evenly distributed without deviation. Gathering and bending phenomena. The composite material has a strength of 590MPa along the warp and weft directions.
实施例3Example 3
三维正交碳纤维增强体的经纱采用T700,纬纱和Z向纱采用T300。碳纤维占复合材料体积分数接近60%。基体采用铝合金为ZL102。碳纤维预热温度600℃,浇注温度760℃,挤压压力50MPa,保压时间60秒,得到三维正交碳纤维增强铝基复合材料的结构致密,碳纤维与基体结合良好,碳纤维分布均匀,未发生偏聚和弯曲现象。复合材料沿经纱方向的强度为638MPa,沿纬纱方向的强度为358MPa。The warp yarn of the three-dimensional orthogonal carbon fiber reinforcement is T700, and the weft yarn and Z-direction yarn are T300. Carbon fiber accounts for nearly 60% of the volume fraction of the composite material. The substrate is made of aluminum alloy ZL102. The carbon fiber preheating temperature is 600°C, the pouring temperature is 760°C, the extrusion pressure is 50MPa, and the holding time is 60 seconds. The structure of the three-dimensional orthogonal carbon fiber reinforced aluminum matrix composite is dense, the carbon fiber is well bonded to the matrix, and the carbon fiber is evenly distributed without deviation. Gathering and bending phenomena. The strength of the composite material along the warp direction is 638MPa, and the strength along the weft direction is 358MPa.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110068847XA CN102127722B (en) | 2011-03-22 | 2011-03-22 | Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110068847XA CN102127722B (en) | 2011-03-22 | 2011-03-22 | Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102127722A CN102127722A (en) | 2011-07-20 |
CN102127722B true CN102127722B (en) | 2012-11-07 |
Family
ID=44265988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110068847XA Expired - Fee Related CN102127722B (en) | 2011-03-22 | 2011-03-22 | Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102127722B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102191411B (en) * | 2011-04-28 | 2013-06-12 | 上海交通大学 | Process for preparing aluminum-based composite material with infiltration enhancer |
CN102286709B (en) * | 2011-08-31 | 2012-10-03 | 辽宁石油化工大学 | Preparation method of continuous fiber reinforcement metal-based composite material section |
CN103602932B (en) * | 2013-12-10 | 2015-07-15 | 湖南健行康复器材科技发展有限公司 | Carbon-fiber-reinforced aluminum-base composite material and preparation method thereof |
CN103981467B (en) * | 2014-05-22 | 2016-01-20 | 天津大学 | A kind of carbon/silicon carbide composite fibers strengthens the preparation method of alumina-based foam material |
CN104213056B (en) * | 2014-09-15 | 2016-04-13 | 河南科技大学 | A kind of fibre reinforced aluminum magnesium alloy matrix material and preparation method thereof |
CN104192085A (en) * | 2014-09-15 | 2014-12-10 | 荣成炭谷有限公司 | Automotive anticollision bumper and preparation method for elastic materials of automotive anticollision bumper |
CN104388846A (en) * | 2014-10-14 | 2015-03-04 | 荣成复合材料有限公司 | Composite material and its application |
CN104262894A (en) * | 2014-10-14 | 2015-01-07 | 荣成复合材料有限公司 | Composite material capable of being used for manufacturing container |
CN104264084A (en) * | 2014-10-14 | 2015-01-07 | 荣成复合材料有限公司 | Engine adopting composite material |
CN104313517A (en) * | 2014-10-31 | 2015-01-28 | 荣成复合材料有限公司 | Novel engine tappet |
CN104399989A (en) * | 2014-10-31 | 2015-03-11 | 荣成复合材料有限公司 | Novel engine timing gear |
CN105039877B (en) * | 2015-08-05 | 2016-11-30 | 同济大学 | Carbon fiber reinforced aluminum matrix composite and preparation method and application |
CN105200351A (en) * | 2015-10-29 | 2015-12-30 | 无锡桥阳机械制造有限公司 | Pressure infiltration technology |
CN105397061A (en) * | 2015-11-18 | 2016-03-16 | 宁波瑞铭机械有限公司 | Die for sewing machine cloth pressing foot |
CN105436461A (en) * | 2015-11-18 | 2016-03-30 | 宁波瑞铭机械有限公司 | Mold used for sewing machine pedal plate |
CN105428872A (en) * | 2015-11-24 | 2016-03-23 | 宁波市鄞州永佳连接器件厂(普通合伙) | Connector used for amplifier |
CN105470680A (en) * | 2015-11-24 | 2016-04-06 | 宁波市鄞州永佳连接器件厂(普通合伙) | Connector used for lawn mower |
CN106868432B (en) * | 2016-12-05 | 2018-07-10 | 上海阿莱德实业股份有限公司 | Gallium alloy heat sink material and its production technology equipped with fiber reinforcement |
CN108546892A (en) * | 2018-05-25 | 2018-09-18 | 武汉理工大学 | A kind of electromagnetic pulse forming device and method of aluminum base carbon fiber enhancing composite material |
CN108796398B (en) * | 2018-07-11 | 2020-04-28 | 河北工业职业技术学院 | A kind of preparation method of continuous carbon fiber reinforced copper matrix composite material |
ES2802282B2 (en) * | 2019-07-02 | 2021-05-25 | Univ Rey Juan Carlos | Manufacture of carbon fiber reinforced composite materials by injection of a high pressure aluminum alloy |
WO2023028994A1 (en) * | 2021-09-03 | 2023-03-09 | 江苏恒义工业技术有限公司 | Environment-friendly lightweight alloy material for production of electric vehicle undertray |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1986868A (en) * | 2006-12-21 | 2007-06-27 | 上海交通大学 | Carbon fiber mixing reinforced magnesium-base high modulus composite material and its preparing process |
CN101713056A (en) * | 2009-12-08 | 2010-05-26 | 耿世达 | Metal matrix three-dimensional netlike carbon fiber composite material and manufacturing method thereof |
-
2011
- 2011-03-22 CN CN201110068847XA patent/CN102127722B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1986868A (en) * | 2006-12-21 | 2007-06-27 | 上海交通大学 | Carbon fiber mixing reinforced magnesium-base high modulus composite material and its preparing process |
CN101713056A (en) * | 2009-12-08 | 2010-05-26 | 耿世达 | Metal matrix three-dimensional netlike carbon fiber composite material and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
张广安等.短碳纤维增强铝基复合材料的挤压浸渗工艺.《中国有色金属学报》.2002,第12卷(第3期),第525-528页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102127722A (en) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102127722B (en) | Three-dimensional orthotropic carbon fiber reinforced aluminum-based composite material and preparation method thereof | |
CN111250703B (en) | Magnesium-based composite material taking titanium or titanium alloy as framework reinforcement and preparation method thereof | |
CN105478683B (en) | A kind of carbon fiber reinforced magnesium-base composite material hollow pipe and preparation method thereof | |
CN109468549B (en) | Near-net forming method of 3D woven fiber reinforced metal matrix composite | |
CN104388848A (en) | 3D (3-Dimensional) printing method for preparing long-fiber reinforced metal matrix composite material | |
CN107856298A (en) | A kind of continuous fiber reinforced composite materials swinging 3D printer | |
CN102659441B (en) | Composite structure pre-existing stress tendon reinforced ceramic matrix composite material and manufacturing method thereof | |
CN110405033A (en) | Fiber heat cure is compound enhances forming technology again for a kind of high strength alumin ium alloy drop stamping- | |
CN106019436B (en) | A kind of optical system full carbon fiber composite material reflector and manufacturing method | |
Gupta et al. | Applications and challenges of carbon-fibres reinforced composites: a review | |
CN114921734B (en) | Preparation method of continuous ceramic fiber reinforced aluminum matrix composite | |
CN102492898A (en) | Manufacturing method of metal piece with built-in fiber prefabricated component | |
CN111636040B (en) | 3D reinforced aluminum matrix composite material with controllable structure and preparation method thereof | |
CN109023165B (en) | Three-dimensional woven carbon fiber reinforced metal matrix composite material and preparation method thereof | |
CN102229267B (en) | Hybrid fiber reinforced resin matrix sandwich structural absorbing material and its preparation method | |
CN108796398A (en) | A kind of preparation method of continuous carbon fibre enhancing Cu-base composites | |
CN106083122A (en) | A kind of abnormity flange closes load frame integral forming method | |
CN104399981B (en) | A kind of three-dimensional printing-forming method of metal-base composites | |
CN104988437B (en) | The method of the Three-Dimensional Isotropic of fiber-reinforced metal matrix composite | |
CN108327168A (en) | The production method of D braided composites cored screw spring | |
CN111434483A (en) | A kind of vehicle metal lining braided composite material and its preparation method and application | |
Ye et al. | Additive manufacture of programmable multi-matrix continuous carbon fiber reinforced gradient composites | |
CN109112442B (en) | Multi-scale reinforced low/negative thermal expansion magnesium-based composite material and preparation method thereof | |
CN105587752A (en) | Composite connecting rod and preparation method thereof | |
CN111070736B (en) | A method for improving the bending performance of carbon fiber wound metal hybrid pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121107 Termination date: 20150322 |
|
EXPY | Termination of patent right or utility model |